北京市昌平区2015年初三第二次统一练习数学试卷及答案
昌平区2015年初三年级第二次统一练习答案

31. (4 分,每空 1 分)
( 1)集气瓶
( 2) 2KMnO 4 △ K 2MnO 4+MnO 2+O 2↑
B
木条复燃
32. (3 分,每空 1 分) ( 1) 2H2O 通电 2H 2↑+O2↑
( 2)密度大于空气、不能燃烧、不支持燃烧
( 3) Na2CO 3 + 2HCl === 2NaCl + H 2O + CO 2↑
…………………… 1 分 …………………… 1 分
…………………… 1 分
( 2)木糖醇溶于水,溶解时会吸收一定热量
( 3)碳、氢、氧
有机物
( 4)2C 5H12O5 + 11O2 =.( 5 分,每空 1 分,( 4) 2 分)
( 1)盐
( 2)Fe2O3 + 3H 2SO4 === Fe2(SO4)3 + 3H 2O
( 3)过滤
( 3)在 A 、B 中长导管口分别放一小块白磷, A 中加入 80℃热水, B 中加入等量冷水,液面高
于长导管口。打开分液漏斗活塞,一段时间后,
A 中白磷燃烧, B 中白磷不燃烧,说明燃
烧条件之一是温度必须达到可燃物的着火点。 (其他答案合理给分)
35.( 6 分,每空 1 分,最后一空 2 分)
22. (4 分,每空 1 分 )
( 1)肥皂水
( 2) ACD
(3)吸附
+3
23. (2 分,每空 1 分 ) ( 1)让空气进来
( 2)两者反应产生二氧化碳气体
24. (3 分,每空 1 分) ( 1) A ( 2)CaCO3
( 3)降低温度到可燃物着火点以下、隔绝空气
2.2015初三数学二模题答案-昌平

EDCBA昌平区2015年初三年级第二次统一练习 数 学 参考答案及评分标准 2015. 6一、选择题(共10道小题,每小题3分,共30分)二、填空题(共6道小题,每小题3分,共18分)三、解答题(共6道小题,每小题5分,共30分)17.解:1011)3tan303-⎛⎫+ ⎪⎝⎭=133++………………………………………………………… 4分 =13+=4+ ………………………………………………………………… 5分 18.证明:∵ AB AD ⊥,AE AC ⊥,∴90,EAC DAB ∠=∠=︒即 EAD DAC CAB DAC ∠+∠=∠+∠.∴∠EAD =∠CAB . …………………………………… 1分在△ADE 和△ABC 中,E C EAD CAB DE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ADE ≌△ABC .……………………………………… 4分 ∴ AD = AB . ………………………………………… 5分 19.解:去分母,得 46x +-≤2x .………………………………………………… 2分移项,合并,得 x -≤2. 系数化1,得 x ≥-2. ………………………………………………………… 4分所以原不等式的负整数解为21--,. …………………………………………5分 20.解: 3)1()3(22+---x x x2226x 2x 13x x =--+-+ ……………………………………………………2分24x 2x =-+. ………………………………………………………………………3分∵ 0142=--x x , ∴ 241x x -=,∴ 原式=1+2=3. ………………………………………………………………………… 5分 21.解:(1)∵ 点()1A m -,,()3B n -,在反比例函数6y x=-的图象上, ∴ m =6,n =2.∴ ()16A -,,()23B -, ……………………………………………………………………… 1分 ∵ 一次函数y kx b =+的图象过()16A -,,()23B -,两点,∴ 632.k b k b =-+⎧⎨-=+⎩, …………………………………………………………………… 2分解方程组,得3,3.k b =-⎧⎨=⎩∴ 一次函数的解析式为y =-3x +3. ……………………………………… 3分 (2)∵ 一次函数y =-3x +3与y 轴交点C (0,3), 且B (2,-3)∴ BOC △面积为3. ……………………………………………………………………… 4分 ∵ P 是x 轴上一点,且BOP △的面积是BOC △面积的2倍, ∴ 设P (a ,0), ∴1362a ⨯=,解得,4a =±. ∴ 点P 的坐标为(4,0)或(-4,0). …………………………………………… 5分 22.解:设小明家到单位的路程是x 千米. ……………………………… 1分依题意,得 13 2.3(3)82(3)0.8x x x +-=+-+. ………………………………………… 3分 解这个方程,得 8.2x =. ……………………………………………………… 4分 答:小明家到单位的路程是8.2千米. ………………………………………………… 5分 四、解答题(共4道小题,每小题5分,共20分)23.(1)如图,补全图形. …………………………… 1分 (2)解:连接CE 交BD 于点F . …………………………… 2分 ∵ 将△BCD 沿直线BD 翻折,得到△BED , ∴ BD 垂直平分CE .∵ 矩形ABCD ,AB =3,BC =6,∴ ︒=∠=∠90BCD BED , 3 6.DE DC AB EB BC =====,DOCB AEF∴ 53362222=+=+=DE BE BD . ………………………………………………………… 3分∴ 52321==BD OD . ∵ BDDEDE DF EDB ==∠cos , ∴5333=DF . ∴ 553=DF . ……………………………………………………………………… 4分 ∴5109=-=DF OD OF . ∵BD 垂直平分CE ,O 为AC 中点, ∴AE =2OF =559. ……………………………………………………………………… 5分 24.解:(1) 补全条形统计图,如图所示.…………………………………………………… 2分(2)100. ……………………………………………………………………… 3分 (3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数:1200×30100=360人.答:全校学生中喜欢剪纸的有360人. ………………………………………………… 5分25.解:(1)DF 与⊙O 相切. ………………………………… 1分 ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠, ∴BFD CAB ∠=∠.∴AC ∥DF . ………………………………… 2分 ∵半径OD 垂直于弦AC 于点E , ∴DF OD ⊥.∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8, ∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEO Rt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分 ∵AC ∥DF , ∴OAE ∆∽OFD ∆.∴DF AEOD OE = . ∴DF453=. ∴320=DF . ………………………………………………… 5分26.解:10103xCD =. ……………………………………………………………………… 1分 Sin2α=CD OC =53. ……………………………………………………………………… 2分 如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q =∠P =β,OM=ON,∴ ∠MON =2∠Q =2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k ,∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 .∴ MH =k 552. ………………………………………………………………………………… 4分 在MHO Rt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵ 抛物线经过()0,0,()4,0- ,()6,3-三点,∴ 01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩ …………………………………………………………………… 1分解得 1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. ………………………………………………………………………… 2分∴ 抛物线的解析式为214y x x =+.∵()()22211144421444y x x x x x =+=++-=+-∴抛物线的顶点坐标为()2,1-- …………………………………………………… 3分 (2)设直线CD 的解析式为2y x m =+,根据题意,得2124x x x m +=+, …………………………………………………… 4分 化简整理,得2440x x m --=,由16160m ∆=+=,解得1m =-, ………………………………………………… 5分∴直线CD 的解析式为21y x =- .(3)点的坐标为()2,7, …………………………………………………………… 6分. ……………………………………………………………… 7分 28.解:(1)B………………………………………… 1分(2)B证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴ AD //BC ,AB //CD .∴ ∠ DAE =∠ AEB ,∠ BAE =∠ DP A . ……………………………………… 2分 ∵ AE 平分∠ BAD , ∴ ∠ DAE =∠ BAE ,∴ ∠ BAE =∠ AEB ,∠ DAE =∠ DP A .∴ BA =BE ,DA =DP , ……………………………………………………… 3分 又 ∵ BG ⊥ AE ,DH ⊥ AE ,∴ G 为AE 中点,H 为AP 中点. …………………………………………… 4分 又 ∵O 为AC 中点,AD =BC , ∴ ()()111222OG CE BC BE AD AB ==-=-,()()111222OH CP DP CD AD AB ==-=- . …………………………… 5分∴ OG =OH . ………………………………………………………………… 6分(3)717. ……………………………………………………………………………… 7分 29.解:(1)答案不唯一,只要两个解析式给出相同的a 值和相同的m 值即可(每空各1分)…… 2分(2)是兄弟抛物线,理由如下. ………………………………………………………… 3分∵ ()()2211y x x x x =-=-+-, ……………………………………………………… 4分()()223211y x x x x =-+=---, …………………………………………………… 5分∴ 二次函数2y x x =-与232y x x =-+的图象是兄弟抛物线.此时 1a =,1m =. …………………………………………………………………… 6分 (3) 132()()22y x x =--,352()()22y x x =-- ; ………………………………… 7分 或 352()()22y x x =--,572()()22y x x =--. ………………………………………… 8分。
