巧用等积法解高考立体几何试题

合集下载

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

高考数学立体几何专题复习(含答案)

高考数学立体几何专题复习(含答案)
9、如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD 底面 ABCD , PD DC 2 , E 是 PC
的中点.
(Ⅰ)证明: PA / / 平面 EDB ; (Ⅱ)求三棱锥 A BDP 的体积.
试卷第 2 页,总 2 页
参考答案
1、【答案】(1)详见解析;(2) . 试题分析(:1)过 B 作 CD 的垂线交 CD 于 F,则
6、如图所示,在直三棱柱 ABC-A1B1C1 中,AC=3,BC=4,AB=5,AA1=4,点 D 是 AB 的中点. (1)求证:AC1∥平面 CDB1; (2)求异面直线 AC1 与 B1C 所成角的余弦值.
7、如图所示,在三棱锥 A BOC 中,OA 底面 BOC ,OAB OAC 300 , AB AC 2 , BC 2 ,
高考数学—立体几何专题复习
1、如图,直四棱柱 ABCD–A1B1C1D1 中,AB//CD,AD⊥AB,AB=2,AD= ,AA1=3,E 为 CD 上一点,DE=1,EC=3. (1)证明:BE⊥平面 BB1C1C; (2)求点 B1 到平面 EA1C1 的距离.
2、已知四棱锥 P ABCD 的底面 ABCD 是菱形, BAD 60 ,又 PD 平面 ABCD ,点 E 是棱 AD 的中点, F 在棱 PC 上. (1)证明:平面 BEF 平面 PAD . (2)试探究 F 在棱 PC 何处时使得 PA / / 平面 BEF .
答案第 1 页,总 6 页
试题解析:
(1)证明:
PD EB

平面ABCD 平面ABCD

PD

EB
,
又底面 ABCD 是 A 60 的菱形,且点 E 是棱 AD 的中点,所以 EB AD ,

高考数学解题技巧及规范答题:立体几何大题

高考数学解题技巧及规范答题:立体几何大题
(2)当四棱锥 体积为 时,求二面角 的正弦值.
【分析】
(1)分别取 , 的中点 , ,证明 , 可得 平面 ,
可证 ,由等腰三角形的性质可得 ,证明三角形全等即可求证;
(2)在 上取一点O,连接 ,使 ,根据已知条件证明O为正方形 的中心,建立空间直角坐标系求出平面 和平面 的法向量,利用夹角公式即可求解.
又 ,所以 ,
故 .
【此处由三角形的面积公式和体积公式求体积,若底面面积正确但体积计算错误,减1分.】
【评分细则】
①利用三线合一证明AO⊥BD,得1分
②利用面面垂直的性质证明AO⊥平面BCD,得2分.
③利用线面垂直的性质证明AO⊥CD,得1分.
④利用(1)结论证明三线垂直,合理建系得2分.
⑤正确写出和设出点的坐标,指出一个平面的法向量,得2分.
(1)若三棱锥 体积是 ,求 的值;
(2)若直线 与平面 所成角的正弦值是 ,求 的值.
【分析】
(1)由题意知, 、 、 两两垂直,建立空间直角坐标系,设 ,由 ,求得M的坐标,过 作 于 , 于 ,再由 求解;
(2)由(1)知 ,求得平面 的一个法向量为 ,设直线 与平面 所成的角为 ,然后由 求解.

又 平面 平面 ,
平面 ,
即 ,
又 ,
平面 ,
故 为四棱锥 的高,
为直线 与平面 所成角,
又 ,
即 ,
四棱锥 的体积为 ;
(2)假设存在点 ,建立如图所示的空间直角坐标系,
设 , ,
则 ,
则 , , ,
设平面 和平面 的法向量分别为 , ,
则 ,令 ,则 ,
,令 ,
则 ,
二面角 的余弦值为 ,

