北师大版高中数学选修条件概率与独立事件一教案
2016-2017学年高中数学第一章统计案例1.2.1条件概率与独立事件学案北师大版选修1-2

§2 独立性检验 2.1 条件概率与独立事件1.了解条件概率的概念及计算.(重点)2.理解相互独立事件的意义及相互独立事件同时发生的概率乘法公式.(重点) 3.掌握利用概率的知识分析解决实际问题的方法.(难点)[基础·初探]教材整理1 条件概率阅读教材P 17~P 18部分,完成下列问题. 1.概念已知事件B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为P (A |B ). 2.公式当P (B )>0时,P (A |B )=P ABP B.从1,2,3,4,5中任取两个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18 B .14 C .25D .12【解析】 从1,2,3,4,5中任取两个数共有10种取法,事件A 包含(1,3),(1,5),(3,5),(2,4)共4个基本事件,事件B 包含(2,4)一个基本事件,故P (A )=410,P (AB )=110.所以P (B |A )=P AB P A =14.【答案】 B教材整理2 相互独立事件阅读教材P 19“练习”以上部分,完成下列问题. 1.定义对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. 2.性质如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. 3.如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为( )A .16B .25C .215D .56【解析】 记“从甲袋中任取一球为白球”为事件A ,“从乙袋中任取一球为白球”为事件B ,则事件A ,B 是相互独立事件,故P (AB )=P (A )P (B )=24×26=16.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________解惑:___________________________________________________ 疑问2:___________________________________________________ 解惑:___________________________________________________ 疑问3:___________________________________________________ 解惑:___________________________________________________[小组合作型],条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A ,事件“第二次抽到黑球”为B .(1)分别求事件A ,B ,AB 发生的概率; (2)求P (B |A ).【精彩点拨】 解答本题可先求P (A ),P (B ),P (AB ),再用公式P (B |A )=P ABP A求概率.【自主解答】 由古典概型的概率公式可知: (1)P (A )=25,P (B )=2×1+3×25×4=820=25,P (AB )=2×15×4=110. (2)P (B |A )=P ABP A =11025=14.用定义法求条件概率P (B |A )的步骤是: (1)分析题意,弄清概率模型; (2)计算P (A ),P (AB ); (3)代入公式求P (B |A )=P ABP A.[再练一题]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A .14 B .23 C .12D .13【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P (B |A ),由条件概率公式,得P (B |A )=1434=13.【答案】 D,事件独立性的判断判断下列各对事件是否是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.【精彩点拨】 利用相互独立事件的定义判断.【自主解答】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.判断两事件是否具有独立性的三种方法:(1)定义法:直接判定两个事件发生是否相互影响. (2)公式法:检验P (AB )=P (A )P (B )是否成立.(3)条件概率法:当P (A )>0时,可用P (B |A )=P (B )判断.[再练一题]2.(1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一枚正方体骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是( )A .互斥但不相互独立B .相互独立但不互斥C .互斥且相互独立D .既不相互独立也不互斥【解析】 (1)对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B 相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B可能同时发生,所以事件A 与B 不是互斥事件.(2)事件A ={2,4,6},事件B ={3,6},事件AB ={6},基本事件空间Ω={1,2,3,4,5,6}. 所以P (A )=36=12,P (B )=26=13,P (AB )=16=12×13,即P (AB )=P (A )P (B ),因此,事件A与B 相互独立.当“出现6点”时,事件A ,B 同时发生,所以A ,B 不是互斥事件.【答案】 (1)A (2)B[探究共研型],相互独立事件同时发生的概率探究1 甲、乙同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,求:甲、乙都未击中的概率.【提示】 记A =“甲击中”,B =“乙击中”,C =“甲、乙都没有击中”.由题意,甲击中与否并不影响乙,由此可认为A 与B 是相互独立的,则A ,B 也是相互独立的,则P (C )=P (A B )=P (A )·P (B )=(1-0.6)×(1-0.5)=0.2.探究2 上述问题中如何求敌机被击中的概率? 【提示】 记D =“敌机被击中”, 则P (D )=1-P (A B )=1-0.2=0.8.某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率: 【导学号:67720003】(1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.【精彩点拨】 明确已知事件的概率及其关系→把待求事件的概率表示成已知事件的概率→选择公式计算求值【自主解答】 设“第一次抽奖抽到某一指定号码”为事件A ,“第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .(1)由于两次抽奖结果互不影响,因此事件A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率为P (AB )=P (A )P (B )=0.05×0.05=0.002 5.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A B )+(A B )表示.由于事件A B 与A B 互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=0.05×(1-0.05)+(1-0.05)×0.05=0.095. 即恰有一次抽到某一指定号码的概率为0.095.(3)法一 “两次抽奖至少有一次抽到某一指定号码”可以用(AB )+(A B )+(A B )表示.由于事件AB ,A B 和A B 两两互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为P (AB )+P (A B )+P (A B )=0.002 5+0.095=0.097 5.法二 1-P (A B )=1-(1-0.05)2=0.097 5.即至少有一次抽到某一指定号码的概率为0.097 5.求P (AB )时注意事件A ,B 是否相互独立,求P (A +B )时同样应注意事件A ,B 是否互斥,对于“至多”、“至少”型问题的解法有两种思路:(1)分类讨论;(2)求对立事件,利用P (A )=1-P (A )来运算.[再练一题]3.甲、乙两人独立地破译密码的概率分别为13、14.求:(1)两个人都破译出密码的概率; (2)两个人都破译不出密码的概率; (3)恰有一人破译出密码的概率; (4)至多一人破译出密码的概率; (5)至少一人破译出密码的概率.【解】 记事件A 为“甲独立地破译出密码”,事件B 为“乙独立地破译出密码”. (1)两个人都破译出密码的概率为P (AB )=P (A )P (B )=13×14=112.(2)两个人都破译不出密码的概率为P (A B )=P (A )P (B )=[1-P (A )][1-P (B )]=⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14=12. (3)恰有一人破译出密码分为两类:甲破译出乙破译不出;乙破译出甲破译不出,即A B +A B ,∴P (A B +A B )=P (A B )+P (A B ) =P (A )P (B )+P (A )P (B ) =13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-13×14=512. (4)至多一人破译出密码的对立事件是两人都破译出密码,∴1-P (AB )=1-112=1112.