晶体结构几何理论

合集下载

晶体结构基本规则

晶体结构基本规则

0.18
0.23
0.37
0.715 NaCl
0.654 NaCl
0.577 NaCl
NaCl
NaCl
立方ZnS
6
6
4
0.225~0.414,4配位 0.414~0.732,6配位
五、鲍林法则(Pauling`s rules)
1928年,鲍林在总结大量实验数据的基础上, 归纳和推引了关于离子晶格的五条规则。这些 规则在晶体化学中具有重要的指导意义,人们 称这些规则为鲍林法则。
六方最紧密堆积--ABABAB
四面体空隙:Q与位于其下层的三个球;1-2-Q与下层的等大球; 3-4-Q与下层的等大球; 5-6-Q与下层的等大球;共形成4个四面 体空隙。如在第三层上再放一层,则总共是8个四面体空隙。
面心立方最紧密堆积--ABCABC
四面体空隙:Q与位于其下层的三个球;1-6-Q与下层的等大球; 5-4-Q与下层的等大球; 2-3-Q与下层的等大球;共形成4个四面 体空隙。如在第三层上再放一层,则总共是8个四面体空隙。
(2)晶体中组成质点大小不同,反映了离 子半径比值r+/r-不同,因而配位数和晶体结 构也不同。
(3)晶体中组成质点大的极化性能不同,反 映了各离子的极化率不同,则晶体的结构也 不相同。
离子的极化
离子极化------离子晶体中,每个离子都处在周 围离子所形成的电场作用下。在周围电场作用 下,离子的电子云发生变形,这一现象称为离 子极化。
算得到:
a0 = 2r+ + 2r- = 2(0.133) + 2(0.181) = 0.628 nm
a0 = 0.363 nm
极化力是指一个离子对它周围离子所产生的电 场强度,它反映了离子极化其它离子的能力。

第2章 晶体结构

第2章 晶体结构
互为镜象的两个等同部分;国际符号:m 。 对应对称操作:对对称面反映,记为M。
A4
B4
A4′
A1
B1
A1′
A B AB
A3
A2
B2
B3
A3′
A2′
P1
E1
ED P2
ED
P1、P2是对称面,AD不是 24
注意:晶体可以没有对称面, 也可以有一个或几个P,但 最多有9个,有n个对称面记 为nP。
三角形有1P
(2)因为晶体外形为有限、封闭凸多多面体,晶体的 宏观对称性还有以下特点:(1)不存在平移对称性,(2)如 果同时包含几种宏观对称要素,它们必定交于一点。
31
2.1.2.4 晶体的对称型与晶体分类
(1) 对称(类)型(点群)
对称型:一个晶体中全部宏观对称要素的组合。
特点:①它包含了晶体中全部对称要素的总和以及它们
但由于提高了轴次,一般用(L3+P)代替它。
27
Li1=C
Li2=P
Li3= L3+C
Li4(独立)
Li6=L3+P
对称反轴示意图
28
四次对称反轴 L4i
L4i
A
B
C
D
29
六次对称反轴
L6i
L 6i
三方柱
30
小结: (1)晶体宏观对称性只包含8种独立对称要素:
L1、L2、L3、L4、L6 、P、C、 Li4
33
32个点群的意义在于不管晶体形状如何多 样复杂,但它的宏观对称性必属于32个点群中 的某一个,绝不会找不到它的对称类型。 32个 点群是研究晶体宏观对称性的依据,也是晶体 宏观对称性可靠性的系统总结。

晶体结构——精选推荐

晶体结构——精选推荐

第七章晶体结构第一节晶体的点阵结构一、晶体及其特性晶体是原子(离子、分子)或基团(分子片段)在空间按一定规律周期性重复地排列构成的固体物质。

晶体中原子或基团的排列具有三维空间的周期性,这是晶体结构的最基本的特征,它使晶体具有下列共同的性质:(1)自发的形成多面体外形晶体在生长过程中自发的形成晶面,晶面相交成为晶棱,晶棱会聚成顶点,从而出现具有几何多面体外形的特点。

