spss方差分析

合集下载

SPSS 教程 第五章 方差分析

SPSS 教程     第五章 方差分析

目录1、单因素方差分析1)准备分析数据2)启动分析过程3)设置分析变量4)设置多项式比较5)多重比较6)提交执行7)结果与分析2、多因素方差分析1)准备分析数据2)调用分析过程3)设置分析变量4)选择分析模型5)选择比较方法6)选择均值图7)选择多重比较8)保存运算值9)选择输出项10)提交执行11)结果分析方差分析是用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。

在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。

通常是比较不同实验条件下样本均值间的差异。

例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。

方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。

(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。

总偏差平方和 SS t = SS b + SS w。

组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。

用SPSS作方差分析

用SPSS作方差分析

03
探索疾病发生与发 展的影响因素
结合方差分析的结果和生物学数 据,研究疾病发生与发展的相关 因素。
05
SPSS方差分析的注意事 项
数据预处理
检查数据完整性
确保没有缺失值或异常值,否则会影响分析结 果。
变量转换
根据需要,对连续变量进行中心化或标准化处 理,对分类变量进行编码。
独立性检验
在进行方差分析前,应先检验各组之间是否独立,以避免共线性问题。
在SPSS中,选择“分析”菜单,然 后选择“比较均值”中的“单因素方 差分析” 中,将自变量(学生性别、年龄等) 放入“因子”框中。
设置选项
根据需要设置其他选项,如样本组、 置信区间等。
运行ANOVA命令
点击“运行”按钮,SPSS将执行 ANOVA命令并输出结果。
重要性
方差分析在科学研究中有重要的应用价值。它可以帮助研究者了解不同组别之间的差异是否具有实际 意义,从而为进一步的研究提供依据。此外,方差分析还可以用于检验实验处理、不同地区或不同时 间点等变量对结果变量的影响,为决策提供科学依据。
02
SPSS方差分析的步骤
打开SPSS软件
01
1. 打开SPSS软件,选择“文件” 菜单中的“新建”选项,然后选 择“数据”。
02
2. 在数据编辑器中,输入或导入 要进行方差分析的数据。
导入数据
1. 如果数据已经存储在Excel 或其他电子表格程序中,可以 通过SPSS的“文件”菜单中 的“打开”选项导入数据。
2. 选择正确的文件类型,并 浏览到存储数据的文件位置,
然后打开文件。
3. SPSS将自动将数据导入到 数据编辑器中。
结果解读与讨论
结果解读

方差分析(SPSS版)

方差分析(SPSS版)

方差分析(SPSS版)原创 Gently spss学习乐园00方差分析方差分析的基本思想R.A.Fisher提出的统计理论基础:将总变异分解为由研究因素所产生的变异与抽样误差的部分,通过比较来自于不同部分的变异,借助统计分析做出推断。

(将所有样本响应变量的变异分解成因素不同水平间变异和随机误差,再判断因素不同水平间变异与随机误差之间是否存在统计学意义。

)其中,所有样本响应变量的方差称为全部平方和 SS T;由因素不同水平间差异引起的、可以由模型中因素解释的部分方差称为模型平方和(SS M);由抽样过程本身引起的部分方差称为误差平方和(SSE);且有 SS T = SS M+ SSE ;其中,R2 =SSM / SST ;取值范围为0~1,R方越趋近于1,意味着模型能解释的比例越大,即模型对数据的拟合越好。

方差分析应用条件① 样本数据服从正态分布② 样本数据满足方差齐性要求③ 样本数据集中观测间是独立的(样本数据中,其中一个观测所包含的信息与其它观测均无关)【注】在实际应用中,并不要求观测严格服从正态分布,如果观测近似服从正态分布,就认为其满足方差分析的正态性假设;当样本含量较大时,无论资料是否来自正态分布总体时,中心极限定理均保证了样本均数的抽样分布服从或近似服从正态分布。

通常采用方差齐性检验来判断方差齐性,如果样本含量相等或相近,即使方差不齐,方差分析仍然稳健且检验效能较好。

SPSS中提供了Levene检验来判断是否方差齐性。

对于明显偏离正态性和方差齐性的资料,可采用数据变换或秩变换的非参数检验的方法。

方差分析的分类:按照因素个数可分为,单因素方差分析、双因素方差分析、多因素方差分析等等。

按照不同的设计方式可分为,完全随机设计资料的方差分析、随机区组设计资料的方差分析、拉丁方设计资料的方差分析、析因设计资料的方差分析等等。

本节以单因素方差分析为例,介绍主要的操作步骤和结果分析。

Read More ↓↓↓【】【】【】【】【】数据基本信息①数据类型:自变量为分组变量,响应变量为连续型变量②只有一个因素是降血脂药物③该因素有4个水平(安慰剂组、2.4g组、4.8g组、7.2g组)④响应变量为低密度脂蛋白手把手教你① 检验方差分析的应用条件(Ⅰ)正态性检验【】Analyze→Descriptive Statistics → Explore正态性检验结果:Shapiro-Wilk 检验表明4组数据均服从正态分布;方差同质性检验:Levene检验表明4组样本数据的总体方差相等,即满足方差齐性检验。