2015北京各区中考数学二模26、27、28题汇编(带答案)

(用含 x 的式子表示) ,
【问题解决】
2015 北京模拟 2 / 18
已知,如图 2,点 M、N、P 为圆 O 上的三点,且∠P=β,tanβ = 1 ,求 sin2β 的值. 2
y
C B
2α
M
β
P
A
D
D
O
α
A
N
O
B
O C
x
图1
图2
26. 如图,在平面直角坐标系 xOy 中,矩形 ABCD 各边都平行于坐标轴,且 A(-2,2) ,C(3,-2) .对矩形 ABCD 及其内部的点进行如下操作: 把每个点的横坐标乘以 a, 纵坐标乘以 b, 将得到的点再向右平移 k (k 0) 个单位,得到矩形 A ' B ' C ' D ' 及其内部的点( A ' B ' C ' D ' 分别与 ABCD 对应) .E(2,1)经过上述操作后的对应 点记为 E ' . (1)若 a=2,b=-3,k=2,则点 D 的坐标为 ,点 D ' 的坐标为 ; (2)若 A ' (1,4) , C ' (6,-4) ,求点 E ' 的坐标. 26.阅读下面的材料: 小明遇到一个问题:如图 1,在□ABCD 中,点 E 是边 BC 的中点,点 F 是线段 AE 上一点,BF 的延长线交射线 CD 于点 G. 如果 AF 3 ,求 CD 的值. CG EF 他的做法是:过点 E 作 EH∥AB 交 BG 于点 H,那么可以得到△BAF∽△HEF. 请回答: (1)AB 和 EH 之间的数量关系是 ,CG 和 EH 之间的数量关系是 , CD 的值为 .
5 4 3 2 1 –5 –4 –3 –2 –1 o –1 –2 –3 –4 –5 1 2 3 4 5
2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
2015昌平区初三二模数学试题及答案

9.如图,在已知的△ABC 中,按以下步骤作图: ①分别以 B,C 为圆心,以大于 两点 M,N; ②作直线 MN 交 AB 于点 D,连接 CD. 若 CD=AC,∠A=50°,则∠ACB 的度数为 A.90° B. 95° C.100° D. 105°
1 2
BC 的长为半径作弧,两弧相交于
M C B A
y A C O B x
22. 自从 2012 年 9 月 1 日昌平区首批 50 辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民 的广泛欢迎,给市民的生活带来了很大方便.下表是行驶 15 公里以内普通燃油出租车和纯电动出租车的 运营价格: 车型 普通燃油型 纯电动型 起步公里数 3 3 起步价格 13 元 8元 超出起步公里数后的单价 2.3 元/公里 2 元/公里
D N
10.如图,正方形 ABCD 的边长为 5,动点 P 的运动路线为 AB→BC,动点 Q 的运动路 A 线为 BD.点 P 与 Q 以相同的均匀速度分别从 A,B 两点同时出发,当一个点到达 P 终点停止运动时另一个点也随之停止.设点 P 运动的路程为 x,△BPQ 的面积为 y, 则下列能大致表示 y 与 x 的函数关系的图象为
3
1
小娟是这样解决的: 如图 1,在⊙O 中,AB 是直径,点 C 在⊙O 上,∠BAC=α,所以∠ACB=90°,tanα= 易得∠BOC=2α.设 BC=x,则 AC=3x,则 AB= x 的式子表示) ,可求得 sin2α= 【问题解决】 已知,如图 2,点 M、N、P 为圆 O 上的三点,且∠P=β,tanβ =
3 3
………………………………………………………………… 5 分 , AE
AC
AB AD
,
北京市2015年中考数学二模试题

2015年中考数学二模试题学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.某种埃博拉病毒(EBV )长0.000 000 665nm 左右.将0.000 000 665用科学记数法表示 应为A .0. 665×10-6B .6.65×10-7C .6.65×10-8D .0. 665×10-92A C 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是A B C D4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若23AD DB ,AE =6,则EC 的长为 A . 6 B. 9 C. 15 D. 185.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是A . 10 B. 14 C. 16 D. 406.某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如下表 所示:设甲、乙两人射击成绩的平均数分别为x 甲、x 乙,射击成绩的方差分别为2s 甲、2s 乙,则 下列判断中正确的是A .x 甲<x 乙,2s 甲>2s 乙B .x 甲=x 乙,2s 甲<2s 乙C .x 甲=x 乙,22=s s 甲乙D .x 甲=x 乙,2s 甲>2s 乙7.一个隧道的横截面如图所示,它的形状是以点O 为圆心, 5为半径的圆的一部分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =6,则隧道的高(ME 的 长)为A .4B .6C .8D .98.某数学课外活动小组利用一个有进水管与出水管的容器 模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出 水,在随后的10分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则第12分钟容器内的 蓄水量为A. 22B. 25C. 27D. 289. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将 矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若 此时BN CN =13,则△AMD′ 的面积与△AMN 的面积的比为 A .1:3 B .1:4 C .1:6 D .1: 910. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分) 11.若分式162+-x x 的值为0,则x 的值为 .12.分解因式:22312x y -.13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .14. 如图,△ABC 中,AB=AC ,AD 是BC 边中线,分别以点A 、C 为圆心,以大于12AC 长为半径画弧,两弧交点分别为点E 、F ,直线EF 与AD 相交于点O ,若OA =2,则△ABC 外接圆的面积为 .(第14题) (第15题)15.如图,点B 在线段AE 上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD ,那么这个条件可以是 (要求:不在图中添加其他辅助线,写出一个条件即可 ). 16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .17.已知:如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D . 求证:BE=CD .18.计算:-2018cos60(2π⎛⎫- ⎪⎝⎭.19.解不等式12212333x x --≥,并把它的解集在数轴上表示出来.20.已知a b -2(2)(2)4(1)a b b a a -+-+-的值.21.如图,一次函数y kx b =+()0≠k 的图象与反比例函数 my x=()0≠m 的图象交于A (-3,1),B (1,n )两点. (1)求反比例函数和一次函数的表达式;(2)设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标.22.列方程或方程组解应用题:23.如图,点F 在□ABCD 的对角线AC 上,过点F 、 B 分别作AB 、AC 的平行线相交于点E ,连接BF ,∠ABF=∠FBC+∠FCB . (1)求证:四边形ABEF 是菱形; (2)若BE=5,AD=8,21sin =∠CBE ,求AC 的长.24.