(5)至少一人破译出密码的对立事件为两人都没有破译出密码,∴1-P (A B )=1-12=12. [构建·体系]1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56 B .910 C .215D .115【解析】 由P (B |A )=P ABP A,得P (AB )=P (B |A )·P (A )=13×25=215.【答案】 C2.一件产品要经过两道独立的加工程序,第一道工序的次品率为a ,第二道工序的次品率为b ,则产品的正品率为( )A .1-a -bB .1-abC .(1-a )(1-b )D .1-(1-a )(1-b )【解析】 ∵2道工序相互独立, ∴产品的正品率为(1-a )(1-b ). 【答案】 C3.把一枚硬币投掷两次,事件A ={第一次出现正面},B ={第二次出现正面},则P (B |A )等于________.【解析】 P (AB )=14,P (A )=12,∴P (B |A )=1412=12.【答案】 124.在同一时间内,两个气象台预报天气准确的概率分别为910,45,两个气象台预报准确的概率互不影响,则在同一时间内,至少有一个气象台预报准确的概率为________. 【解析】 P =1-⎝ ⎛⎭⎪⎫1-910⎝ ⎛⎭⎪⎫1-45=4950. 【答案】49505.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别是为13,12,23,求汽车在这三处因遇红灯而停车一次的概率. 【解】 设汽车分别在甲、乙、丙三处通行为事件A ,B ,C ,则P (A )=13,P (B )=12,P (C )=23. 停车一次即为事件A BC +A B C +AB C ,故概率为P =⎝ ⎛⎭⎪⎫1-13×12×23+13×⎝ ⎛⎭⎪⎫1-12×23+13×12×⎝ ⎛⎭⎪⎫1-23=718.我还有这些不足:(1) ___________________________________ (2) ___________________________________ 我的课下提升方案:(1) ___________________________________ (2) ___________________________________学业分层测评(二) (建议用时:45分钟)[学业达标]一、选择题1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是( )A .0.56B .0.48C .0.75D .0.6【解析】 设甲击中为事件A ,乙击中为事件B .∵A ,B 相互独立,则P (AB )=P (A )·P (B )=0.8×0.7=0.56. 【答案】 A2.下列说法正确的是( ) A .P (B |A )<P (AB ) B .P (B |A )=P BP A是可能的C .0<P (B |A )<1D .P (A |A )=0【解析】 由条件概率公式P (B |A )=P ABP A及0<P (A )≤1知P (B |A )≥P (AB ),故A选项错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=P BP A,故B 选项正确,由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 选项错误.故选B .【答案】 B3.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是( )A .110 B .210 C .810D .910【解析】 某人第一次失败,第二次成功的概率为P =9×110×9=110,所以选A .【答案】 A4.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A 1表示第一次摸得白球,A 2表示第二次摸得白球,则事件A 1与A 2是( )A .相互独立事件B .不相互独立事件C .互斥事件D .对立事件【解析】 由题意可得A 2表示“第二次摸到的不是白球”,即A 2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A 1与A 2是相互独立事件.【答案】 A2.如图121,A ,B ,C 表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是( )图121A .0.504B .0.994C .0.496D .0.06【解析】 系统可靠即A ,B ,C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )]=1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994. 【答案】 B 二、填空题6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 【解析】 设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13. 【答案】 137.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.【解析】 设A =“两个闹钟至少有一个准时响”,∴P (A )=1-P (A )=1-(1-0.80)×(1-0.90) =1-0.2×0.1=0.98. 【答案】 0.988.如图122,四边形EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”.则: 【导学号:67720004】图122(1)P (A )=________;(2)P (B |A )=________.【解析】 正方形的面积为2,圆的面积为π.(1)∵A 表示事件“豆子落在正方形EFGH 内”,∴P (A )=2π. (2)∵B 表示事件“豆子落在扇形OHE (阴影部分)内”,∴P (AB )=12π, ∴P (B |A )=P AB P A =14. 【答案】 (1)2π (2)14三、解答题9.有红色、蓝色两颗骰子,设事件A 为“抛红骰子所得点数为偶数”,设事件B 为“抛蓝骰子所得点数大于4”,求在事件A 发生的条件下,事件B 发生的概率.【解】 画示意图如图所示,横轴表示抛红骰子所得点数,纵轴表示抛蓝骰子所得点数.∴P (A )=1836=12, P (A ∩B )=636=16,∴P (B |A )=P A ∩B P A =1612=13. 则在事件A 发生的条件下,事件B 发生的概率为13. 10.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取,乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.【解】 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),则所有可能的抽取结果为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),共30个.其中甲抽到奇数的情形有15个,在这15个数中,乙抽到的数比甲抽到的数大的有9个,所以所求概率P =915=35. [能力提升]1.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) A .2个球都是白球的概率B .2个球都不是白球的概率C .2个球不都是白球的概率D .2个球中恰有1个是白球的概率【解析】 记从甲口袋内摸出1个白球为事件A ,从乙口袋内摸出1个白球为事件B ,则A ,B 是独立事件,于是P (AB )=P (A )P (B )=13×12=16,它表示从甲、乙口袋中摸出来的都是白球,故56为2个球不都是白球的概率. 【答案】 C 2.如图123,已知电路中4个开关闭合的概率都是12且互相独立,灯亮的概率为( )图123A .316B .34C .1316D .14【解析】 因为灯不亮的概率为12×12×⎝ ⎛⎭⎪⎫1-12×12 =316,所以灯亮的概率为1-316=1316. 【答案】 C3.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第1次抽到A ,则第2次也抽到A 的概率为________.【解析】 设第1次抽到A 为事件M ,第2次也抽到A 为事件N ,则MN 表示两次都抽到A ,P (M )=452=113,P (MN )=4×352×51=113×17, P (N |M )=P MN P M =117. 【答案】 1174.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45,56,23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率;(2)求至少有一个项目成功的概率.【解】 (1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 45×56×⎝ ⎛⎭⎪⎫1-23=29, 只有农产品加工和水果种植两个项目成功的概率为45×⎝⎛⎭⎪⎫1-56×23=445, 只有绿色蔬菜种植和水果种植两个项目成功的概率为⎝ ⎛⎭⎪⎫1-45×56×23=19, ∴恰有两个项目成功的概率为29+445+19=1945. (2)三个项目全部失败的概率为⎝ ⎛⎭⎪⎫1-45×⎝ ⎛⎭⎪⎫1-56×⎝ ⎛⎭⎪⎫1-23=190, ∴至少有一个项目成功的概率为1-190=8990.。
2019-2020北师大版高中数学选修2-3备课:2.3条件概率与独立事件 .pdf

§3 条件概率与独立事件
备课资源参考教学建议
1.本节是高考的热点,是高考重点考查内容之一.