晶体在理想环境中应长成凸多面体。

其晶面数(F)、晶棱数(E)、顶点数(V)相互之间的关系符合公式:F+V=E+2 八面体有8个面,12条棱,6个顶点,并且在晶体形成过程中,各晶面生长的速度是不同的,这对晶体的多面体外形有很大影响:生长速度快的晶面在晶体生长的时候,相对变小,甚至消失,生长速度小的晶面在晶体生长过程中相对增大。

这就是布拉维法则。

(2)均匀性:晶体中原子周期性的排布,由于周期极小,故一块晶体各部分的宏观性质完全相同。

如密度、化学组成等。

(3)各向异性:由于晶体内部三维的结构基元在不同方向上原子、分子的排列与取向不同,故晶体在不同方向的性质各不相同。

如石墨晶体在与它的层状结构中各层相平行方向上的电导率约为与各层相垂直方向上电导率的410倍。

(4)晶体有明显确定的熔点二、晶体的同素异构由于形成环境不同,同一种原子或基团形成的晶体,可能存在不同的晶体结构,这种现象称为晶体的同素异构。

如:金刚石、石墨和C60是碳的同素异形体。

三、晶体的点阵结构理论1、基本概念(1)点阵:伸展的聚乙烯分子具有一维周期性,重复单位为2个C原子,4个H 原子。

如果我们不管其重复单位的内容,将它抽象成几何学上的点,那么这些点在空间的排布就能表示晶体结构中原子的排布规律。

这些没有大小、没有质量、不可分辨的点在空间排布形成的图形称为点阵。

构成点阵的点称为点阵点。

点阵点所代表的重复单位的具体内容称为结构基元。

用点阵来研究晶体的几何结构的理论称为点阵理论。

(2)直线点阵:根据晶体结构的周期性,将沿着晶棱方向周期的重复排列的结构单元,抽象出一组分布在同一直线上等距离的点列,称直线点阵。

晶体结构特征、理论及类型

晶体结构特征、理论及类型
Cs :1个
晶胞中离子的个数: Cl- :811个 8 晶体结构特征、理论及类型
ZnS型(立方型)
晶格: 面心立方
配位比: 4:4
(红球-Zn2+ ,
绿球-S2-)
晶胞中离子的个数: Zn2+ :4个
S2- :61814个
2 晶体结构特征、理论及类型
8
半径比(r+/r-)规则: 其中一层横截面:
晶体结构特征、理论及类型
2.球的密堆积
(1)六方密堆积:(hexagonal closest packing, hcp)
同层每个 球周围有六个 球,第三层与 第一层对齐, 形成ABAB… 排列方式。
配位数:12
晶体结构特征、理论及类型
(2)面心立方密堆积:(cubic closest packing,ccp)
(2) 晶胞的内容:粒子的种类,数目及它在晶 胞中的相对位置。
按晶胞参数的差异将晶体分成七种晶系。
晶系
边长
夹角
晶体实例
立方晶系
三方晶系 四方晶系 六方晶系 正交晶系
单斜晶系 三斜晶系
a=b=c
a=b=c a = b≠c a = b≠c a≠b≠c a≠b≠c a≠b≠c
α=β=γ= 900
α=β=γ≠900 α=β=γ= 900 α=β= 900, γ= 1200 α=β=γ= 900
△ rHm78k6Jmo-1l U 78k6Jmo-1l
晶体结构特征、理论及类型
影响晶格能的因素: ① 离子的电荷(晶体类型相同时)
Z↑,U↑ 例:U(NaCl)<U(MgO) ② 离子的半径(晶体类型相同时)
R↑,U↓ 例:U(MgO)>U(CaO)