某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:(说明:40---55分为不合格,55---70分为合格,70---85分为良好,85---100分为优秀) 请根据以上信息,解答下列问题: (1)表中的a = ,b= ;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为 .25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,PA ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:PA 是⊙O 的切线; (2)若BC =4 ,求AD 的长.正正正 正26.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O ,AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .图1 图2图328.数学活动课上,老师提出这样一个问题:如果AB =BC ,∠ABC =60°,∠APC =30°,连接PB ,那么PA 、PB 、PC 之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P 在BA 延长线上(如图1),得到了一个猜想:PA 2+PC 2=PB 2 .小东:我假设点P 在∠ABC 的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB 后得到△P′C B ,并且可推出△PBP′ ,△PCP ′ 分别是等边三角形、直角三角形,就能得到猜想和证明方法. 这时老师对同学们说,请大家完成以下问题: (1)如图2,点P 在∠ABC 的内部,①PA =4,PC=PB= .②用等式表示PA 、PB 、PC 之间的数量关系,并证明.(2)对于点P 的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON . (1)求该二次函数的表达式; (2)若点P 的坐标是(-6,3),求△OPN 的面积;(3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.图1图2草稿纸北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2015.6一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠ 16. 8或10(写出一个正确结果给1分)三、解答题(本题共30分,每小题5分) 17. 证明:∵BE ⊥CE ,AD ⊥CE ,∴∠BEC=∠CDA =90°. ………………………1分 ∴∠EBC +∠ECB =90°. 又∵∠DCA +∠ECB =90°,∴∠EBC=∠DCA . ………………………………2分 又∵BC=AC ,……………………………………3分∴△BEC ≌△CDA . ………………………………………………………………4分 ∴BE =CD . ………………………………………………………………………5分18. 解:原式 =1218324-⨯-+. ………………………………………………………4分 =132-. ……………………………………………………………………5分19. 解:2443-≥-x x .……………………………………………………………………1分4243+-≥-x x .……………………………………………………………………2分2≥-x . …………………………………………………………………………3分解得2-≤x . ………………………………………………………………………4分 …………………………5分20. 解:)1(4)2()2(2-+-+-a a b b a=4424422-+-++-a ab b a a . ……………………………………………3分 =ab b a 222-+=2)(b a -.……………………………………………………………………………4分 ∵2=-b a ,∴原式=2)2(2=. ………………………………………………………………5分21. 解:(1)把A (-3,1)代入,有31-=m, 解得3-=m .∴反比例函数的表达式为xy 3-=. ……………………………………1分 当1=x 时,313-=-=y . ∴B (1,-3). …………………………………………………………2分 把A (-3,1),B (1,-3)代入b kx y +=,有⎩⎨⎧+=-+-=b k bk 331, 解得⎩⎨⎧-=-=21b k .∴一次函数的表达式为2--=x y . ……………………………………3分 (2)(4,0)或(-2,0). ……………………………………………………5分22. 解:设小白家这两年用水的年平均下降率为x . …………………………………………1分由题意,得1264000)1(%3630002=-⋅x . ………………………………………2分 解得 8.11=x ,2.02=x . ……………………………………………3分 ∵8.1=x 不符合题意,舍去. ………………………………………………4分 ∴%.20=x答:小白家这两年用水的年平均下降率为%.20 ………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形.∵∠ABF=∠FBC +∠FCB ,∠AFB=∠FBC +∠FCB ,∴∠ABF=∠AFB . …………………………………………………………………1分 ∴AB =AF .∴□ABEF 是菱形. ………………………………………………………………2分 (2)解:作DH ⊥AC 于点H ,∵21sin =∠CBE , ∴︒=∠30CBE . ∵BE ∥AC , ∴CBE ∠=∠1. ∵AD ∥BC , ∴12∠=∠.∴︒=∠=∠302CBE .Rt△ADH 中,342cos =∠⋅=AD AH .………………………………………………3分42sin =∠⋅=AD DH .∵四边形ABEF 是菱形,∴CD= AB=BE=5,Rt△CDH 中,322=-=DH CD CH . ………………………………………………4分 ∴334+=+=CH AH AC .…………………………………………5分24.(1)18,50%. …………………………………………………………………………2分(2)…………………………………………4分(3)120. ………………………………………………………………………………5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分∵PA ∥BC ,∴∠PAO =∠BEO =90°.∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分(2)解:根据(1)可得CE =21BC=2. Rt△ACE 中,122=-=CE AC AE . ………………………………3分 ∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分又∵∠D =∠C ,∴AD =52tan =DAB .………………………………………………………5分 26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°,∴AE =12m . ∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -. ∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ···················· 1分=4.即0∆>.∴方程有两个不相等的实数根. ··················2分 (2) 解:由求根公式,得2(1)22a x a -±=. ∴1x =或21x a=-. ······················· 3分 0a >,1x >2x ,11x ∴=,221x a=-. ······················· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分 证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2.∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分∴PA =P ′C ,∠A =∠BCP ′.在四边形ABCP 中,∵∠ABC =60°,∠APC =30°,∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形.∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例:如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分29.(1)解:设二次函数的表达式为4)4(2++=x a y ,把点(0,0)代入表达式,解得41-=a . ………………………………………1分 ∴二次函数的表达式为4)4(412++-=x y , 即x x y 2412--=. ……………………………………………………………2分 (2)解:设直线OP 为y kx =,将P (-6,3)代入y kx =,解得12k =-, ∴12y x =-. 当4-=x 时,2=y .∴M (-4,2). ……………………………………………………………………3分 ∵点M 、N 关于点A 对称,∴N (-4,6).∴MN =4.∴12=+=∆∆∆PMN O MN PO N S S S . ……………………………………………………4分(3)①证明:设点P 的坐标为)241,(2t t t --, 其中4-<t ,设直线OP 为x k y '=,将P )241,(2t t t --代入x k y '=,解得'=k ∴x t y 48+-=. 当4-=x 时,8+=t y .∴M (-4,8+t ).∴AN =AM =)8(4+-t =4--t .设对称轴l 交x 轴于点B ,作PC ⊥l 于点C 则B (-4,0),C )241,4(2t t ---. ∴OB =4,NB =)4(4--+t =t -,PC =-4NC =)241(2t t t ----=t t +241. 则44412t t t t PC NC -=--+=,44t t OBNB -=-=. ∴OBNB PC NC =. 又∵∠NCP =∠NBO =90°,∴△NCP ∽△NBO .∴∠PNM =∠ONM . …………………………………………………………………6分 ② (4,244---). ………………………………………………………………8分其他正确解法,请参考标准给分.。