SPSS试验方差分析

SPSS试验方差分析

SPSS试验方差分析方差分析是一种用于检验多组数据之间差异是否显著的方法。

在SPSS软件中,方差分析的主要功能实现在“分析-方差”菜单项下,包括单因素方差分析、方差分析比较两个或多个均值以及重复测量方差分析等。

单因素方差分析单因素方差分析适用于只有一个自变量的情况。

单因素方差分析的目的是确定这个变量不同水平之间的差异是否显著,如果显著则可以得出结论,这个自变量对因变量有显著影响。

为了进行单因素方差分析,需要输入数据并选择相应的分析选项。

例如,假设有两个班级,每个班级有10个学生。

这些学生分别接受了两个不同的课程,然后根据每个班级的平均成绩,我们想测试课程是否有显著差异。

在SPSS中进行单因素方差分析,需要先添加数据并确定自变量和因变量。

步骤:1. 打开SPSS,导入数据文件。

2. 选择“分析”菜单,并在“方差”子菜单下选择“单因素方差分析”。

3. 将自变量和因变量放入相应的输入框中。

4. 点击“设置”按钮,设置所需的分析选项。

在输出窗口中,可以看到方差分析表,其中包括相关参数的显著性水平(P值),以及F值和相应的自由度。

根据F值和P值,可以得出结论,即该自变量对因变量是否有显著影响。

方差分析比较两个或多个均值方差分析比较两个或多个均值的目的是确定两个或多个独立样本(平均值)之间的差异是否显著。

通常,此类数据需要存储在两个或多个变量中。

为了进行方差分析比较两个或多个均值,需要选择适当的分析选项。

重复测量方差分析重复测量方差分析用于比较两个或多个组的平均值,其中每个组都接受了多次测量。

这种方法通常适用于测试同一组受试者在不同时间或不同条件下的表现,并检测差异是否显著。

为了进行重复测量方差分析,需要选择适当的分析选项。

方差分析SPSS

方差分析SPSS

F界值为单尾
4、根据统计推断结果,结合相应的专业知识,给出一个专 业的结论。
随机区组设计的两因素方差分析
配伍设计有两个研究因素,区组因素和处理因素。 事先将全部受试对象按某种或某些特征分为若干个 区组,使每个区组内研究对象的特征尽可能相近。 每个区组内的观察对象与研究因素的水平数k相等, 分别使每个区组内的观察对象随机地接受研究因素 某一水平的处理。
k ni
SS总=
( Xij X )2 ,总 N 1
i1 j 1
组间变异:各处理组的样本均数也大小不等。大小可用各组
均数 X i 与总均数 X 的离均差平方和表示。
k
SS组间= ni ( X i X )2 , 组间 k 1, MS组间=SS组间 组间 i 1
组内变异:各处理组内部观察值也大小不等,可用各处理组
内部每个观察值 X ij与组均数 X i 的离均差平方和表示。
k ni
SS组内=
( Xij Xi )2,组内 N k,MS组内=SS组内 组内
i1 j1
三种变异的关系
SS总 SS组间 SS组内
并且该等式和上面的等式存在如下的对应关系 总变异=随机变异+处理因素导致的变异
总变异=组内变异 + 组间变异
=0.05
2、选定检验方法,计算检验统计量
F MS处理 MS误差;F MS区组 MS误差 3、确定P值,作出推断结论
F F ,P (处理,误差 ) F F ,P (处理,误差 )
F界值为单尾
4、根据统计推断结果,结合相应的专业知识,给出一个专 业的结论。
多重比较
LSD-t 检验:适用于检验k组中某一对或某几对在 专业上有特殊意义的均数是否相等。

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。

它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。

在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。

本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。

方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。

方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。

方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。

在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。

在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。

步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。

步骤3:点击“数据视图”页面,输入各组别的数据。

确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。

步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。

步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。

步骤6:点击“选项”按钮,出现选项对话框。

可以选择计算哪些统计量,如均值、标准差、总和平方和等。

步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。

方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。

-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。

-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。

-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。

-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。

SPSS学习系列22.方差分析

SPSS学习系列22.方差分析

22.方差分析一、方差分析原理1.方差分析概述方差分析可用来研究多个分组的均值有无差异,其中分组是按影响因素的不同水平值组合进行划分的。

方差分析是对总变异进行分析。

看总变异是由哪些部分组成的,这些部分间的关系如何。

方差分析,是用来检验两个或两个以上均值间差别显著性(影响观察结果的因素:原因变量(列变量)的个数大于2,或分组变量(行变量)的个数大于1)。

一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks' A检验)。

方差分析可用于:(1)完全随机设计(单因素)、随机区组设计(双因素)、析因设计、拉丁方设计和正交设计等资料;(2)可对两因素间交互作用差异进行显著性检验;(3)进行方差齐性检验。