《晶体结构分析》实验

《晶体结构分析》实验

实验一、晶体结构分析一一、实验目的掌握14种空间格子的几何特征与球体密堆积理论,了解配位多面体的配置。

二、实验仪器十四种空间点阵结构模型,球形模型三、实验内容1.了解14种空间格子的几何形态,分析空间格子类型;2.熟悉密堆积理论,注意观察球体堆积时,周围空隙的类型、位置与数量情况;3.了解几种配位多面体的配置情况。

四、实验方法1.观察14种空间格子模型表征14种空间格子,用晶格常数α、β、γ和a、b、c;并判断其所属晶系。

2.观察球体密堆积模型用球体模型进行面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积,分析球体周围空隙的类型、数目和位置分布。

观察分析面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积的单位晶胞,注意其四、八面体空隙分布,判断其数量。

3.观察配位多面体模型模型五、实验报告1.绘制14种空间格子的几何形态,并用注明晶格常数的形式表示出所有14种空间格子;2.分析三种常见的球体堆积情况,绘制出其单位晶胞,画出其(111)、(110)(100)晶面原子排布图[ 密排六方需画出(0001)晶面 ];3.分析体心立方与面心立方单位晶胞中四、八面体空隙的位置分布与数量,并绘图;4.对不同配位多面体绘图,讨论其临界半径比。

(注:在预习报告中要将14种空间格子的几何图形画好)六、思考题面心立方结构中四面体空隙的数目有几个?他们都是如何分布的?八面体空隙有几个?如何分布?实验二、典型晶体结构分析一、实验目的掌握几种典型矿物的结构,了解晶胞的几何特征。

二、实验仪器晶体结构模型,球和短棒三、实验内容1.对照实际具体结构模型,熟悉金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石的晶体结构特征;2.观察层状和架状硅酸盐矿物的晶体结构模型的特点,注意观察高岭土、方石英的结构;3.标定萤石模型中所有质点的几何位置;4.组装一个晶体结构模型。

四、实验方法1.分析晶胞模型金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石均为一个单位晶胞,通过一个单位晶胞,分析晶胞所属空间格子类型及正负离子或原子所处的空间位置,对照模型,分析正负离子的配位数。

04-05 晶体几何学基础概述

04-05  晶体几何学基础概述

晶体结构
萤石结构( CaF2 )
氯化钠结构(NaCl)
晶体结构
辉钼矿的化学成分:
MoS2,Mo 59.94%,S 40.06%;
辉钼矿的特征:
铅灰色,金属光泽, 硬度低,底面解理极 完全,比重大,光泽 强。
晶体结构
石墨的晶体结构
C60的晶体结构
金刚石的晶体结构
晶体结构X衍射图谱
石墨
金刚石
C60
b c c a * * a b (b c )(c a ) (c c )(b a ) V V cos * = * * = = abc2 sin a sin b | a b | bc sin a ca sin b V V cosa cos b cos = 同样可求 得α *, β *。 sin a sin b
a=bc, a=b==90
简单三角
四方 六角 立方
简单四方 体心四方
a=b, 六角 b==90, a=120 a=b=c, a=b==90 简单立方,体心立方 面心立方
七大晶系所要求最低的对称性
晶系 三斜 最低特征对称素 无对称素 晶胞形状 任意的平行六面体
单斜 正交 三角 四方 六角 立方
a = = d(200) 2 2 2 2 2 0 0
\ (200)
(110)
a
intersects with
a d(110) = 2 2 2 = 2 1 1 0
\ (110)
晶面间距
晶面间距(d)公式:
立方晶系:
1 d hkl
2
h k l = 2 a
2 2
2
h k l 四方晶系: = 2 2 2 a c d hkl 2 2 2 1 h k l 正交晶系: = 2 2 2 2 b c d hkl 1