2015北京各区中考数学二模25题全面总结及答案

2015北京各区中考数学25题汇编及答案25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB,且OA PG 的长.25.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于 点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F . (1)求证:DF 是⊙O 的切线;F(2)若DF =3,DE =2.①求值;②求FAB ∠的度数.25.如图,点A B C D E 、、、、在⊙O 上,AB CB ⊥于点B ,tan 3D =,2BC=,H为CE 延长线上一点,且AH =CH =(1)求证:AH 是⊙O 的切线;(2)若点D 是弧CE 的中点,且AD 交CE 于点F ,求EF 的长.25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,P A ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:P A 是⊙O 的切线;(2)若BC =4 ,求AD 的长.25.如图,△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE是⊙O 的直径,连结DE . (1)求证:AC 是⊙O 的切线;BEADCC(2)若4sin 5C =,AC =6,求⊙O 的直径.25.如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点,CDB BFD ∠=∠.(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB =10,AC =8,求DF 的长.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F .25.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA =∠ABC ;(2)如果BD =1,tan ∠BAD =12,求⊙O 的半径.25.如图,AB 是⊙O 的直径,点C 是⊙O 上一点, AD ⊥ DC 于D , 且AC 平分∠DAB ,延长DC 交AB 的延长线于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:PD 是⊙O 的切线; (2)若tan ABC =43∠,BE =PC 的长.25.如图,△ABC 内接于⊙O ,OC ⊥AB 于点E ,点D 在OC 的延长线上,且∠B =∠D =30°.(1)求证:AD 是⊙O 的切线;(2)若AB =求⊙O 的半径.25.如图,已知,⊙O 为△ABC 的外接圆,BC 为直径,点E 在AB 边上,过点E 作EF ⊥BC ,延长FE 交⊙O 的切线AG 于点G . (1)求证:GA =GE .PE(2)若AC =6,AB =8,BE =3,求线段OE 的长.答案25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩F∴△OEC ≌△OAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF与⊙O相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF ,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC =F∴BD=.…………………………………………………………………………………….5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切. 证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点, ∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==A∴tan 4PG CG GCP =⋅∠==. …………………………… 5分25. (1)连结OD , ∵AD 平分∠BAC ∴∠DAF =∠DAO ∵OA =OD ∴∠OAD =∠ODA ∴∠ DAF =∠ODA ∴AF ∥OD .┉┉1分 ∵DF ⊥AC ∴OD ⊥DF ∴DF 是⊙O 的切线┉┉2分 (2)①连接BD ∵直径AB , ∴∠ADB =90° ∵圆O 与BE 相切 ∴∠ABE =90°∵∠DAB +∠DBA =∠DBA +∠DBE =90° ∴∠DAB =∠DBE ∴∠DBE =∠F AD ∵∠BDE=∠AFD =90° ∴△BDE ∽△AFD ∴32==DF DE AD BE ┉┉3分 ②连接OC ,交AD 于G 由①,设BE =2x ,则AD =3x ∵△BDE ∽△ABE ∴BE DE AE BE =∴xx x 22232=+∵AB BC ⊥于点B∴AC 是⊙O 的直径…………………………………1分 ∵D ACB ∠=∠,∴tan tan 3D ACB =∠= 在Rt ABC ∆中,2BC =,∴36AB BC == 由勾股定理AC =在CAH ∆中,由勾股定理逆定理:22250AC AH CH +==∴90CAH ∠=°即CA AH ⊥∴AH 是⊙O 的切线…………………………………2分 (2)解:∵点D 是弧CE 的中点∴EAD DAC ∠=∠…………………………………3分 ∵AC 是⊙O 的直径 ∴AE CH ⊥∴90H EAH H HCA ∠+∠=∠+∠=° ∴EAH HCA ∠=∠∴EAD EAH DAC HCA ∠+∠=∠+∠ 即AFH HAF ∠=∠∴HF HA =∵CA AH ⊥AE CH ⊥∴2AH EH CH =⨯可得EH = ∴EF =5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分C B∵PA ∥BC , ∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分25. (1)证明:∵AB =AC ,AD =DC ,∴∠1=∠C =∠B ,..................................................1分 又∵∠E =∠B ,∴∠1=∠E , ∵AE 是⊙O 的直径,∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠1+∠EAD =90°,∴AC 是⊙O 的切线............................................2分 (2)解:过点D 作DF ⊥AC 于点F , ∵DA =DC ,AC =6, ∴CF =12AC =3,..................................... ............3分 ∵4sin 5E =,∴4sin 5C =, ∴在Rt △DFC 中,DF =4,DC =5, ∴AD =5,∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,.............................................4分C∴AD DFAE DC =, ∴545AE =, ∴AE =254,∴⊙O 的直径为254.....................5分25.解:(1)DF 与⊙O 相切. ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠,∴BFD CAB ∠=∠. ∴AC ∥DF . ………………………………… 2分∵半径OD 垂直于弦AC 于点E ,∴DF OD ⊥. ∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8,∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEORt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分∵AC ∥DF , ∴OAE ∆∽OFD ∆. ∴DF AEOD OE = . ∴DF453=. ∴321DF CEB A O320=DF . ………………………………………………… 5分25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC .∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,∴B C ∠=∠.∴cos C=cos 5ABC ∠=. 在Rt △ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD….3分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt △CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE ODAB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 25.(本小题满分5分)(1)证明:连接OA .(如图)∵ AE 为⊙O 的切线,BD ⊥AE , ∴ ∠DAO =∠EDB =90°. ∴ DB ∥AO .∴ ∠DBA =∠BAO . …………1分 又 ∵OA =OB , ∴ ∠ABC =∠BAO .