2022年高考数学必刷压轴题专题55割补法与等积变换求解体积问题含解析

2022年高考数学必刷压轴题专题55割补法与等积变换求解体积问题含解析

专题55 割补法与等积变换求解体积问题【方法点拨】1. 利用等积变换求解三棱锥的体积问题,归根结底就是“换顶点(或换底面)”,换顶点的常用方法有二.一是直接换,即从四个顶点选择一个点作为顶点,选择的基本原则是点面距易求,如出现线面垂直等;二是利用线面平行更换顶点,由于该直线上任意一点到平面的距离均相等,换完后依然是便于求出点面距.当然,有时还会遇到利用与平面相交的直线上的点换顶点等不一而足.2. 利用求体积可以求点面距,其数学方法是“算两次”. 【典型题示例】例1 在正方体AAAA −A 1A 1A 1A 1中,动点E 在棱AA 1上,动点F 在线段A 1A 1上,O 为底面ABCD 的中心,若AA =A ,A 1A =A ,则四面体A −AAA 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关【答案】B【分析】利用线面平行换顶点,化动为静.【解析】易知,11A C 平面AOE ,故四面体O AEF -即四面体F AOE -与四面体1A AOE -同底等高,即1=O AEF A AOE V V --四面体四面体同理,1BB 平面1AA O ,故四面体1A AOE -即四面体1E AA O -与四面体1B AA O -同底等高,即11=A AOE B AA O V V --四面体四面体所以11==O AEF B B AA O O AA V V V ---四面体四面体四面体,故与x ,y 都无关.例2 如图所示,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且ADE ∆、BCF ∆均为正三角形,//EF AB ,2EF =,则该多面体的体积为( )A .3B .3C .23D .43【答案】A【分析】将物体切割成一个三棱柱,两个三棱锥分别计算体积. 【解析】在EF 上取点,M N 使12EM FN ==,连接,,,AM DM BN CN , ABCD 是边长为1的正方形,且ADE 、BCF △均为正三角形,EF AB ∥,所以四边形ABFE 为等腰梯形,2EF =,1MN =,根据等腰梯形性质,,,,AM EF DM EF BN EF CN EF ⊥⊥⊥⊥,,AM DM 是平面AMD 内两条相交直线,,BN CN 是平面BNC 内两条相交直线,所以EF ⊥平面AMD ,EF ⊥平面BNC ,2MA MD NB NC ====, 几何体体积为2E AMD AMD BNC V V V --=+1111121132223=⨯⨯⨯+⨯=, 故选:A例 3 如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.【答案】36cm【解析】如图所示,连结AC 交BD 于点O ,因为 平面D D BB ABCD 11⊥,又因为BD AC ⊥,所以,D D BB AC 11平面⊥, 所以四棱锥D D BB A 11-的高为AO , 根据题意3cm AB AD ==,所以223=AO , 又因为32cm BD =,12cm AA =,故矩形D D BB 11的面积为262cm , 从而四棱锥D D BB A 11-的体积3132626cm 32V =⨯⨯=. 例4 如下图,四棱锥ABCD P -中,⊥PD 平面ABCD ,,2,1====AB BC DC PD︒=∠90,//BCD DC AB ,则点A 到平面PBC 的距离为 .【答案】.2【分析】先证明BC PC ⊥,而所求点A 到平面PBC 的距离,需利用“算两次”,求出三棱锥ABC P -的体积即可.【解析】因为⊥PD 平面ABCD ,⊂BC 平面ABCD ,所以BC PD ⊥.由 90=∠BCD ,得.DC BC ⊥又D DC PD = ,⊂PD 平面PCD ,⊂DC 平面PCD ,所以⊥BC 平面PCD , 因为⊂PC 平面PCD ,所以BC PC ⊥. 连结AC .设点A 到平面PBC 的距离为h .因为DC AB //, 90=∠BCD ,所以.90 =∠ABC 从而由1,2==BC AB , 得ABC ∆的面积1=∆ABC S .由⊥PD 平面ABCD 及1=PD ,得三棱锥ABC P - 的体积⋅=⋅=∆3131PD S V ABC 因为⊥PD 平面⊂DC ABCD ,平面ABCD , 所以DC PD ⊥,又1==DC PD ,所以222=+=DC PD PC由BC PC ⊥,1=BC ,得PBC ∆的面积22=∆PBC S , 由h S V PBC ∆=313122.31=⋅=h ,得.2=h 因此.点A 到平面PBC 的距离为.2BA CD 1B 1A 1C 1D EF【巩固训练】1.如下图,在长方体1111ABCD A B C D -中,AB =3 cm ,AD =2 cm ,1AA =1 cm ,则三棱锥11B ABD -的体积为 cm 32.如图,在正方体1111ABCD A B C D -中,2cm AB =,E 为11C D 的中点,则三棱锥1E A BC -的体积为 cm 3.1111ABCD A B C D -的体积为3.如图,已知正四棱柱36,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四棱锥1A AEFD -的体积为 .4.如图,三棱锥BCD A -中,E 是AC 中点,F 在AD 上,且FD AF =2,若三棱锥BEF A -的体积是2,则四棱锥ECDF B -的体积为 .5.如图,正三棱柱ABC —A 1B 1C 1中,AB =4,AA 1=AA 1 B不C不B 1不C 1不D 1不D不F ED CB A6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A —A 1EF 的体积是 .6.如图,在三棱柱中,分别是的中点,设三棱锥的体积为,三棱柱的体积为,则 .7.在直三棱柱111 ABC A B C -中,1AB =,2BC =,3AC =,11AA =.则1B 到面1 A BC 的距离为 .ABC C B A -111F E D ,,1AA AC AB ,,ADE F -1V ABC C B A -1112V =21:V VABCA 1B 1FC 1E ABC1ADE F1B1C【答案与提示】1.【答案】1【提示】直接使用等体积法. 2.【答案】23【提示】直接使用等体积法. 3.【答案】12【解析一】特殊位置法,转化为求四棱锥1A ABCD -的体积;【解析二】连接DE ,则三菱锥1A ADE -与三菱锥1A DEF -体积相等,所以1112=2A AEFD A ADE E A AD V V V ---=,因为111111=6E A AD ABCD A B C D V V --,所以112A AEFD V -=.【解析三】补体,如右图. 4.【答案】10【解析】补体,转化为三菱锥BEF A -与三棱锥BCD A -的体积比,实施等积变换.A BEFB AEF AEF A BCDB ACDACDV V S V V S----==,因为1sin 1216sin 2AEF ACDAE AF AS SAC AD A⋅⋅==⋅⋅,V =总612A BEF V -=,则四棱锥B ECDF -的体积为10. 5.【答案】38【提示】直接使用等体积法. 6. 【答案】1:24【解析】三棱锥与三棱锥的相似比为1:2,故体积之比为1:8. 又因三棱锥与三棱柱的体积之比为1:3.所以,三棱锥ADE F -ABC A -1ABC A -1ABC C B A -111ADEF -与三棱柱的体积之比为1:24. 7.. 【解析】因为三棱锥1 C A AB -与三棱锥11 C A BB -的底面积相等()111A ABA B BSS=,高也相等(点C 到平面11ABB A 的距离); 所以三棱锥1 C A AB -与三棱锥11 C A B B -的体积相等.又11111133C A AB A ABC ABC V V S AA --==⋅==所以1111C A B B B A BC V V --==. 设1 B 到面1 A BC 的距离为H ,则11113B A BC A BC V S H -==,解得H =. ABC C B A -111。