要比较几组均值时,理论上抽得的几个样本,都假定来白正态总体,且有一个相同的方差,仅仅均值可以不相同。

还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。

所谓的方差是离均差平方和除以白由度,在方差分析中常简称为均方(Mean Square)。

2.基本思想基本思想是,将所有测量值上的总变异按照其变异的来源分解为多个部份,然后进行比较,评价由某种因素所引起的变异是否具有统计学意义。

根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总白由度也被分成相应的各个部分,各部分的离均差平方除以各白的白由度得出各部分的均方,然后列出方差分析表算出F检验值,作出统计推断。

方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。

效应项与试验设计或统计分析的目的有关,一般有:主效应(包括各种因素),交互影响项(因素间的多级交互影响),协变量(来白回归的变异项),等等。

当分析和确定了各个效应项S后,根据原始观察资料可计算出各个离均差平方和SS再根据相应的白由度df,由公式MS=SSdf,求出均方MS,最后由相应的均方,求出各个变异项的F值,F值实际上是两个均方之比值,通常情况下,分母的均方是误差项的均方。

SPSS之方差分析最全总结(原理案例介绍)

SPSS之方差分析最全总结(原理案例介绍)

讨论
本研究通过单因素方 差分析发现不同药物 治疗方案对患者病情 的改善程度存在显著 差异,为临床医生选 择最佳治疗方案提供 了科学依据。
然而,本研究仅关注 了药物治疗方案对患 者病情的短期影响, 未来可进一步探讨长 期疗效及安全性等问 题。
Hale Waihona Puke 此外,本研究样本量 较小,可能存在一定 的抽样误差。未来可 扩大样本量以提高研 究的准确性和可靠性 。
方差分析基本思想
F统计量
通过计算处理组间均方与处理组内均 方的比值,得到F统计量。如果F值较 大,说明处理组间的差异相对于处理 组内的差异更为显著。
假设检验
根据F统计量的值和给定的显著性水平 ,进行假设检验,判断因素对因变量 是否有显著影响。
02
SPSS中方差分析操作步骤
数据准备与导入
数据准备
案例结论与讨论
结论
通过协方差分析,发现不同治疗方法对患者生理指标的影响存在显著 差异,且患者年龄、性别等协变量对生理指标也有一定影响。
治疗方法的选择
根据分析结果,可以为患者提供更加个性化的治疗方案。
协变量的影响
考虑患者年龄、性别等协变量的影响,有助于提高治疗效果和患者满 意度。
研究局限性
本案例仅考虑了部分协变量的影响,未来研究可进一步探讨其他潜在 协变量的作用。
05
协方差分析案例解析
案例背景介绍
案例来源
01
某医学研究项目,探讨不同治疗方法对患者某项生理
指标的影响。
研究目的
02 通过协方差分析,研究不同治疗方法对患者生理指标
的差异,并考虑患者年龄、性别等协变量的影响。
数据收集
03
收集患者的年龄、性别、治疗方法及生理指标等数据
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方差分析是用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。

在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。

通常是比较不同实验条件下样本均值间的差异。

例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。

方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。

(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。

总偏差平方和 SS t = SS b + SS w。

组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。

另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。

那么,MS b>>MS w(远远大于)。

MS b/MS w比值构成F分布。

用F值与其临界值比较,推断各样本是否来自相同的总体。

方差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即μ1=μ2=μ3=…=μm=μ,m个样本有共同的方差。

则m个样本来自具有共同的方差和相同的均数u的总体。

零假设H0:m组样本均值都相同,即μ1= μ2=....= μm如果,计算结果的组间均方远远大于组内均方(MS b>>MS w),F>F0.05(dfb,dfw), p<0.05,拒绝零假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义;否则, F<F0.05((dfb,dfw), p>0.05不能拒绝零假设,说明样本来自相同的正态总体,处理间无差异。