∴ ∠D B A =∠A B C . ………………………………………………2分(2)在Rt △ADB 中,∠ADB =90°,C∵ BD =1,tan ∠BAD =12, ∴ AD =2,……………………………………………………………………3分由勾股定理得AB .∴ cos ∠DBA 又∵ BC 为⊙O 的直径, ∴ ∠BAC =90°. 又∵∠DBA =∠ABC .∴ cos ∠ABC = cos ∠DBA∴ 5.cos ABBC ABC===∠…………………………………………4分 ∴ ⊙O 的半径为5.2…………………………………………………………5分25.解:(1)∵ OC =OA∴ ∠CAO =∠OCA ∵ AC 平分∠DAB ∴ ∠DAC =∠CAO , ∴ ∠ACO =∠DAC . ∴ OC ∥AD .…………………………………………………………………….1分 ∵ AD ⊥PD , ∴OC ⊥PD . ∴ PD 是⊙O 的切线……………………………………………………………...2分(2)连接AE .∵CE 平分∠ACB ,∴AE BE =,∴AE BE == ∵AB 为⊙O 的直径, ∴∠AEB =90°.在Rt △ABE 中,14AB =………………………………………3分 ∵ ∠P AC =∠PCB ,∠P =∠P , ∴ △P AC ∽△PCB , ∴ PC AC PB BC =.…………………………………………………………………..4分 又∵4tan 3ABC =∠,∴43AC PCBC PB==, 设PC =4k ,PB =3k ,则在Rt △POC 中,PO =3k +7,OC =7,∵ PC 2+OC 2=OP 2, ∴()()2224737k k +=+, ∴ 126,0k k ==(舍去).∴ PC =4k =4×6=24. …………………………………………………………..5分25证明:(1)连接OA .∵∠B =∠D =30°,∴∠AOC =2∠B =60°,……………………….(1分) ∴∠OAD =180°-∠AOD -∠D =90°,…………….(2分) 即OA ⊥AD ,∴AD 是⊙O 的切线.……………….(3分)(2)∵OA =OC ,∠AOC =60°,∴△ACO 是等边三角形, ∵CO ⊥AB ∴ ……………………….(4分)在Rt △ABC 中∴⊙O 的半径为6.……………………………….(5分)1122AE AB ==⨯=sin sin60AEACE AC∠==︒6AC ===。
北京昌平区初三二模数学试题及答案

DC B A -3-2-13210圆矩形平行四边形直角三角形E DFB21CA AB C D2015年北京市昌平区初三二模数 学 2015.6一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的.1.小超同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关结果的条数是1650000 ,这个数用科学记数法表示为A .410165⨯ B .51.6510⨯ C .61065.1⨯ D .710165.0⨯2.如图,数轴上有A ,B ,C ,D 四个点,其中表示 -3的相反数的点是A .点AB .点BC .点CD .点D3.用5个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为4.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为A . 12B . 14C . 345.如图,直线AB ∥CD ,Rt △DEF 如图放置,∠EDF =90°,若∠1+∠F =70°, 则∠2的度数为 A .20°B .25°C .30°D .40°ABP OMCABD NA BCQ6.五一期间(5月1日-7日),昌平区每天最高温度(单位:℃)情况如图所示,则表示最高温度的这组数据的中位数是A .24B .25C .26D .277.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为 A .2B . 4C 2D . 228.小明在学习之余去买文具,打算购买5 支单价相同的签字笔和3 本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付 A .10元 B .11元 C .12元 D .13元9.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于 两点M ,N ;②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠A =50°,则∠ACB 的度数为 A .90°B . 95°C .100°D . 105°10.如图,正方形ABCD 的边长为5,动点P 的运动路线为AB →BC ,动点Q 的运动路线为BD .点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发,当一个点到达小明:您好,我要买5支签字笔和3本笔记本.售货员:好的,那你应该付52元.小明:刚才我把两种文具的单价弄反了,以为要付44元.EDCBAA BCE F终点停止运动时另一个点也随之停止.设点P 运动的路程为x ,△BPQ 的面积为y ,则下列能大致表示y 与x 的函数关系的图象为二、填空题(共6道小题,每小题3分,共18分)11.分解因式:29my m -= .12.若关于x 的一元二次方程2210kx x -+=有实数根,则k 的取值范围是 . 13.已知:如图,在△ABC 中,点D 为BC 上一点,CA =CD ,CF 平分∠ACB , 交AD 于点F ,点E 为AB 的中点.若EF =2,则BD = .14.把方程2630x x ++=变形为()2x h k +=的形式,其中h ,k 为常数,则k = . 15.在阳光体育课上,小腾在打网球,如图所示,网高,球刚好打过网,而且落在离网6 m 的位置上,则球拍击球的高度h = m .16. 如图所示,是一张直角三角形纸片,其中有一个内角为30︒,最小边长为2, 点D 、E 分别是一条直角边和斜边的中点,先将纸片沿DE 剪开,然后再将两部 分拼成一个四边形,则所得四边形的周长是 .三、解答题(共6道小题,每小题5分,共30分)17.计算:111)3tan 303-⎛⎫+ ⎪⎝⎭o .18.如图,AB AD ⊥,AE AC ⊥,E C ∠=∠,DE BC =. 求证:AD AB =.19.求不等式432x+-≤x 的负整数解.20. 已知0142=--x x ,求代数式3)1()3(22+---x x x 的值.21. 如图,在平面直角坐标系中,一次函数y kx b =+与反比例函数6y x=-的图象交于()1A m -,,()3B n -,两点,一次函数y kx b =+的图象与y 轴交于点C .(1)求一次函数的解析式;(2)点P 是x 轴上一点,且BOP △的面积是BOC △面积的2倍,求点P22. 自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省元,求老张家到单位的路程是多少公里?四、解答题(共4道小题,每小题5分,共20分)23.如图,在矩形ABCD 中,AB =3,BC =6,对角线交于点O .将△BCD 沿直线BD 翻折,得到△BED .OADCBEF(1)画出△BED ,连接AE ; (2)求AE 的长.24.我区某学校为了提升学生的体艺素养,准备开设空手道、素描、剪纸三项活动课程,为了解学生对各项活动的兴趣,随机抽取了部分学生进行调查(每人从中必须选取一项,且只能选一项),将调查结果绘制成下面两个统计图,请你结合图中信息解答问题. (1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25.如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点,CDB BFD ∠=∠.(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB =10,AC =8,求DF 的长.OABCD26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BC AC =13. 易得∠BOC =2α.设BC =x ,则AC =3x ,则AB.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =12,求sin2β的值.图1图2五、解答题(共3道小题,第23,24小题各7分,第25小题8分,共22分) 27.已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线2y x =沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.图1图2F OAB C D28.如图,在平行四边形ABCD中,AB=5,BC=12,对角线交于点O,∠BAD的平分线交BC于E、交BD 于F,分别过顶点B、D作AE的垂线,垂足为G、H,连接OG、OH.(1)补全图形;(2)求证:OG=OH;(3)若OG⊥OH,直接写出∠OAF的正切值.E29. 在平面直角坐标系xOy 中,给出如下定义:形如()()2y a x m a x m =-+-与()()2y a x m a x m =---的两个二次函数的图象叫做“兄弟抛物线”.(1)试写出一对兄弟抛物线的解析式 与 ;(2)判断二次函数2y x x =-与232y x x =-+的图象是否为兄弟抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对兄弟抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对兄弟抛物线的解析式.备用图EDCBA昌平区2015年初三年级第二次统一练习 数 学 参考答案及评分标准 2015. 6一、选择题(共10道小题,每小题3分,共30分)二、填空题(共6道小题,每小题3分,共18分)三、解答题(共6道小题,每小题5分,共30分)17.