巧用等积法解高考立体几何试题

巧用等积法解高考立体几何试题

巧用等积法解高考立体几何试题作者:来源:《福建中学数学》2012年第06期在立体几何中,有些求体积问题可以通过等积变换来完成,即将一个几何体的体积等价转化为另一个便于求体积的几何体来解决;求某些点到到平面的距离,也可以通过等积法来完成;因为采用这种方法可以回避寻找垂足点的具体位置,从而降低了思维难度,省去许多作图和论证过程,而将问题巧妙地得以解决;求斜线与平面所成角时,若能求得斜线上的某点到斜足的距离及该点到平面的距离,便可快速求出该斜线与这个平面所成的角.从近几年的一些高考立几试题中,我们不难发现,许多立几解答题(特别是文史类试题)若能灵活地运用此方法,可将试题简捷讯速得以解决,下面结合2 0 1 1年部分省市高考立几试题展示相应解法(以下各题均只给出最后一小题的解法),供参考.1 巧用等积转化求体积题1 (2 0 1 1年高考上海卷·文2 0 )如图1 ,已知.2 巧用等积转化求点到平面的距离题4 (2 0 0 1年高考全国卷·文1 8 )如图4 ,四棱锥P− A B C D中,底面A B C D为平行四边形,6 0P D ⊥ A B C D .(I )证明:P A⊥ B D ;(I I )设P D= A D =1 ,求棱锥D− P B C的高.(I I )的另解由题设条件可得B C =1 ,C D = 2 ,,由余弦定理知6 0P A C P A= A B P B A C所成角的余弦值;(Ⅲ)当平面与平面垂直时,求的长.∴ = = 1 ,过M作M H ⊥平面A B C D ,垂足为H (无须论证H在什么位置),连结A H,则∠M A H就是直线A M与平面A B C D所成的角.在RtΔ A H M中,得从以上各题解法的展示过程中不难发现,采用此方法解题的关健在于:①巧妙地利用了三棱锥每个顶点均可作为棱锥的顶点,三棱锥每个面均可作为棱锥的底面;②利用线与面平行、面与面平行,借助等底面积等高的锥的体积相等,从而实现等积转化,达到解决问题的目的.许多高考试题虽然出至于不同省市、甚至来自于文、理不同科目,但在解法思路上均可用“等积变换”这一方法得以完美的统一.。