SPSS中方差分析过程1)One-Way ANOVA过程One-Way过程是单因素简单方差分析过程。

它在Analyze菜单中的Compare Means过程组中。

用0ne-Way ANOVA菜单项调用,可以进行单因素方差分析、均值多重比较和相对比较。

2)General Linear Model 过程组在SPSS主菜单“Analyze”项调用。

这些过程可以完成简单的多因素方差分析和协方差分析,不但可以分析各因素的主效应,还可以分析各因素间的交互效应。

该过程允许指定最高阶次的交互效应,建立包括所有效应的模型。

如果想建立包括某些特定的交互效应的模型也可以通过过程中的“Method”对话框中的选择项实现。

在General Linear Model菜单项的下一级菜单中有四项过程,每个菜单项分别完成不同类型的方差分析任务。

这些过程的主要功能分别是:① Univariate 过程Univariate过程完成一般的单因变量、多因素方差分析。

可以指定协变量,即进行协方差分析。

在指定模型方面有较大的灵活性并可以提供大量的统计输出。

② Multivariate过程Multivariate过程进行多因变量的多因素分析。

当研究的问题具有两个或两个以上相关的因变量时,要研究一个或几个因素变量与因变量集之间的关系时,才可以选用Multivariate过程。

例如,当你研究数学、物理的考试成绩是否与教学方法、学生性别、以及方法与性别的交互作用有关时,使用此菜单项。

如果只有几个不相关的因变量或只有一个因变量,应该使用Univariate过程。

③ Repeated Measure过程Repeated Measure过程进行重复测量方差分析。

当一个因变量在不只一种条件下进行测度,要检验有关因变量均值的假设应该使用该过程。

④ Variance Component 过程Variance Component过程进行方差估计分析。

通过计算方差估计值,可以帮助我们分析如何减小方差。

单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。

表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数1 41 33 38 37 312 39 37 35 39 343 40 35 35 38 34数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。

图5-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。

或者打开已存在的数据文件“DATA5-1.SAV”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图5-2。

图5-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图5-3所示的对话框。

该对话框用于设置均值的多项式比较。

图5-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图5-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。

多项式的系数需要由读者自己根据研究的需要输入。

具体的操作步骤如下:① 选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。

② 单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。

③ 为多项式指定各组均值的系数。

方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。

依次输入各组均值的系数,在方形显示框中形成—列数值。

因素变量分为几组,输入几个系数,多出的无意义。

如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。

如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。

可以同时建立多个多项式。

一个多项式的一组系数输入结束,激话“Next”按钮,单击该按钮后“Coefficients”框中清空,准备接受下一组系数数据。

如果认为输入的几组系数中有错误,可以分别单击“Previous”或“Next”按钮前后翻找出错的一组数据。

单击出错的系数,该系数显示在编辑框中,可以在此进行修改,修改后单击“Change”按钮在系数显示框中出现正确的系数值。

当在系数显示框中选中一个系数时,同时激话“Remove”按钮,单击该按钮将选中的系数清除。

④单击“Previous”或“Next”按钮显示输入的各组系数检查无误后,按“Continue”按钮确认输入的系数并返回到主对话框。

要取消刚刚的输入,单击“Cancel”按钮;需要查看系统的帮助信息,单击“Help”按钮。

本例子不做多项式比较的选择,选择缺省值。

5)设置多重比较在主对话框里单击“Post Hoc”按钮,将打开如图5-4所示的多重比较对话框。

该对话框用于设置多重比较和配对比较。

方差分析一旦确定各组均值间存在差异显著,多重比较检测可以求出均值相等的组;配对比较可找出和其它组均值有差异的组,并输出显著性水平为0.95的均值比较矩阵,在矩阵中用星号表示有差异的组。

图5-4 “Post Hoc Multiple Comparisons”对话框(1)多重比较的选择项:①方差具有齐次性时(Equal Variances Assumed),该矩形框中有如下方法供选择:LSD (Least-significant difference) 最小显著差数法,用t检验完成各组均值间的配对比较。

对多重比较误差率不进行调整。

Bonferroni (LSDMOD) 用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。

Sidak 计算t统计量进行多重配对比较。

可以调整显著性水平,比Bofferroni 方法的界限要小。

Scheffe对所有可能的组合进行同步进入的配对比较。

这些选择项可以同时选择若干个。

以便比较各种均值比较方法的结果。

R-E-G-WF (Ryan-Einot-Gabriel-Welsch F) 用F检验进行多重比较检验。

R-E-G-WQ (Ryan-Einot-Gabriel-Welsch range test) 正态分布范围进行多重配对比较。

S-N-K (Student-Newmnan-Keuls) 用Student Range分布进行所有各组均值间的配对比较。

如果各组样本含量相等或者选择了“Harmonic average of all groups”即用所有各组样本含量的调和平均数进行样本量估计时还用逐步过程进行齐次子集(差异较小的子集)的均值配对比较。

在该比较过程中,各组均值从大到小按顺序排列,最先比较最末端的差异。

Tukey(Tukey's,honestly signicant difference) 用Student-Range统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。

相关文档
最新文档