解:1011)3tan 303-⎛⎫+ ⎪⎝⎭o=133++………………………………………………………… 4分 =13+=4+. ………………………………………………………………… 5分 18.证明:∵ AB AD ⊥,AE AC ⊥,∴90,EAC DAB ∠=∠=︒即 EAD DAC CAB DAC ∠+∠=∠+∠.∴∠EAD =∠CAB . …………………………………… 1分在△ADE 和△ABC 中,E C EAD CAB DE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ADE ≌△ABC .……………………………………… 4分 ∴ AD = AB . ………………………………………… 5分 19.解:去分母,得 46x +-≤2x .………………………………………………… 2分移项,合并,得 x -≤2. 系数化1,得 x ≥-2. ………………………………………………………… 4分 所以原不等式的负整数解为21--,. …………………………………………5分 20.解: 3)1()3(22+---x x x2226x 2x 13x x =--+-+ ……………………………………………………2分24x 2x =-+. ………………………………………………………………………3分∵ 0142=--x x , ∴ 241x x -=,∴ 原式=1+2=3. ………………………………………………………………………… 5分21.解:(1)∵ 点()1A m -,,()3B n -,在反比例函数6y x=-的图象上, ∴ m =6,n =2.∴ ()16A -,,()23B -, ……………………………………………………………………… 1分 ∵ 一次函数y kx b =+的图象过()16A -,,()23B -,两点, ∴ 632.k b k b =-+⎧⎨-=+⎩,…………………………………………………………………… 2分解方程组,得3,3.k b =-⎧⎨=⎩∴ 一次函数的解析式为y =-3x +3. ……………………………………… 3分 (2)∵ 一次函数y =-3x +3与y 轴交点C (0,3), 且B (2,-3)∴ BOC △面积为3. ……………………………………………………………………… 4分 ∵ P 是x 轴上一点,且BOP △的面积是BOC △面积的2倍, ∴ 设P (a ,0), ∴1362a ⨯=,解得,4a =±. ∴ 点P 的坐标为(4,0)或(-4,0). …………………………………………… 5分 22.解:设小明家到单位的路程是x 千米. ……………………………… 1分依题意,得 13 2.3(3)82(3)0.8x x x +-=+-+. ………………………………………… 3分 解这个方程,得 8.2x =. ……………………………………………………… 4分 答:小明家到单位的路程是千米. ………………………………………………… 5分 四、解答题(共4道小题,每小题5分,共20分)23.(1)如图,补全图形. …………………………… 1分 (2)解:连接CE 交BD 于点F . …………………………… 2分 ∵ 将△BCD 沿直线BD 翻折,得到△BED , ∴ BD 垂直平分CE .∵ 矩形ABCD ,AB =3,BC =6,∴ ︒=∠=∠90BCD BED , 3 6.DE DC AB EB BC =====,DOCB AEF∴ 53362222=+=+=DE BE BD . ………………………………………………………… 3分∴ 52321==BD OD . ∵ BDDEDE DF EDB ==∠cos , ∴5333=DF . ∴ 553=DF . ……………………………………………………………………… 4分 ∴5109=-=DF OD OF . ∵BD 垂直平分CE ,O 为AC 中点, ∴AE =2OF =559. ……………………………………………………………………… 5分 24.解:(1) 补全条形统计图,如图所示.…………………………………………………… 2分(2)100. ……………………………………………………………………… 3分 (3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数:1200×30100=360人.答:全校学生中喜欢剪纸的有360人. ………………………………………………… 5分25.解:(1)DF 与⊙O 相切. ………………………………… 1分 ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠, ∴BFD CAB ∠=∠.∴AC ∥DF . ………………………………… 2分 ∵半径OD 垂直于弦AC 于点E , ∴DF OD ⊥.∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8, ∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEO Rt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分 ∵AC ∥DF , ∴OAE ∆∽OFD ∆.∴DF AE OD OE =. ∴DF453=. ∴320=DF . ………………………………………………… 5分26.解:10103xCD =. ……………………………………………………………………… 1分 Sin2α=CD OC =53. ……………………………………………………………………… 2分 如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k , ∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 .∴ MH=k 552. ………………………………………………………………………………… 4分 在MHO Rt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵ 抛物线经过()0,0,()4,0- ,()6,3-三点,∴ 01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩ …………………………………………………………………… 1分解得 1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. ………………………………………………………………………… 2分∴ 抛物线的解析式为214y x x =+.∵()()22211144421444y x x x x x =+=++-=+-∴抛物线的顶点坐标为()2,1-- …………………………………………………… 3分 (2)设直线CD 的解析式为2y x m =+,根据题意,得2124x x x m +=+, …………………………………………………… 4分 化简整理,得2440x x m --=,由16160m ∆=+=,解得1m =-, ………………………………………………… 5分∴直线CD 的解析式为21y x =- .(3)点的坐标为()2,7, …………………………………………………………… 6分. ……………………………………………………………… 7分 28.解:(1)B………………………………………… 1分(2)B证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴ AD //BC ,AB //CD .∴ ∠ DAE =∠ AEB ,∠ BAE =∠ DP A . ……………………………………… 2分 ∵ AE 平分∠ BAD , ∴ ∠ DAE =∠ BAE ,∴ ∠ BAE =∠ AEB ,∠ DAE =∠ DP A .∴ BA =BE ,DA =DP , ……………………………………………………… 3分 又 ∵ BG ⊥ AE ,DH ⊥ AE ,∴ G 为AE 中点,H 为AP 中点. …………………………………………… 4分 又 ∵O 为AC 中点,AD =BC , ∴ ()()111222OG CE BC BE AD AB ==-=-,()()111222OH CP DP CD AD AB ==-=- . …………………………… 5分∴ OG =OH . ………………………………………………………………… 6分(3)717. ……………………………………………………………………………… 7分 29.解:(1)答案不唯一,只要两个解析式给出相同的a 值和相同的m 值即可(每空各1分)…… 2分(2)是兄弟抛物线,理由如下. ………………………………………………………… 3分∵ ()()2211y x x x x =-=-+-, ……………………………………………………… 4分()()223211y x x x x =-+=---, …………………………………………………… 5分∴ 二次函数2y x x =-与232y x x =-+的图象是兄弟抛物线.此时 1a =,1m =. …………………………………………………………………… 6分 (3) 132()()22y x x =--,352()()22y x x =-- ; ………………………………… 7分 或 352()()22y x x =--,572()()22y x x =--. ………………………………………… 8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昌平区2016年初三年级第二次统一练习数 学 试 卷 2016.5学校 姓名 考试编号一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米,是当今世界上最大的城市广场. 将440 000用科学记数法表示应为A. 54.410⨯B. 44.410⨯C. 44410⨯D. 60.4410⨯ 2.在函数y x 的取值范围是A. x >2B. x ≠2C. x <2D. x ≤2 3.