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】几何体为一个三棱柱,底面为直角三角形,直角边长分别为6,8;三棱柱高为12.得到的最大球为直角三角形的内切球,其半径为,选B.【考点】三视图2.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形,则该几何体的体积等于()A.B.C.D.【答案】A【解析】由三视图知:,,∴.【考点】三视图.3.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)()A.133B.100C.66D.166【答案】D【解析】由三视图知,该几何体为底面半径为3,搞为8的圆柱.其外接球时半径为5的球.则剩余几何体的表面积是球的表面积与该圆柱表面积的和,即.故选D.【考点】多面体及与其外接球的关系及几何体表面积计算问题.4.(本小题满分12分)如图,已知五面体,其中内接于圆,是圆的直径,四边形为平行四边形,且平面.(1)证明:;(2)若,,且二面角所成角的正切值是,试求该几何体的体积.【答案】(1)见解析;(2)8.【解析】(1)将问题转化为证明平面,再转化为证明(由直径可证)与(由平面可证);(2)考虑建立空间直角坐标系,通过求两个法向量的夹角来确定二面角所成角的正切值,并确定的长,进而可求得几何体的体积.试题解析:(1)证明:是圆的直径,,又平面,又平面,且,平面又平面,(2)设,以所在直线分别为轴,轴,轴,如图所示则,,,由(Ⅰ)可得,平面,平面的一个法向量是设为平面的一个法向量由条件得,,即不妨令,则,,.又二面角所成角的正切值是,,得该几何体的体积是【考点】1、空间直线与直线、直线与平面的垂直的判定与性质;2、二面角;3、空间几何体的体积.【方法点睛】用空间向量处理某些立体几何问题时,除要有应用空间向量的意识外,关键是根据空间图形的特点建立恰当的空间直角坐标系.若坐标系选取不当,计算量就会增大.总之树立用数解形的观念,即用数形结合的思想解决问题,而建立空间直角坐标系通常考虑以特殊点为坐标原点(如中点、正方体的顶点),特殊直线(如有两两垂直的直线)为坐标轴来建立.5.如图,在多面体中,为菱形,,平面,平面,为的中点,若平面.(1)求证:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】(1)证明线面垂直,只要证明这条直线与平面内两条相交直线垂直即可,取中点,连接,可证,先证,即可证明,即可证明结论成立;(2)建立空间直角坐标系,求出平面与平面的法向量,由空间向量公式直接计算即可.试题解析:(1)取AB的中点M,连结GM,MC,G为BF的中点,所以GM //FA,又EC面ABCD, FA面ABCD,∵CE//AF,∴CE//GM,∵面CEGM面ABCD=CM,EG// 面ABCD,∴EG//CM,∵在正三角形ABC中,CM AB,又AF CM∴EG AB, EG AF,∴EG面ABF.(2)建立如图所示的坐标系,设AB=2,则B()E(0,1,1) F(0,-1,2)=(0,-2,1),=(,-1,-1),=(,1, 1),设平面BEF的法向量=()则令,则,∴=()同理,可求平面DEF的法向量 =(-)设所求二面角的平面角为,则=.【考点】1.线面垂直的判定与性质;2.空间向量的应用.【方法点睛】本题主要考查线面垂直的判定与性质、空间向量的应用,属中档题.解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.6.三棱锥及其三视图中的正视图和侧视图如下图所示,,则棱的长为.【答案】.【解析】由已知三视图可知,平面,且底面为等腰三角形.在中,,边上的高为,所以.在中,由可得,故应填.【考点】1、三视图.【易错点晴】本题主要考查了空间几何体的三视图及其空间几何体的面积、体积的计算,考查学生空间想象能力和计算能力,属中档题.其解题过程中容易出现以下错误:其一是不能准确利用已知条件的三视图得出原几何体的空间形状,即不能准确找出该几何体中线线关系、线面关系,导致出现错误;其二是计算不仔细,导致结果出现错误.解决这类问题的关键是正确地处理三视图与原几何体之间的关系.7.在三棱锥中,平面为侧棱上的一点,它的正视图和侧视图如图所示,则下列命题正确的是()A.平面且三棱锥的体积为B.平面且三棱锥的体积为C.平面且三棱锥的体积为D.平面且三棱锥的体积为【答案】C【解析】∵平面,∴,又,∴平面,∴,又由三视图可得在中,为的中点,∴平面.又平面.故.故选:C.【考点】1.直线与平面垂直的判定;2.命题的真假判断与应用;3.简单空间图形的三视图.8.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.【答案】C【解析】题设三视图是下图中几何体的三视图,由三视图中的尺寸,知其体积为,故选C.【考点】三视图与几何体的体积.9.如图,在三棱柱ABC A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:(Ⅰ)DE∥平面ABC1;(Ⅱ)B1C⊥DE.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)取AA1的中点F,连DF,FE,根据中点易证线线平行,从而平面DEF∥平面ABC1,又因为DE平面DEF,所以B1C⊥DE;(Ⅱ)在菱形中B1C⊥BC1,又B1C⊥AB,易证B1C⊥平面ABC1,再根据面面平行的性质,得:B1C⊥平面DEF,从而证明B1C⊥DE.试题解析:(Ⅰ)如图,取AA1的中点F,连DF,FE.又因为D,E分别为A1C1,BB1的中点,所以DF∥AC1,EF∥AB.因为DF平面ABC1,AC1平面ABC1,故DF∥平面ABC1.同理,EF∥平面ABC1.因为DF,EF为平面DEF内的两条相交直线,所以平面DEF∥平面ABC1.因为DE平面DEF,所以DE∥平面ABC1.(Ⅱ)因为三棱柱ABC A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.……9分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,所以B1C⊥平面ABC1.而平面DEF∥平面ABC1,所以B1C⊥平面DEF,因为DE平面DEF,所以B1C⊥DE.【考点】1、线面平行;2、面面平行;3、线面垂直;4、三角形中位线.【方法点晴】本题主要考查的是线面平行、线线平行、线线垂直和线面垂直,属于中档题.解题时一定要注意得线线平行的常用证明方法,构造中位线和平行四边形是最常用方法.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.10.已知,是两个不同的平面,,是两条不同的直线,则下列正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则【答案】C.【解析】A:或者,异面,故A错误;B:根据面面垂直的判定可知B错误;C:正确;D:或,故D错误,故选C.【考点】空间中直线平面的位置关系.11.已知三条不重合的直线和两个不重合的平面,下列命题正确的是()A.若,,则B.若,,且,则C.若,,则D.若,,且,则【答案】D【解析】A.若,,则,错,有可能;B.若,,且,则,错,有可能;C.若,,则,错,有可能,或异面;D.若,,且,则,正确【考点】空间直线与平面,平面与平面的位置关系12.如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求直线和平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由底面,可得,又,可证的平面,问题得证;(2)在第一问证明的基础上,应用面面垂直的性质定理容易作出平面的垂线,即得斜线的射影,找出角,解直角三角形可得线面角的正弦.试题解析:(1)证明∵底面,底面,∴,又,,∴平面.又平面,∴平面平面.