2.本节的重点是理解条件概率和两事件相互独立性的概念,并能解决一些简单的实际问题,难点是对条件概率和事件相互独立性概念的理解.
3.条件概率是比较难理解的概念,教学中应通过实例以“无放回的抽取”的方式,引入条件概率的概念,给出两种计算条件概率的方法. 同时应指出条件概率具有概率的性质,并要求学生掌握条件概率的两个性质.同样,教学中也利用实例,以“有放回的抽取”的方式,引入事件相互独立性的概念,并引导学生对事件的独立性与互斥性进行比较,掌握两互斥事件和的概率等于两事件概率的和,两相互独立事件积的概率等于两事件概率的积.备选习题
1从一副不含大、小王的52张扑克牌中不放回地抽取3次,每次抽1张.已知前两次抽到K,则第三次抽到A 的概率为( )
A. B.125
225C. D.325350
解析:设事件A 表示“前两次抽到K ”,事件B 表示“第三次抽到A ”,则
P (A )=,P (AB )=,A 24A 150
A 352A 24A 14A 352
∴P (B|A )=.P (AB )P (A )=A 24A 14A 24A 150=225
答案:B
2盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取到新球的条件下,第二次也取到新球的概率为( )
A. B. C. D.351105925解析:设事件A 表示“第一次取到新球”,事件B 表示“第二次取到新球”.
则n (A )=,n (AB )=.
C 16C 19C 16C 15P (B|A )=.n (AB )n (A )=C 16C 15C 16C 19=59答案:C。
北师大版高考数学选修1-2同步教案备课 第1章 2.1 条件概率与独立事件

§2 独立性检验2.1 条件概率与独立事件学习目标 1.理解条件概率与两个事件相互独立的概念.2.掌握条件概率的计算公式.3.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.知识点一 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格. 令A ={产品的长度合格},B ={产品的质量合格},AB ={产品的长度、质量都合格}. 思考1 试求P(A),P(B),P(AB). 答案 P(A)=93100,P(B)=90100,P(AB)=85100.思考2 任取一件产品,已知其质量合格(即B 发生),求它的长度(即A 发生)也合格(记为A|B)的概率. 答案 事件A|B 发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=8590.思考3 P(B),P(AB),P(A|B)间有怎样的关系. 答案 P(A|B)=P (AB )P (B ).梳理 条件概率 (1)概念事件B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为P(A|B). (2)公式P(A|B)=P (A ∩B )P (B )(其中,A ∩B 也可以记成AB).(3)当P(A)>0时,A 发生时B 发生的条件概率为P(B|A)=P (AB )P (A ).知识点二 独立事件甲箱里装有3个白球、2个黑球,乙箱里装有2个白球,2个黑球.从这两个箱子里分别摸出1个球,记事件A =“从甲箱里摸出白球”,B =“从乙箱里摸出白球”. 思考1 事件A 发生会影响事件B 发生的概率吗? 答案 不影响.思考2 P(A),P(B),P(AB)的值为多少? 答案 P(A)=35,P(B)=12,P(AB)=3×25×4=310.思考3 P(AB)与P(A),P(B)有什么关系? 答案 P(AB)=P(A)·P(B). 梳理 独立事件(1)概念:对两个事件A ,B ,如果P(AB)=P(A)P(B),则称A ,B 相互独立. (2)推广:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)拓展:若A 1,A 2,…,A n 相互独立,则有P(A 1A 2…A n )=P(A 1)P(A 2)…P(A n ).1.在“A 已发生”的条件下,B 发生的概率可记作P(A|B).( × )2.在某种情况下,条件概率中的条件意味着对样本空间进行压缩,相应的概率可在压缩的样本空间内直接计算.( √ )3.如果事件A 与事件B 相互独立,则P(B|A)=P(B).( √ )4.“P(AB)=P(A)·P(B)”是“事件A ,B 相互独立”的充要条件.( √ )类型一 条件概率例1 甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时,甲地也为雨天的概率是多少? (2)甲地为雨天时,乙地也为雨天的概率是多少? 解 设A =“甲地为雨天”,B =“乙地为雨天”,则: (1)乙地为雨天时,甲地也为雨天的概率是 P(A|B)=P (AB )P (B )=0.120.18=23.(2)甲地为雨天时,乙地也为雨天的概率是P(B|A)=P (AB )P (A )=0.120.20=0.60.反思与感悟 条件概率的求法(1)利用定义,分别求出P(A)和P(AB),得P(B|A)=P (AB )P (A ).特别地,当B ⊆A 时,P(B|A)=P (B )P (A ).(2)借助古典概型概率公式,先求事件A 包含的基本事件数n(A),再在事件A 发生的条件下求事件B 包含的基本事件数,即n(AB),得P(B|A)=n (AB )n (A ).跟踪训练1 某地区气象台统计,该地区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率是110,设下雨为事件A ,刮风为事件B.求: (1)P(A|B); (2)P(B|A).考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率解 由题意知P(A)=415,P(B)=215,P(AB)=110.(1)P(A|B)=P (AB )P (B )=110215=34.(2)P(B|A)=P (AB )P (A )=110415=38.类型二 事件的独立性的判断例2 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下列两种情形,讨论A 与B 的独立性: (1)家庭中有两个小孩; (2)家庭中有三个小孩. 考点 相互独立事件的定义 题点 相互独立事件的判断解 有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件,由等可能性知概率都为14.这时A ={(男,女),(女,男)}, B ={(男,男),(男,女),(女,男)}, AB ={(男,女),(女,男)}, 于是P(A)=12,P(B)=34,P(AB)=12.由此可知P(AB)≠P(A)P(B), 所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}.由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件,AB 中含有3个基本事件.于是P(A)=68=34,P(B)=48=12,P(AB)=38,显然有P(AB)=38=P(A)P(B)成立.