在下列简笔画图案中,是轴对称图形的为A B C D4. 在一个不透明的袋子里装有3个白球和m 个黄球,这些球除颜色外其余都相同.若从这个袋子里任意摸出1个球,该球是黄球的概率为14,则m 等于A .1B . 2C . 3D . 45.如右图,AB ∥CD ,BC 平分∠ABD ,若∠C=40°,则∠D 的度数为 A. 90°B. 100°C. 110°D. 120°6.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边ABCD条BC,用左手向右推动框架至AB⊥BC(如下右图). 观察所得到的四边形,下列判断正确的是A.∠BCA=45°B.BD的长度变小C.AC=BD D.AC⊥BDDCBA→7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,48.如右图,是雷达探测器测得的结果,图中显示在点A,B,C,D,E,F处有目标出现,目标的表示方法为(r,α),其中,r表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度. 例如,点A,D的位置表示为A(5,30°),D(4,240°).用这种方法表示点B,C,E,F的位置,其中正确的是A.B(2,90°)B.C(2,120°)C.E(3,120°)D.F(4,210°)9.商场为了促销,推出两种促销方式:方式①:所有商品打8折销售.方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案:方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买;方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买;方案四:120元和280元的商品均按促销方式②购买.你给杨奶奶提出的最省钱的购买方案是A.方案一B.方案二C.方案三D.方案四10.如图1,四边形ABCD是菱形,对角线AC,BD相交于点O,AB=2厘米,∠BAD=60°. P,Q两点同时从点O出发,以1厘米/秒的速度在菱形的对角线及边上运动. 设运动的时间为x秒,P,Q间的东0°距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,则P ,Q 的运动路线可能为图1图2DO CB AA. 点P : O —A —D —C ,点Q : O —C —D —OB. 点P : O —A —D —O ,点Q : O —C —B —OC. 点P : O —A —B —C ,点Q : O —C —D —OD. 点P : O —A —D —O ,点Q : O — C —D —O二、填空题(共6道小题,每小题3分,共18分) 11.分解因式:2363m m -+= .12.如下图,小慧与小聪玩跷跷板,跷跷板支架EF 的高为0.4米,E 是AB 的中点,那么小慧能将小聪翘起的最大高度BC 等于 米.13.如右图,⊙O 的直径AB ⊥弦CD ,垂足为点E ,连接AC ,若CD=∠A =30º,则⊙O 的半径为 .14.如右图,已知四个扇形的半径均为1,那么图中阴影部分面积的和是 .15.市运会举行射击比赛,射击队从甲、乙、丙、丁四人中选拔一人参赛. 在选拔赛中,每人射击10次,计算他们10次成绩(单位:环)的平均数及方差如下表. 根据表中提供的信息,你认为最合适的人选是 ,理由是 .CFB E A16. 已知:如图,在平面直角坐标系xOy 中,点B 1,C 1的坐标分别为(1 ,0),(1,1). 将△OB 1C 1绕原点O 逆时针旋转90°,再将其各边都扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2;将△OB 2C 2绕原点O 逆时针旋转90°,再将其各边都扩大为原来的m 倍,使OB 3=OC 2,得到△OB 3C 3.如此下去,得到△OB n C n .(1)m 的值为__________;(2)在△OB 2016C 2016中,点C 2016的纵坐标为_____________.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)1718.解不等式组()()202130x x x -⎧⎪⎨---⎪⎩≤,>, 并写出它的整数解.19.先化简,再求值:269(3)26x x x x -+⋅+-,其中0x =. 20. 已知:如图,∠B =∠C ,AB =DC .求证:∠EAD =∠EDA .21. 已知关于x 的一元二次方程2220x x k ++-=有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为大于1的整数,求方程的根.22. 为保障北京2022 年冬季奥运会赛场间的交通服务,北京将建设连接 北京城区-延庆区-崇礼县三地的高速铁路和高速公路. 在高速公路方面,目前主要的交通方式是通过京藏高速公路(G6),其路程为220公里.为将崇礼县纳入北京一小时交通圈,有望新建一条高速公路,将北京城区到崇礼的道路长度缩短到100公里. 如果行驶的平均速度每小时比原来快22公里,那么从新建高速行驶全程所需时间与从原高速行驶全程所需时间比为4:11.求从新建高速公路行驶全程需要多少小时? ABEDC23.在△OAB 中,∠OAB =90°,∠AOB =30°,OB =4.以OB 为边,在△OAB 外作等边△OBC ,E 是OC上的一点.(1)如图1,当点E 是OC 的中点时,求证:四边形ABCE 是平行四边形;(2)如图2,点F 是BC 上的一点,将四边形ABCO 折叠,使点C 与点A 重合,折痕为EF ,求OE的长.图2FE图1A OBCECBOA24.阅读下列材料:根据北京市统计局、国家统计局北京调查总队及《北京市统计年鉴》数据,2004年本市常住人口总量约为1493万人,2013年增至2115万人,10年间本市常住人口增加了622万人. 如果按照数据平均计算,本市常住人口每天增加1704人. 我们还能在网上获取以下数据:2010年北京常住人口约1962万人,2011年北京常住人口约2019万人,2014年北京常住人口为2152万人, 2015年北京常住人口约2171万人.北京市近几年常住人口平稳增长,而增长的速度有所放缓. 其中,2011年比上一年增加2.91%,2012年比上一年增加2.53%,2013年比上一年增加2.19%,2014年比上一年增加1.75%. 相关人士认为,常住人口出现增速连续放缓的原因,主要与经济增速放缓相关. 2011年开始,随着GDP 增速放缓,人口增速也随之放缓. 还有一个原因是就业结构发生变化,劳动密集型行业就业人员在2013年出现下降,住宿、餐饮业、居民服务业、制造业的就业人数下降. 根据以上材料解答下列问题:(部分数据列出算式即可) (1)2011年北京市常住人口约为 万人; (2)2012年北京市常住人口约为 万人;(3)利用统计表或.统计图将2013 — 2015年北京市常住人口总量及比上一年增速百分比表示出来.25. 如图,以△ABC 的边AB 为直径作⊙O ,与BC 交于点D ,点E 是弧BD 的中点,连接AE 交BC 于点F ,2ACB BAE ∠=∠.(1)求证:AC 是⊙O 的切线; (2)若2sin 3B =,BD=5,求BF 的长.26. 我们学习了锐角三角函数的相关知识,知道锐角三角函数定量地描述了在直角三角形中边角之间的联系. 在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长的比与角的大小之间可以相互转化. 如图1,在Rt △ABC 中,∠C =90°. 若∠A =30°,则cosA A AC AB的邻边斜边=∠==类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对. 如图2,在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时,sad A =BC AB底边腰=. 容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对的定义,解答下列问题:(1)直接写出sad60°的值为 ;(2)若0°<∠A <180°,则∠A 的正对值sad A 的取值范围是 ;(3)如图2,已知tan A =34,其中∠A 为锐角,求sad A 的值;(4)直接写出sad36°的值为 .C BACBAA BC27. 在平面直角坐标系xOy 中,直线y=kx +b 的图象经过(1,0),(-2,3)两点,且与y 轴交于点A . (1)求直线y=kx +b 的表达式;(2) 将直线y=kx +b 绕点A 沿逆时针方向旋转45º后与抛物线21:1(0)G y ax a =->交于B ,C 两点.若BC ≥4,求a 的取值范围;(3)设直线y=kx +b 与抛物线22:1G y x m =-+交于D ,E图象,直接写出m 的取值范围.28. 在等边△ABC 中,AB =2,点E 是BC 边上一点,∠DEF =60°,且∠DEF 的两边分别与△ABC 的边AB ,AC 交于点P ,Q (点P 不与点A ,B 重合). (1)若点E 为BC 中点.①当点Q 与点A 重合,请在图1中补全图形;②在图2中,将∠DEF 绕着点E 旋转,设BP 的长为x ,CQ 的长为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)如图3,当点P 为AB 的中点时,点M ,N 分别为BC ,AC 的中点,在EF 上截取EP '=EP ,连接NP '. 请你判断线段NP '与ME 的数量关系,并说明理由.图3图1ABE C图2D PQF29. 已知四边形ABCD,顶点A,B的坐标分别为(m,0),(n,0),当顶点C落在反比例函数的图象上,我们称这样的四边形为“轴曲四边形ABCD”,顶点C称为“轴曲顶点”. 小明对此问题非常感兴趣,对反比例函数为y=2x时进行了相关探究.(1)若轴曲四边形ABCD为正方形时,小明发现不论m取何值,符合上述条件的轴曲正方形只有..