(2)解:过点作,连结.平面平面,平面平面,平面,∴平面,∴为直线和平面所成角.∵是边长为的正三角形,∴,.又∵,∴,,∴.即直线和平面所成角的正弦值为.【考点】空间垂直关系的应用和证明,直线与平面所成的角.【方法点晴】证明面面垂直只能证明线面垂直,而要证明线面垂直就得证明线线垂直,结合题中已知的垂直条件,分析容易找到哪个平面的垂线,逐步完成证明,组织步骤时一定要思路条理;对于直线与平面所成的角遵循作—证(指)—求—答的解题步骤,应当结合条件和前面证明的结论找到平面的垂线是解题的关键,本题中在第一问证明的基础上有了平面的垂面,利用面面垂直的性质定理过直线上一点作交线的垂线即为平面的垂线,连接垂足和斜足即得射影,找到线面角后解直角三角形得解.13.一个几何体的三视图如图所示,则这个几何体的外接球表面积为()A.B.C.D.【答案】A【解析】几何体为一个三棱锥S-ABC,其中D为AC中点,且SD垂直平面ABC,BD垂直AC,则球心在SD上,设球半径为R,则外接球表面积为,选A.【考点】三视图【方法点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.已知正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是_________.【答案】【解析】因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值.设正三角形的外接圆圆心为,在中,,所以.在中,,所以,所以截面面积为【考点】1、多面体的外接球;2、球的截面圆性质.【方法点睛】“切”“接”问题的处理规律:①“切”的处理:解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决;②“接”的处理:把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.15.(2015•金家庄区校级模拟)如图正方形BCDE的边长为a,已知AB=BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE;③VB﹣ACE的体积是a2;④平面ABC⊥平面ADC;⑤直线EA与平面ADB所成角为30°.其中正确的有.(填写你认为正确的序号)【答案】①③④⑤【解析】①由于BC∥DE,则∠ABC(或其补角)为AB与DE所成角;②AB和CE是异面直线;③根据三棱锥的体积公式即可求VB ﹣ACE的体积;④根据面面垂直的判定定理即可证明;⑤根据直线和平面所成角的定义进行求解即可.解:由题意,AB=BC,AE=a,AD⊥平面BCDE,AD=a,AC= a①由于BC∥DE,∴∠ABC(或其补角)为AB与DE所成角∵AB=a,BC=a,AC=a,∴BC⊥AC,∴tan∠ABC=,故①正确;②由图象可知AB与CE是异面直线,故②错误.③VB﹣ACE的体积是S△BCE×AD=×a3=,故③正确;(4)∵AD⊥平面BCDE,BC⊂平面BCDE,∴AD⊥BC,∵BC⊥CD,AD∩CD=D,∴BC⊥平面ADC,∵BC⊂平面ABC,∴平面ABC⊥平面ADC,故④正确;⑤连接CE交BD于F,则EF⊥BD,∵平面ABD⊥平面BDE,∴EF⊥平面ABD,连接F,则∠EAF为直线AE与平面ABD所成角,在△AFE中,EF=,AE=a,∴sin∠EAF==,则∠EAF=30°,故⑤正确,故正确的是①③④⑤故答案为:①③④⑤【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.16.已知某几何体的三视图,则该几何体的体积是_______.【答案】.【解析】该几何体是一个四棱锥,底面是边长为2的正方形,高为,所以.【考点】1.空间几何体的表面积与体积;2.空间几何体的三视图与直观图.17.设三棱柱的侧棱垂直于底面,,且三棱柱的所有顶点都在同一球面上,则该球的表面积是.【答案】【解析】由题意可得:把三棱柱补成底面以2为边长的正方形,以为高的长方体,长方体的体对角线就是球的直径,所以,所以该球的表面积是;故填.【考点】空间几何体的表面积.18.某几何体的正视图与侧视图都是等腰梯形,则该几何体可以是下列几何体中的()①三棱台,②四棱台,③五棱台,④圆台.A.①②B.③④C.①③D.②④【答案】D【解析】由题意得,几何体的正视图和侧视图都是等腰梯形,则根据几何体的三视图的规则可知,该几何体可能为四棱台或圆台,故选D.【考点】空间几何体的三视图.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,只是给出了几何体的正视图和侧视图都是等腰梯形,从而可得这个几何体可能是四棱台或圆台.19.在直三棱柱中,,,且异面直线与所成的角等于,设.(1) 求的值;(2) 求三棱锥的体积.【答案】(1); (2)【解析】(1)由BC ∥B 1C 1可得∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,从而∠A 1BC =60°,再由AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,△A 1BC 为等边三角形, 由已知可得,即可求得 (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积,△的面积, 又可得平面,利用三棱锥的体积公式可求得.试题解析:(1)∵BC ∥B 1C 1,∴∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,即∠A 1BC =60°,又AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,∴△A 1BC 为等边三角形, 由,, ∴; (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积, 即:, △的面积,又平面,所以,所以.【考点】异面直线所成的角及三棱锥的体积的求法.20. 如图,在四棱锥中,已知棱,,两两垂直,长度分别为1,2,2.若(),且向量与夹角的余弦值为.(1)求的值;(2)求直线与平面所成角的正弦值.【答案】(1);(2).【解析】(1)以为坐标原点,、、分别为、、轴建立空间直角坐标系,写出,的坐标,根据空间向量夹角余弦公式列出关于的方程可求;(2)设岀平面的法向量为,根据,进而得到,从而求出,向量的坐标可以求出,从而可根据向量夹角余弦的公式求出,从而得和平面所成角的正弦值.试题解析:(1)依题意,以为坐标原点,、、分别为、、轴建立空间直角坐标系 ,因为,所以,从而,则由,解得(舍去)或. (2)易得,,设平面的法向量, 则,,即,且,所以,不妨取,则平面的一个法向量,又易得,故,所以直线与平面所成角的正弦值为.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.21.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析(2)详见解析【解析】(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与证明,往往需结合平面几何条件,如本题利用三角形中位线性质定理得(2)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,需多次利用线面垂直的判定与性质定理:先由平行四边形为菱形得,再由平面得,即,从而得平面试题解析:(1)设,连结,因为,为的中点,所以,所以四边形为平行四边形,所以为的中点,所以又因为平面,平面,所以平面.(2)(方法一)因为平面,平面所以,由(1)同理可得,四边形为平行四边形,所以,所以因为,所以平行四边形为菱形,所以,因为平面,平面,所以平面因为平面,所以平面平面.(方法二)连结,因为平面,平面,所以因为,所以,因为平面,平面,所以因为为的中点,所以,由(1),所以又因为为的中点,所以因为,平面,平面所以平面,因为平面,所以平面平面.