从而事件A 与B 是相互独立的.反思与感悟 三种方法判断两事件是否具有独立性 (1)定义法:直接判定两个事件发生是否相互影响. (2)公式法:检验P(AB)=P(A)P(B)是否成立.(3)条件概率法:当P(A)>0时,可用P(B|A)=P(B)判断.跟踪训练2 分别抛掷两枚质地均匀的硬币,设事件A 是“第一枚为正面”,事件B 是“第二枚为正面”,事件C 是“两枚结果相同”,则下列事件具有相互独立性的是________.(填序号) ①A ,B ;②A ,C ;③B ,C. 考点 相互独立事件的定义 题点 相互独立事件的判断 答案 ①②③解析 根据事件相互独立性的定义判断,只要P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C)成立即可.利用古典概型概率公式计算可得P(A)=0.5,P(B)=0.5,P(C)=0.5,P(AB)=0.25,P(AC)=0.25,P(BC)=0.25.可以验证P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C).所以根据事件相互独立的定义,事件A与B相互独立,事件B与C相互独立,事件A与C相互独立.类型三求相互独立事件的概率例3 小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.考点相互独立事件同时发生的概率计算题点求多个相互独立事件同时发生的概率解用A,B,C分别表示“这三列火车正点到达”的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A)=0.2,P(B)=0.3,P(C)=0.1.(1)由题意得A,B,C之间互相独立,所以恰好有两列火车正点到达的概率为P1=P(A BC)+P(A B C)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P(A B C)=1-P(A)P(B)P(C)=1-0.2×0.3×0.1=0.994.反思与感悟明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A,B,它们发生的概率分别为P(A),P(B),那么:(1)A,B中至少有一个发生为事件A+B.(2)A,B都发生为事件AB.(3)A,B都不发生为事件A B.(4)A,B恰有一个发生为事件A B+A B.(5)A,B中至多有一个发生为事件A B+A B+A B.跟踪训练3 某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,则此次考试中恰有一科成绩未获得第一名的概率是( ) A .0.612B .0.765C .0.329D .0.68 考点 相互独立事件同时发生的概率计算 题点 求多个相互独立事件同时发生的概率 答案 C解析 分别记该生语、数、英考试成绩排名全班第一的事件为A ,B ,C , 则P(A)=0.9,P(B)=0.8,P(C)=0.85, 故P(A BC +A B C +AB C ) =P(A BC)+P(A B C)+P(AB C )=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329.1.下列说法正确的是( ) A .P(B|A)<P(AB) B .P(B|A)=P (B )P (A )是可能的C .0<P(B|A)<1D .P(A|A)=0 答案 B解析 ∵P(B|A)=P (AB )P (A ),而P(A)≤1,∴P(B|A)≥P(AB),∴A 错; 当P(A)=1时,P(AB)=P(B), ∴P(B|A)=P (AB )P (A )=P (B )P (A ),∴B 正确;而0≤P(B|A)≤1,P(A|A)=1,∴C 、D 错,故选B.2.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12B.512C.14D.16考点 相互独立事件同时发生的概率计算 题点 求两个相互独立事件同时发生的概率 答案 B解析 设“两个零件中恰有一个一等品”为事件A , 因为事件相互独立,所以P(A)=23×14+13×34=512.3.坛子里放有3个白球,2个黑球,从中不放回地摸球,用A 1表示第1次摸得白球,A 2表示第2次摸得白球,则A 1与A 2是( ) A .互斥事件 B .相互独立事件 C .对立事件D .不相互独立事件考点 相互独立事件的定义 题点 相互独立事件的判断 答案 D解析 互斥事件和对立事件是同一次试验的两个不同时发生的事件,故选项A ,C 错.而事件A 1的发生对事件A 2发生的概率有影响,故两者是不相互独立事件.4.在感冒流行的季节,设甲、乙两人患感冒的概率分别为0.6和0.5,则他们中有人患感冒的概率是________. 答案 0.8解析 设甲、乙患感冒分别为事件A ,B ,则P =1-P(A B )=1-P(A )P(B )=1-(1-0.6)(1-0.5)=0.8.5.一道数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,两人试图独立地在半小时内解决它,则两人都未解决的概率是________,问题得到解决的概率是________. 考点 相互独立事件同时发生的概率计算 题点 求两个相互独立事件同时发生的概率 答案13 23解析 设“甲解决这道难题”为事件A ,“乙解决这道难题”为事件B ,则A ,B 相互独立.所以两人都未解决的概率为P(A B )=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13=13.问题得到解决的概率为P(A B )+P(A B)+P(AB)=1-P(A B )=1-13=23.1.条件概率的前提条件是:在知道事件A 必然发生的前提下,只需局限在A 发生的范围内考虑问题,在事件A 发生的前提下事件B 发生,等价于事件A 和B 同时发生,由古典概型知,其条件概率为P(B|A)=n (AB )n (A )=n (AB )n (Ω)n (A )n (Ω)=P (AB )P (A ), 其中,n(Ω)为一次试验可能出现的所有结果数,n(A)为事件A 所包含的结果数,n(AB)为AB 同时发生时的结果数.2.P(AB)=P(A)P(B)使用的前提条件是A ,B 为相互独立事件;当事件A 与B 相互独立时,事件A 与B 、A 与B 、A 与B 也相互独立.3.求事件的概率时,有时遇到求“至少”或“至多”等事件概率问题,可考虑用他们的对立事件求解.一、选择题1.抛掷一颗骰子,A 表示事件:“出现偶数点”,B 表示事件:“出现3点或6点”,则事件A 与B 的关系是( ) A .互斥事件 B .相互独立事件 C .既互斥又相互独立事件 D .