两个,且一个正方形的顶点C在第一象限,另一个正方形的顶点C1在第三象限.①如图1所示,点A的坐标为(1,0),图中已画出符合条件的一个轴曲正方形ABCD,易知轴曲顶点C的坐标为(2,1),请你画出另一个轴曲正方形AB1C1D1,并写出轴曲顶点C1的坐标为;②小明通过改变点A的坐标,对直线CC1的解析式y﹦kx+b进行了探究,可得k﹦,b(用含m的式子表示)﹦;(2)若轴曲四边形ABCD为矩形,且两邻边的比为1∶2,点A的坐标为(2,0),求出轴曲顶点C的坐标.备用图图1昌平区2016年初三年级第二次统一练习数学参考答案及评分标准2016. 5一、选择题(共10道小题,每小题3分,共30分)二、填空题(共6道小题,每小题3分,共18分)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:6122+-⨯=…………………………………………………………4分=3 .…………………………………………………………………5分18.解:()()202130xx x----⎧⎨⎩≤,①>,②由①得:x≤2. (1)分由②得:2x – 2–x+ 3>0.…………………………………………………………2分x>- 1. ………………………………………………………………………3分∴原不等式组的解集为:- 1<x≤2. …………………………………………………………4分∴原不等式组的整数解为0,1,2. ………………………………………………5分19.解:原式=2(3)(3)2(3)xxx-⋅+-……………………………………………………………2分 =292x-.……………………………………………………………………3分∵0x=,∴x=4分∴原式=293.2-=-…………………………………………………………5分∵AEB DEC B C AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,,,∴△AEB ≌△DEC . ……………………………………3分∴AE =DE . …………………………………………………………………………4分 ∴∠EAD =∠EDA . …………………………………………………………………5分21.解:(1)由题意得:△=224(2)0k -->………………………………………………………………………2分解得: 3.k < …………………………………………………………………………3分(2)∵k 为大于1的整数,∴ 2.k =……………………………………………………………………………4分∴原方程为:220.x x +=解得:10x =,2 2.x =-…………………………………………………………5分22.解:设选择从新建高速公路行驶全程所需的时间为4x 小时. ………………………………1分由题意得:10022022.411x x -= ………………………………………………………………2分 解得:5.22x = ……………………………………………………………………………3分经检验522x =是原方程的解,且符合题意. ………………………………………………4分∴104.11x =答:从新建高速公路行驶所需时间为1011小时. …………………………………………5分23.(1)证明:如图1,∵△OBC 为等边三角形,∴OC =OB ,∠COB =60° . ∵点E 是OC 的中点,∴EC =21OC =21OB . ……………………1分在△OAB 中,∠OAB =90°, ∵∠AOB =30°, ∴AB =21OB , ∠COA =90°. ∴ CE =AB ,∠COA +∠OAB =180°. ∴CE ∥AB .图2E图1OCECBOA∴四边形ABCE 是平行四边形. ……………………………………………2分(2)解:如图2,∵四边形ABCO 折叠,点C 与点A 重合,折痕为EF ,∴△CEF ≌△AEF , ∴EC =EA . ∵OB =4,∴OC =BC =4. ………………………………3分 在△OAB 中,∠OAB =90°, ∵∠AOB =30°,∴OA= ……………………………………………………4分 在Rt △OAE 中,由(1)知:∠EOA =90°, 设OE =x , ∵OE 2+OA 2=AE 2 , ∴x 2+(2=(4-x )2 , 解得,x =21. ∴OE =21.………………………………………………………………………………5分 24.解:(1)2019. ………………………………………………………………………… 1分(2)2019(1 + 2.53%)= 2070. ……………………………………………… 2分 (3)2013 — 2015年北京市常住人口总量及比上一年增速百分比统计表………………………………………………………………… 5分25.(1)证明:连接AD .∵ E 是弧BD 的中点,∴弧BE = 弧ED , ∴∠1=∠2. ∴∠BAD= 2∠1.∵∠ACB= 2∠1,图2FE AOBC∴∠C=∠BAD. ……………………………………………………………1分∵AB为⊙O直径,∴∠ADB=∠ADC=90°.∴∠DAC+∠C =90°.∵∠C=∠BAD,∴∠DAC+∠BAD =90°.∴∠BAC =90°.即AB⊥AC.又∵AC过半径外端,∴AC是⊙O的切线. ……………………………………………………………2分(2)解:过点F作FG⊥AB于点G.在Rt△ABD中,∠ADB=90°,2 sin3ADBAB==,设AD=2m,则AB=3m,利用勾股定理求得BD∵BD=5,∴m∴AD=, AB=. …………………………………………………………3分∵∠1=∠2, ∠ADB=90°,∴FG=FD. ……………………………………………………………4分设BF =x,则FG = FD =5- x.在Rt△BGF中,∠BGF=90°,2 sin3B=,∴523xx-=.解得,x=3.∴BF=3.……………………………………………5分26.解:(1)1.………………………………………………………1分(2)0<sad A<2.……………………………………………2分(3)如图2,过点B作BD⊥AC于点D.∴∠ADB=∠CDB=90°.在Rt△ADB中,tan A=34,A2P D BA(Q)B CE 图1PFD2F P D APD∴设BD=3k ,则AD =4k .∴ AB5k =. …………………………… 3分∵AB =AC , ∴CD =k .∴在Rt △CDB 中, 利用勾股定理得,. 在等腰△ABC 中,sad A=55BC ABk==. ……………………………… 4分(42…………………………………………………………………………… 5分27.解:(1)∵直线y=kx +b 的图象经过(1,0),(-2,3)两点, ∴0,2 3.k b k b +=⎧⎨-+=⎩………………………………………………………………1分 解得:1,1.k b =-⎧⎨=⎩∴直线y=kx +b 的表达式为: 1.y x =-+ …………………………………………2分 (2)①将直线1y x =-+绕点A 沿逆时针方向旋转45º后可得直线1y =. …………3分∴直线1y =与抛物线21:1(0)G y ax a =->的交点B ,C 关于y 轴对称.∴当线段BC 的长等于4时,B ,C 两点的坐标分别为(2,1),(-2,1). ∴1.2a =…………………………………………………………………………………4分由抛物线二次项系数的性质及已知a >0可知,当BC ≥4时,10.2a ≤< ……………5分②40.m -≤≤ ………………………………………………………………………………7分28.解:(1)①如图1. ……………………………1分②∵等边△ABC ,∴∠B=∠C=∠DEF =60°,AB =BC =AC =2. ∴∠1+∠2=∠1+∠3=120°. ∴∠2=∠3.∴△PBE ∽△ECQ .…………………………2分 ∴BP BE ECCQ=.∵点E 为BC 的中点, ∴BE=EC=1.∵BP 的长为x ,CQ 的长为y , ∴11x y =.即1xy =. ………………………………………………………………3分自变量x 的取值范围是:122x ≤< . ……………………………………4分(2)如图3,答:N P '=ME . .............................................. .......................... 5分证明:连接PM ,PN ,PP ' .∵P ,M ,N 分别是AB ,BC ,AC 的中点,∴PN //BC ,PN =12BC ,PM //AC ,PM =12AC. ∴四边形PMCN 为平行四边形. ............................................... 6分∵△ABC 是等边三角形,∴BC =AC ,∠C =60°. ∴PM =PN ,∠NPM =∠C =60°. ∵EP=EP ',∠PEP '=60°, ∴△P EP '是等边三角形. ∴∠E PP '=60°,PE =PP '.∴∠E PP '=∠NPM . ∴∠EPM =∠N PP '. ∴△EPM ≌△N PP '.∴N P '=ME . ............................................................................. 7分29.解:(1)①如图1 . ……………………………1分 1(1,2)C --. …………………………2分②1k =. ……………………………3分b m =-. ……………………………4分(2)①当AB =2BC 时,∵点A 的坐标为(2,0),∴点C 的坐标为2(,)2n n -或2,2n n -⎛⎫⎪⎝⎭. ∴222n n -⨯=或222nn -⨯=.解得:1n =或无实根.图1图3∴点C 的坐标为1⎛⎝⎭或1⎛ ⎝⎭. ………………6分 ②当BC =2AB 时,点C 的坐标为(,24)n n -或(,42)n n -. ∴(24)2n n -=或(42)2n n -=.解得:1n = 1.n =∴点C 的坐标为()12或(12---或()1,2……………8分。