【考点】线面平行判定定理,面面垂直判定定理22.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】A【解析】因为网格纸上小正方形的边长为,有三视图可知,该几何体是下面为底面半径为高为的圆柱体的一半、上面是底面半径为高为的圆锥体的一半,所以体积为,故选A.【考点】1、几何体的三视图;2、圆柱及圆锥的体积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.23.已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的体积为()A.B.C.D.【答案】C【解析】因为,,,所以的中点为的外心,连接,则,又和所在的平面互相垂直,所以平面,上的每一点到距离相等,因此正三角形的中心即是外接球球心,其半径也是外接球半径,所以球半径,求体积为,故选C.【考点】1、外接球的性质及勾股定理;2、面面垂直及球的体积公式.【方法点睛】本题主要考查外接球的性质及勾股定理、面面垂直及三棱锥外接球体积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题是根据方法④直接找出球心并求出半径进而得到求体积的.24.四棱锥的底面是正方形,,分别是的中点(1)求证:;(2)设与交于点,求点到平面的距离【答案】(1)证明见解析;(2).【解析】(1)要证明线面垂直,一般先证明线线垂直,本题中,由于是中点,因此有,而与垂直,从而与平面垂直,结论得证;(2)要求点到平面的距离,考虑三棱锥,的面积易求(为面积的一半),另外由(1)的结论,此三棱锥以为底时,是高,体积易求,从而所求距离易得.试题解析:(1)证明:连接,由于分别是的中点,所以,又,平面,故,又为正方形,故故,故(2)连接交于点,连接,则交线为,又,故,由于分别是的中点,故为的中点,又,故为三棱锥的高又故,又设点到平面的距离为,,所以【考点】线面垂直的判断,点到平面的距离.25.某几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】C【解析】由题意得,由几何体的三视图,知该几何体是上下底面为梯形的直棱柱,所以该几何体的体积为,故选C.【考点】几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,该几何体是上下底面为梯形的直棱柱是解答本题的关键,属于基础题.26.一个几何体的三视图如图,则这个几何体的表面积是()A.B.C.D.【答案】C【解析】由题意得,根据给定的几何体的三视图,可知,原几何体为正方体的一部分,如图所示的红线部分,是一个棱长为的正四面体,所以此几何体的表面积为,故选C.【考点】几何体的三视图与表面积.27.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,,.【考点】三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.28.如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)存在,.【解析】(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值.试题解析:(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面.(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(Ⅲ)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.【考点】空间线面垂直的判定定理与性质定理;线面角的计算;空间想象能力,推理论证能力【名师】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.29.如图,在四棱锥中,底面是菱形,,平面,,点分别为和中点.(1)求证:直线平面;(2)求三棱锥的表面积.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,一般先证线线平行,考虑到,是中点,因此取的中点,可证得且,从而得平行四边形,因此有,最终得线面平行;(2)要求三棱锥的表面积,必须求得它的各个面的面积,由平面,得,三角形和的面积可求,由题设又可证,这样就有,另两个面的面积又可求得.试题解析:(1)证明:作FM∥CD交PC于M.∵点F为PD中点,∴. ∴,∴AEMF为平行四边形,∴AF∥EM,∵,∴直线AF平面PEC.(2)连结可知,,由此;;;;因此三棱锥的表面积.【考点】线面平行的判断,多面体的表面积.30.在棱长为3的正方体中,在线段上,且,为线段上的动点,则三棱锥的体积为()A.1B.C.D.与点的位置有关【答案】B【解析】由于是定值,点到平面的距离是,因此点平面的距离是.所以三棱锥的体积,应选B.【考点】三棱锥体积的运算.31.如图,在多面体中,底面是边长为2的正方形,四边形是矩形,且平面平面,,和分别是和的中点.(1)求证:平面;(2)求.【答案】(1)证明见解析;(2).【解析】(1)运用线面平行的判定定理求证;(2)借助题设条件及转化化归的思想求解即可. 试题解析:(1)证明:设,连接,在中,因为,,所以,又因为平面,平面,所以平面.(2)因为四边形是正方形,所以,又因为平面平面,平面平面,且平面,所以平面,则到平面的距离为的一半,又因为,所以,所以.【考点】直线与平面的位置关系及棱锥公式的运用.32.如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.(1)证明:平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)设为的中点,连接,依题意有,,故平面.根据分析有,故平面;(2)以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,利用向量法求得余弦值为.试题解析:(1)设为的中点,连接.由题意得:平面,所以.因为,所以,,故平面.由分别为的中点,得且,从而且,所以为平行四边形,故,又因为平面,所以平面.(2)方法一:作,且,连结.由,,得,由,,得与全等.由,得,因此为二面角的平面角.由,,,得,,由余弦定理得.方法二:以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,如图所示,由题意知各点坐标如下:,因此,,,设平面的法向量为,平面的法向量为,由,即,可取.由,即,可取,于是.由题意可知,所求二面角的平面角是钝角,故二面角的平面角的余弦值为.【考点】空间向量与立体几何.33.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,从左往右为半个圆锥,一个圆柱,一个半圆,故体积为.【考点】三视图.34.如图,在四棱柱中,底面,为线段上的任意一点(不包括两点),平面与平面交于.(1)证明:;(2)证明:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)要证线线垂直,一般可证线面垂直,观察题中垂直条件,平面,则有,题中又有,从而有平面,因此结论得证;(2)要证线面平行,就是要证线线平行,直线是平面与平面的交线,因此要得平行,就要有线面平行,而这由可得平面,从而,结论得证.试题解析:(1)证明:因为平面,平面,所以.又,所以平面,而平面,所以.(2)在四棱柱中,,平面,平面,所以平面,又平面,平面与平面交于,所以,因为,所以,而平面,平面,所以平面.【考点】线面垂直的判定与性质,线面平行的判定与性质.【名师】证明线面(面面)平行(垂直)时要注意以下几点:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