既不互斥又不独立事件 考点 相互独立事件的定义 题点 相互独立事件的判断 答案 B解析 A ={2,4,6},B ={3,6},A ∩B ={6},所以P(A)=12,P(B)=13,P(AB)=16=12×13,所以A 与B 是相互独立事件.2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( ) A .0.2B .0.33C .0.5D .0.6 考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率 答案 A解析 记“数学不及格”为事件A ,“语文不及格”为事件B , 则P(B|A)=P (AB )P (A )=0.030.15=0.2,所以数学不及格时,该生语文也不及格的概率为0.2.3.盒中有5个红球,11个蓝球,红球中有2个玻璃球,3个塑料球,蓝球中有4个玻璃球,7个塑料球,现从中任取一球,假设每个球被摸到的可能性相同,若已知取到的球是玻璃球,则它是蓝球的概率是( ) A.13B.23C.14D.34 答案 B解析 设“摸到玻璃球”为事件A ,“摸到蓝球”为事件B ,则P(A)=616=38,P(AB)=14,∴所求概率P =P (AB )P (A )=14×83=23.4.如图,A ,B ,C 表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是( )A .0.504B .0.994C .0.496D .0.06 答案 B解析 系统可靠即A ,B ,C3种开关至少有一个能正常工作, 则P =1-[1-P(A)][1-P(B)][1-P(C)]=1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.5.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y(若指针停在边界上则重新转),x ,y 构成数对(x ,y),则所有数对(x ,y)中,满足xy =4的概率为( )A.116B.18C.316D.14考点 相互独立事件的性质及应用 题点 独立事件与互斥事件的综合应用 答案 C解析 满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1. ∴所求事件的概率为P =P(x =1,y =4)+P(x =2,y =2)+P(x =4,y =1) =14×14+14×14+14×14=316. 6.设两个相互独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P(A)为( ) A.29B.118C.13D.23考点 相互独立事件的性质及应用 题点 相互独立事件性质的应用 答案 D解析 由P(A B )=P(B A ),得P(A)P(B )=P(B)P(A ), 即P(A)[1-P(B)]=P(B)[1-P(A)],∴P(A)=P(B).又P(A B )=19,则P(A )=P(B )=13,∴P(A)=23.7.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和P ,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则P 值为( )A.35B.45C.34D.14答案 C解析 设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B ,则P(A)=35,P(A )=1-35=25,P(B)=P ,P(B )=1-P ,依题意得35×(1-P)+25×P =920, 解得P =34,故选C. 8.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能获冠军.若每局两队获胜的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.34考点 相互独立事件的性质及应用题点 相互独立事件性质的应用答案 D解析 根据已知条件,可知甲队要获得冠军可分为甲队直接胜一局,或乙队先胜一局,甲队再胜一局.甲队直接胜一局,其概率为P 1=12;乙队先胜一局,甲队再胜一局,其概率为P 2=12×12=14.由概率加法公式可得甲队获胜的概率为P =12+12×12=34. 二、填空题9.在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.考点 相互独立事件同时发生的概率计算题点 求多个相互独立事件同时发生的概率答案 35解析 从甲盒内取一个A 型螺杆记为事件M ,从乙盒内取一个A 型螺母记为事件N ,因为事件M ,N 相互独立,所以能配成A 型螺栓(即一个A 型螺杆与一个A 型螺母)的概率为P(MN)=P(M)P(N)=160200×180240=35.10.某种元件用满6000小时未坏的概率是34,用满10000小时未坏的概率是12,现有一个此种元件,已经用过6000小时未坏,则它能用到10000小时的概率为________.考点 条件概率的定义及计算公式题点 直接利用公式求条件概率答案 23解析 设“用满6 000小时未坏”为事件A ,“用满10 000小时未坏”为事件B ,则P(A)=34,P(AB)=P(B)=12,所以P(B|A)=P (AB )P (A )=1234=23. 11.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者,则乙连胜四局的概率为________.答案 0.09解析 乙连胜四局,即乙先胜甲,然后胜丙,接着再胜甲,最后再胜丙,∴概率P =(1-0.4)×0.5×(1-0.4)×0.5=0.09.三、解答题12.有红色、蓝色两颗骰子,设事件A 为“抛红骰子所得点数为偶数”,设事件B 为“抛蓝骰子所得点数大于4”,求在事件A 发生的条件下,事件B 发生的概率.解 画示意图如图所示,横轴表示抛红骰子所得点数,纵轴表示抛蓝骰子所得点数.∴P(A)=1836=12,P(AB)=636=16,∴P(B|A)=P (AB )P (A )=1612=13. 即在事件A 发生的条件下,事件B 发生的概率为13. 13.已知10张奖券中有3张有奖,甲、乙两人从中各抽1张,甲先抽、乙后抽,求:(1)甲中奖的概率;(2)乙中奖的概率;(3)在甲未中奖的情况下,乙中奖的概率.解 设“甲中奖”为事件A ,“乙中奖”为事件B.(1)由题意得P(A)=310. (2)P(B)=P(AB +A B)=P(AB)+P(A B),∵P(AB)=310×29=115,P(A B)=710×39=730, ∴P(B)=115+730=930=310. (3)方法一 P(A )=710,P(A B)=730, ∴P(B|A )=P (A B )P (A )=730710=13. 方法二 甲未中奖条件下9张奖券中有3张有奖,∴P(B|A )=39=13. 四、探究与拓展14.先后掷两次骰子(骰子的六个面上分别是1,2,3,4,5,6点),落在水平桌面后,记正面朝上的点数分别为x ,y ,记事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P(B|A)=________. 考点 条件概率的定义及计算公式题点 直接利用公式求条件概率答案 13解析 根据题意,事件A 为“x +y 为偶数”,则x ,y 两个数均为奇数或偶数,共有2×3×3=18个基本事件.