巧用等积法解立体几何试题

巧用等积法解立体几何试题

4 2
三 角 换 元 , 出 一 片 天 换
“ 元” 换 的思 想 在 整 个数 学 中都 是 很 重 要 的 , 文 只对 三 角 换 元法 做 必 要 的 探 本 讨 . 三 角换 元 法 多 用于 条 件 不 等 式 的证 明或 一 些 函数 值 的计 算 , 可 用 于解 也 决 一 些 几 何 问题 , 即把 某 些 代 数 问题 或 几 何 问题 转 化 为三 角 问题 , 这就 是代
AAB  ̄AB D都 是 边 长 为2 正 三 D- C 的
J i体积 = 2
c, ÷。 D 所以 : 1

柱 , A = .求 : 高A 2
() 面直线B 1异 D与 A 所 成 的 B。
角形 , 以AC 2 所 =
,D= . 等 腰 B 2在
直 角三 角形 AB HD 中 , 得 B HD= 可 H=
- 辫 E “ 一 多J S U糕 一 ● x霉 鱼 法 h 》 夕 , "
巧用等积法解立体 几何试题
。 福建 厦 f第 一 中 学 ]
吴 享 平
在 立体 几何 中 , 有些 求体 积 问题 可 以通 过等 积 变换 来完 成 , 即将 求一个 几 何 体 的体 积 等 价 转 化 为求另 一 个几何 体 的体 积 ( 的几何 体 的体 积一 定是 好 求 的 )求某 些 点到 到 平面 的距 新 ;
数 问题 或几何 问题 的三 角 解 法 , 面 举例 说 明 . 下
0 云 南 德 宏 师 范高 等 专 科 学 校 数 学 系 管能 碧 0 江 西 宜 黄 县 第 一 中学 孙小 明
当 所 给 条 件 比 较 复 杂 , 一 个 变 量 不 易 用 另 一 个 变 量 表 示 时 。 可 考

等积变形的应用——两道赛题的解法

等积变形的应用——两道赛题的解法

等积变形的应用——两道赛题的解法赛题一:给定一个三角形ABC,给定它的边长a,b,c,要求把它变形成一个等腰直角三角形,且其新的三边为x,x,y。

解题思路:由等积变形定理可知,三角形ABC与新三角形ABC满足:$$\frac{a}{\sin A} = \frac{x}{\sin A'} = \frac{x}{\sin B'} = \frac{y}{\sin C'}$$解出新的三角形边长x,y的差分方程为:$$a\cdot\sin A = x\cdot\sin B = x\cdot\sin C = y\cdot\sinA'$$解得:$$x = \frac{a \cdot \sin A}{\sin B} = \frac{a \cdot \sinA}{\sin C}$$$$y = \frac{a \cdot \sin A}{\sin A'}$$赛题二:给定一个三角形ABC,给定它的边长a,b,c,要求把它变形成一个三角形,且其新的三边为x,y,z。

解题思路:由等积变形定理可知,三角形ABC与新三角形ABC满足:$$\frac{a}{\sin A} = \frac{x}{\sin A'} = \frac{y}{\sin B'} = \frac{z}{\sin C'}$$解出新的三角形边长x,y,z的差分方程为:$$a\cdot\sin A = x\cdot\sin A' = y\cdot\sin B' = z\cdot\sin C'$$解得:$$x = \frac{a \cdot \sin A}{\sin A'}$$$$y = \frac{a \cdot \sin A}{\sin B'}$$$$z = \frac{a \cdot \sin A}{\sin C'}$$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 2 ,得 =2 十 )+2 1

若 以 i, J为基 底 ,则
O cs ・+ if _,…③ C= of i s l , l n ・ 将②代人③得 ,
经检 验 , 时点 Ⅳ在线 段 B 此 C上 . 以 F = . 所 M
O[ c+ c 十・ —c os。 詈 C 。 si s ) =s an ( ]
所成 (I)异 面 直线 B 与 D
题 3 (0 1年 高考 安徽 卷 ・ l ( 1 ) 21 理 7 文 9) 如 图 3 A E C为 多面 体 ,平 面 A E , B DF B D与 平 面
A F 垂 直 ,点 D在 线 段 CD

+  ̄ S sna +sn O i i

( . + . ④
c += ai。+ 。 cc+ c s )sss s ) ( 。o n (
例 5 (0 9 2 0 年高考浙江卷 ・ l)如图, 理 7 在长 方形 A C 中,A BD B=2, B C=1 为 DC的 中点 , , 为线段 E ( C 端点除外)上一动点.现将 A F A D沿 A F折起 , 使平面 A D上平面 A C.在平面 A D内 B B B 过 点 D 作 D 上A , K 为垂足 .设 A K B K=t ,则 f 的 取 值 范围是 .
种 方法 可 以 回避 寻 找 垂足 点 难度 ,省去许多作图和论证过程 ,而将问题
2 1 年第 6期 02
福建中学数 学
4 7
结合 2 1 0 部 分 省 市 高考 立 几 试 题 展示 相 应 解法 1年 ( 下各题 均 只给 出最 后一 小题 的解 法 ) 以 ,供 参考 .
化 得f 1,, . 筒 = l 1 ∈・ I 1 、
巧用等积 法解 高考立体 几何 试题
吴享平 福建省厦 门第一中学 (60 0 3 10 )

在 立体几何中,有些求体积问题可以通过等积 变换 来 完 成 ,即将 一 个几 何体 的体积 等 价 转化 为 另 个 便 于 求体 积 的 几何 体 来解 决 ;求某 些 点到 到 平 面的距离 ,也可 以通过等积法来完成 ;因为采 用这
设D x1 < ) F= (< 2 ,
由 D K + F =D A F =D K A 一 K + +MF , 。
上 , E=E B=A F= ̄F D=4. 沿

得 = 一 f一)+ , 。 1 r+ f 1
直 线 将 翻折 成 E , F 使 平面 上平面 B F . E (I)略 ;
s+= aii+ i cs+ s 垩 n )sns n ) ( 。i n (
=CS s +Sl O . Of i l n i∥CS l
解 因为翻折后,D F的长度没有变化 ,
例 4如图, 在矩形 A C BD 中, E, 点 F分 别在 线段 A A B, D


巧妙地得 以解决 ;求斜线与平面所成角时,若能 求 得 斜 线 上 的某 点 到 斜 足 的 距 离 及 该 点 到 平 面 的 距 离 ,便可快速求出该斜线与这个平面所成的角 . 从近几年 的一些高考立几试题中 ,我们不难 发 现 ,许多立几解答题( 特别是文史类试题 )若能灵活 地运用此方法 ,可将试题简捷讯速得 以解决,下面
福建 中学数学
2 1 年第 6 02 期
又 ≠0, .0 ・ < .

2选定不变量 ,以基本元的变换构造方程
例 3求证:s ( + = i cs + oa i , i a ) s a o ̄ c s f n n s n l CS + = Oaof s 口i O( ) C c l i s . a S s—n n
所 以棱锥 Q— B D 的体积 与棱 锥 P—D Q的体 AC C
积 的 比值 为 1 .
1巧用等积转化求体积 题 1 (0 年 高 考 上 海 21 1 卷 ・文 2 0) 如 图 1, 已 知 AC 4 B D~ D, 底 面 边 长 为 是
1 的正 四棱 柱 ,高 =2.求 :
人民教育 出版社 出版的新课程教材 以单位圆中 角的变换研究三角公式,学 习中要注意体会角的变 换实质上是基本元的变换 . 证 明 如 图 , 以 为 不 变 量 ,将 其 用不 同基 底表示 .若 以 _为基 底 ,则 一 , O C=

c ( + ) +i a f ・…① o ・ s (+ ) s i n 1. ,
i=CS i s t・ ,’ O a・+ i 2 _ n 『
② jO /s + , 'S "i = i ( C + n

( Ⅱ)点 ,Ⅳ分别在线段 F D,B C上 , 若沿 直 线 MN将 四边 形 MN D向 上翻折 , c与 重 合 , C 使 求线段 F 的长 . M 这是 21 0 0年高 考浙 江卷 理科 第 2 0题 ,受 到众 多师生的诟病与批判 .学生感觉条件太少,觉得没 条件可用于解决所问,不知道从哪里下手 .老师认 为新课程侧重于用空 间向量解决立体几何 问题 ,翻 折问题需要考 生 自己画出翻折后的空间图 ,对学生 的空间想象能力要求太高. 分析 对于立体几何 中的翻折问题 ,只需找出翻 折图形前后几何量 的不变性( M = ) C AM ,将其在翻 折前后图形中分别计算. 解 设 F : ,因为翻折后 ,c与 A 重合 ,所 M 以 C =AM ,而 C =D M M M DC ( 一 , + = 6 )+8 AM MO =A0 + + H =f√ 1+ =A0 + ^ O 2 2
相关文档
最新文档