∴事件A 发生的概率为P(A)=2×3×36×6=12,而A ,B 同时发生,基本事件有“2+4”,“2+6”,“4+2”,“4+6”,“6+2”,“6+4”,共6个,∴事件A ,B 同时发生的概率为P(AB)=66×6=16, ∴P(B|A)=P (AB )P (A )=1612=13. 15.设M ,N 为两个随机事件,给出以下命题:①若M ,N 为互斥事件,且P(M)=15,P(N)=14,则P(M ∪N)=920; ②若P(M)=12,P(N)=13,P(MN)=16,则M ,N 为相互独立事件; ③若P(M )=12,P(N)=13,P(MN)=16,则M ,N 为相互独立事件; ④若P(M)=12,P(N )=13,P(MN)=16,则M ,N 为相互独立事件; ⑤若P(M)=12,P(N)=13,P(M N )=56,则M ,N 为相互独立事件. 其中正确命题的个数为________.答案 3解析 ①中,若M ,N 为互斥事件,且P(M)=15,P(N)=14,则P(M ∪N)=15+14=920,故①正确; ②中,若P(M)=12,P(N)=13,P(MN)=16, 则由相互独立事件乘法公式知,M ,N 为相互独立事件,故②正确;③中,若P(M )=12,P(N)=13,P(MN)=16, 则由对立事件概率计算公式和相互独立事件乘法公式知,M ,N 为相互独立事件,故③正确;④中,若P(M)=12,P(N )=13,P(MN)=16,当M ,N 为相互独立事件时,P(MN)=12×23=13, 故④错误;⑤若P(M)=12,P(N)=13,P(M N )=56, 则由对立事件概率计算公式和相互独立事件乘法公式知,⑤错误.故正确命题的个数为3.。
高中数学北师大版选修1-2+2.1+条件概率和独立事件教案

精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
高中数学 第二章 概率 3 条件概率与独立事件学案 北师大版选修2-3-北师大版高二选修2-3数学学

§3 条件概率与独立事件件同时发生的概率乘法公式.1.条件概率(1)求已知B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为P (A |B ),P (A |B )=P (A ∩B )P (B )(其中,A ∩B 也可写成AB ).(2)A 发生时B 发生的条件概率为P (B |A )=P (AB )P (A ).预习交流1任意向区间(0,1)上投掷一个点,用x 表示该点的坐标,设事件A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫0<x <12,B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫14<x <1,你能求出P (B |A )吗?提示:P (B |A )=P (AB )P (A )=1412=12=0.5.2.独立事件一般地,对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立.可以证明,如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立.预习交流2若事件A 与B 相互独立,则P (AB )=P (A )·P (B),与P (AB )=P (A |B )·P (B )矛盾吗? 提示:不矛盾,若事件A 与B 相互独立,则P (A |B )=P (A ).1.条件概率盒中装有5个产品,其中3个一等品,2个二等品,不放回地从中取产品,每次取1个. 求:(1)取两次,两次都取得一等品的概率; (2)取两次,第二次取得一等品的概率;(3)取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率.思路分析:由于是不放回地从中取产品,所以第二次抽取受到第一次的影响,因而是条件概率,应用条件概率中的乘法公式求解.解:记A i 为第i 次取到一等品,其中i =1,2. (1)取两次,两次都取得一等品的概率,则P (A 1A 2)=P (A 1)·P (A 2|A 1)=35×24=310.(2)取两次,第二次取得一等品的概率,即第一次有可能取到一等品,也可能取到二等品,则P (A 2)=P (A 1A 2)+P (A 1A 2)=25×34+35×24=35.(3)取两次,已知第二次取得一等品,则第一次取得二等品的概率为P (A 1|A 2)=P (A 1A 2)P (A 2)=25×3435=12.甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问(1)乙地为雨天时,甲地为雨天的概率为多少? (2)甲地为雨天时,乙地为雨天的概率为多少? 解:设A =“甲地为雨天”,B =“乙地为雨天”, 则根据题意有:P (A )=0.20,P (B )=0.18,P (AB )=0.12,因此,(1)P (A |B )=P (AB )P (B )=0.120.18≈0.67;(2)P (B |A )=P (AB )P (A )=0.120.20=0.60.即:乙地为雨天时,甲地为雨天的概率约为0.67,甲地为雨天时,乙地为雨天的概率为0.60.条件概率的判断:当题目中出现“在……前提下(条件)”等字眼时,一般为条件概率;题目中没有出现上述字眼,但已知事件的发生影响了所求事件的概率,一般也认为是条件概率.2.独立事件一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩},对下述两种情形,讨论A 与B 的独立性.(1)家庭中有两个小孩; (2)家庭中有三个小孩. 思路分析:(1)先写出家庭中有两个小孩的所有可能情形,需注意基本事件(男,女),(女,男)是不同的,然后分别求出A ,B 所含的基本事件数,由于生男生女具有等可能性,故可借助古典概型来求P (A ),P (B )及P (AB )的概率,最后分析P (AB )是否等于P (A )P (B ),(2)同(1).解:(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件,由等可能性知每个基本事件概率都为14.∵A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)},∴P (A )=12,P (B )=34,P (AB )=12.∴P (A )P (B )=38≠P (AB ).∴事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩,女孩的所有可能情况为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件,AB 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (AB )=38,显然有P (AB )=38=P (A )P (B )成立,从而事件A 与B 是相互独立的.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少?解:记“机器甲需要照顾”为事件A ,“机器乙需要照顾”为事件B ,“机器丙需要照顾”为事件C .由题意知,各台机器是否需要照顾相互之间没有影响. 因此,A ,B ,C 是相互独立事件. 由题意知P (AB )=P (A )P (B )=0.05, P (AC )=P (A )P (C )=0.1, P (BC )=P (B )P (C )=0.125.解得P (A )=0.2,P (B )=0.25,P (C )=0.5.∴甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.由定义知若P (AB )=P (A )·P (B ),则A ,B 独立,即如果A ,B 同时成立时的概率等于事件A 的概率与事件B 的概率的积,则可得出事件A 和事件B 为相互独立事件.1.把一枚硬币抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现反面”,则P (B |A )=( ).A .12B .14C .13 D .1 答案:A解析:P (B )=P (A )=12,P (AB )=14,∴P (B |A )=P (AB )P (A )=1412=12.2.在10支铅笔中,有8支正品,2支次品,从中任取2支,则在第一次抽的是次品的条件下,第二次抽的是正品的概率是( ).A .15B .845C .89D .45 答案:C解析:记事件A ,B 分别表示“第一次、第二次抽得正品”,则A B 表示“第一次抽得次品,第二次抽得正品”.∴P (B |A )=P (A B )P (A )=2×810×92×910×9=89.3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率为p 2,那么恰好有1人解决这个问题的概率是( ).A .p 1p 2B .p 1(1-p 2)+p 2(1-p 1)C .1-p 1p 2D .1-(1-p 1)(1-p 2) 答案:B解析:甲解决问题乙没有解决问题的概率为p 1(1-p 2),乙解决问题而甲没有解决问题的概率是p 2(1-p 1),故恰有1人解决问题的概率为p 1(1-p 2)+p 2(1-p 1).4.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为__________.答案:512解析:记两个零件中恰有一个一等品的事件为A ,则P (A )=23×14+13×34=512.5.在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次还取到不合格品的概率是多少?解:记A 为“第一次取到不合格品”,B 为“第二次取到不合格品”,则得P (A )=5100=120,P (AB )=5100×499,要求在第一次取到不合格品后,第二次再次取到不合格品的概率,即求P (B |A )=P (AB )P (A )=499.。
高中数学第一章统计案例条件概率与独立事件学案含解析北师大版选修1_2

高中数学学案:条件概率与独立事件一、选择题1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是( )A .0.56B .0.48C .0.75D .0.6【答案】 A【解析】 设甲击中为事件A ,乙击中为事件B .∵A 、B 相互独立,则P (AB )=P (A )·P (B )=0.8×0.7=0.562.甲、乙二人分别对一目标进行一次射击,记“甲击中目标为事件A ,乙击中目标为事件B ,则A 与B ,A 与B ,A 与B ,A 与B ”中,满足相互独立的有( )A .1对B .2对C .3对D .4对【答案】 D【解析】 由于A 与B 是两个相互独立事件,所以根据相互独立事件的性质可知,A 与B ,A 与B ,A 与B 也是相互独立事件,故有4对相互独立事件.3.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为( )A.16B.25C.215D.56【答案】 A【解析】 记“从甲袋中任取一球为白球”为事件A ,“从乙袋中任取一球为白球”为事件B ,则事件A 、B 是相互独立事件.P (A ∩B )=P (A )·P (B )=24×26=16. 二、填空题4.由长期统计资料可知,某地区在4月份下雨(记为事件A )的概率为415,刮风(记为事件B )的概率为715,既刮风又下雨的概率为110,则P (A |B )=________,P (B |A )=________.【答案】 314 38 【解析】 由题意P (A )=415,P (B )=715,P (AB )=110, 则P (A |B )=P AB P B =110715=314, P (B |A )=P AB P A =110415=38. 5.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是__________,三人中至少有一人达标的概率是__________.【答案】 0.24 0.96【解析】 三人均达标的概率为0.8×0.6×0.5=0.24,三人中至少有一人达标的概率为1-(1-0.8)×(1-0.6)×(1-0.5)=0.96.三、解答题6.甲、乙两人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙两人不放回地依次各抽1题,在甲抽到选择题的前提下,乙抽到判断题的概率是多少?[分析] 本题为条件概率,事件A 为甲抽到选择题,事件B 为乙抽到判断题.本题所求为在事件A 发生的条件下事件B 发生的概率.【解析】 设甲抽到选择题为事件A ,乙抽到判断题为事件B ,则P (A )=610=35,P (AB )=6×410×9=415. ∴P (B |A )=P AB P A =41535=49,即在甲抽到选择题的条件下,乙抽到判断题的概率是49.。
北师大版选修1-2--第一章-2-2.1-条件概率与独立事件----课件(30张)

1
4
性知概率各为 . 这时A={(男,女),(女,男)},B={(男,男),(男,女),(女,
男)},AB={(男,女),(女,男)},于是 P(A)=
1
, ()
2
=
3
, ()
4
=
1
.
2
由此可知 P(AB)≠P(A)P(B),所以事件 A,B 不相互独立.
必须熟练掌握.
2.判断两个事件是否为相互独立事件也可以从定性的角度进行
分析,也就是看一个事件的发生对另一个事件的发生是否有影响.
没有影响就是相互独立事件,有影响就不是相互独立事件.
典例透析
题型一
题型二
题型三
题型四
【变式训练2】 从一副扑克牌(去掉大王、小王,共52张)中任抽
一张,设A={抽得老K},B={抽得红牌},判断事件A与B是否相互独立.
P() = ()() = [1 − ()](),
P( ) = ()() = [1 − ()][1 − ()].
(3)若A1,A2,…,An相互独立,
则有P(A1A2…An)=P(A1)P(A2)…P(An).
知识梳理
名师点拨比较相互独立事件与互斥事件
互斥事件
由题意知要求的是P(A2|A1).
6
3
6×5
1
因为 P(A1)= 10 = 5 , (1 2 ) = 10×9 = 3,
所以 P(A2|A1)=
(1 2 )
( 1 )
5
= 9.
5
故第一支是好的,第二支也是好的的概率为 9.
典例透析
北师大版高中数学选修条件概率与独立事件一教案

2.3条件概率教学目标:知识与技能:通过对具体情景的分析,了解条件概率的定义。
过程与方法:掌握一些简单的条件概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:条件概率定义的理解.教学难点:概率计算公式的应用.授课类型:新授课.课时安排:1课时.教具:多媒体、实物投影仪.教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。
教学过程:一、复习引入:探究:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B表示事件“最后一名同学抽到中奖奖券”,则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1P(B)=.3思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为12,不妨记为P(B|A),其中A表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A一定会发生,导致可能出现的基本事件必然在事件A中,从而影响事件B发生的概率,使得P(B|A)≠P (B).思考:对于上面的事件A和事件B,P(B|A)与它们的概率有什么关系呢?用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y,Y Y Y}的范围内考虑问题,P( A B) = n ( AB) n ( AB)= = . n ( A) P ⎢ A | B ⎥ = ∑ P( A | B) . ⎣ i =1i⎦i =1即只有两个基本事件Y Y Y 和 Y Y Y .在事件 A 发生的情况下事件 B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因此P(B | A) = 1 = .2 n ( A)其中 n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据 古典概型的计算公式,n ( A ), P( A) =n (Ω) n (Ω)其中 n ( Ω )表示 Ω 中包含的基本事件个数.所以,n ( AB)P(B | A) = n( A B ) n (Ω) P ( A B )n (Ω) P(Ω)n (Ω)因此,可以通过事件 A 和事件 AB 的概率来表示 P (B| A ) . 条件概率1.定义设 A 和 B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). P(B | A) 读作 A 发生的条件下 B 发生的概率.P(B | A) 定义为P(B | A) = P( AB)P( A ).由这个定义可知,对任意两个事件 A 、B ,若 P ( B ) > 0 ,则有P( A B) = P( B | A) ⋅ P( A ).并称上式微概率的乘法公式. 2.P (·|B )的性质:(1)非负性:对任意的 A ∈ f. 0 ≤ P( B | A) ≤ 1 ;(2)规范性:P(Ω|B)=1;(3)可列可加性:如果是两个互斥事件,则P(B C|A)=P(B|A)+P(C|A).更一般地,对任意的一列两两部相容的事件A(I=1,2…),有i⎡∞⎤∞iP(A B)=n(AB)P(B|A)==10=.P(B|A)=P(AB)3P(A)=P(A)+P(A A)=11010⨯95例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(l)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n(Ω)=A3=20.5根据分步乘法计数原理,n(A)=A1⨯A1=12.于是34P(A)=n(A)123==.n(Ω)205(2)因为n(AB)=A2=6,所以363==.n(Ω)2010(3)解法1由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概3P(A B)1P(A)25解法2因为n(AB)=6,n(A)=12,所以61==.P(A)122例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i次按对密码为事件A(i=1,2),则A=Ai1(A A)表示不超过2次就按对密12码.(1)因为事件A与事件A A互斥,由概率的加法公式得1129⨯11+=.112(2)用B表示最后一位按偶数的事件,则P(A|B)=P(A|B)+P(A A|B)11214⨯12=+=.55⨯45课堂练习.1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P(A),P(B),P(AB),P(A︱B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3条件概率教学目标:知识与技能:通过对具体情景的分析,了解条件概率的定义。
过程与方法:掌握一些简单的条件概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:条件概率定义的理解.教学难点:概率计算公式的应用.授课类型:新授课 .课时安排:1课时.教具:多媒体、实物投影仪.教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。
教学过程:一、复习引入:探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1()3P B=.思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为12,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) .思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因此(|)P B A =12=()()n AB n A .其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,()()(),()()()n AB n A P AB P A n n ==ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以,(|)P B A =()()()()()()()()n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) .条件概率1.定义设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.(|)P B A 定义为()(|)()P AB P B A P A =. 由这个定义可知,对任意两个事件A 、B ,若()0P B >,则有()(|)()P AB P B A P A =⋅.并称上式微概率的乘法公式.2.P (·|B )的性质:(1)非负性:对任意的A ∈f. 0(|)1P B A ≤≤;(2)规范性:P (Ω|B )=1;(3)可列可加性:如果是两个互斥事件,则(|)(|)(|)P B C A P B A P C A =+.更一般地,对任意的一列两两部相容的事件i A (I=1,2…),有P ⎥⎦⎤⎢⎣⎡∞= 1|i i B A =)|(1B A P i i ∑∞=.例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=35A =20.根据分步乘法计数原理,n (A )=1134A A ⨯=12 .于是 ()123()()205n A P A n ===Ω. (2)因为 n (AB)=23A =6 ,所以()63()()2010n AB P AB n ===Ω. (3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概3()110(|)3()25P AB P B A P A ===. 解法2 因为 n (AB )=6 , n (A )=12 ,所以()61(|)()122P AB P B A P A ===. 例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =表示不超过2次就按对密码.(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯.课堂练习.1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P (A ),P (B ),P (AB ),P (A ︱B )。
2、一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中),设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,求P (AB ),P (A ︱B )。
3、在一个盒子中有大小一样的20个球,其中10和红球,10个白球。
求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率。
巩固练习: 课本55页练习1、2课外作业:教学反思:1. 通过对具体情景的分析,了解条件概率的定义。
2. 掌握一些简单的条件概率的计算。
3. 通过对实例的分析,会进行简单的应用。
独立事件教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率.教学难点:有关独立事件发生的概率计算.授课类型:新授课 .课时安排:2课时 .教 具:多媒体、实物投影仪 .教学过程:一、复习引入:1. 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件.2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 .5.基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件.6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件. 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n =. 8.等可能性事件的概率公式及一般求解方法.9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的.10. 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++ .探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上.(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球. 问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响) .思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立.2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果.于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果.同时摸出白球的结果有32⨯种.所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.3.对于事件A 与B 及它们的和事件与积事件有下面的关系:)()()()(B A P B P A P B A P ⋅-+=+.三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0. 05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生).根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-=.例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响.根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率. (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅0.847=方法二:分析要使这段时间内线路正常工作只要排除C J 开且A J 与B J 至少有1个开的情况. []21()1()10.3(10.7)0.847PC P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2. (1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率.解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=5)54(. ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54( ∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈-. ∵+∈N n ,∴11n =.∴至少需要布置11门高炮才能有0.9以上的概率击中敌机.点评:上面例1和例2的解法,都是解应用题的逆向思考方法.采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便.四、课堂练习:1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25()D 920 2.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= . 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响.一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的.相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的.六、课后作业:课本58页练习1、2、3 .第60页 习题 2. 2A 组4. B 组1七、板书设计(略) .八、教学反思:1. 理解两个事件相互独立的概念。