晶体化学

晶体化学

绪论结晶化学的研究对象结晶化学的研究对象是晶体的化学组成与其内部结构的关系,晶体结构与晶体性质的关系。

晶体的性质,是由晶体的结构所决定的,晶体具有怎样的结构,就会表现出怎样的性质。

结构发生了变化,性质也就随之而变。

根据晶体所表现的性质,就可推求或测定晶体的内部结构。

知道了晶体结构就能解释晶体为什么具有这种性质而不具有另一种性质;知道了晶体结构,就能推测该晶体应该还具有些什么性质是人们尚未知道的。

但是,晶体的结构,又紧密地与晶体的化学组成相联系着,在化学上,人们遇到的物质非常繁多,因此所遇到的晶体结构情况也就非常复杂。

甚至还有多晶型现象,即一种物质在不同的物理化学条件下,具有不同的晶体结构,这样,在研究晶体结构,即研究原子、分子等微粒在空间如何排列及真相互作用时,就必然与物质的化学组成密切有关。

学习结晶化学的意义结晶化学对于生产实践及科学研究活动有些什么意义呢?现在简略他说明如下。

在生产实践中,涉及结晶化学的问题很多。

例如新的科学技术的发展,要求人工培养出大粒的单晶体,作为超声波发生器的基本元件。

培养单晶体,是一门综合性的技术,必须具有结晶化学的知识。

半导体的性能、催化剂的性能,皆与晶体结构密切有关。

晶体结构中杂质原子的存在及晶格的某些缺陷,对半导体的导电性能有着极大的影响。

催化剂中晶粒的大小,晶格的类型,微粒间的键型等也都会大大地影响催化效果。

工业上,金属材料的强度直接与晶体结构内部的缺陷有关。

要试制特殊性能的合金,也必须以一定的结晶化学知识作为基础。

结晶化学的发展,与生产实践及其他科学如矿物学、物理学金属学等分不开。

结晶化学对于其他科学部门的发展,也起了促进作用。

例如矿物学的发展,促进了结晶学、结晶化学的发展。

而结晶化学又使矿物学不再停留在矿物晶体的外形研究上,而深入到矿物的内部结构里去,使矿物的组成、结构和性质三者更好地统一起来。

结晶化学的知识对于研究地球构造及其发展历史,提供了很多根本的数据资料,发展成了一门新兴的科学——地球化学。

晶体结构与晶体化学晶体几何学理论基础

晶体结构与晶体化学晶体几何学理论基础

1.1.2 空间点阵
在图3.1的单位平移中,有两个最短的矢量,如图3.2所示。原点的选择是任意 的,任何图案的平移对称都可从图形的一点开始描述。如将图案抽象成一个点, 通过上述的一套平移对称操作即可得到一套平面上点的集合,称为网格或二维 点阵(图3.3)。在空间三维情况下,称作空间格子或空间点阵,点阵中的每个 点称为结点或点阵点。
晶体几何学理论基础
对称性是一种规律的重复,具有变化中的不变性,是自 然科学中一个重要的基本概念。晶体就是指原子或分子 在空间按一定规律重复排列构成的固体物质。晶体结构 的基本特征是其中的质点在三维空间作规律的重复排列。 晶体结构研究的就是揭示晶体内部原子和分子在空间排 列上的对称规律,这种规律只有在晶体结构中每个原子 在空间相对位置揭示出来时才能得到完整证明。
基本图案可以先旋转后反伸,也可以先反伸后旋转。其中1相当于i(反伸中心), 2相当于m)(对称面),3相当于3次轴加反伸中心,6相当于3次轴加对称面, 因此只有4是具有多利意义的旋转反伸轴。
2.点群 2.1 点对称要素 晶体外形上可能出现的对称要素称为点对称要素,包括对称中心、对称面、旋转轴 及旋转反伸轴。这些对称要素的特点是在进行对称操作过程中至少有一点是不动的。 二维空间的对称要素有:旋转点,2、3、4、6次轴;反映线,m。 三维空间的对称要素:旋转轴,2、3、4、6次轴;反伸(对称)中心,i;镜(对称) 面,m;旋转倒反轴,1、2、3、4、6。
1、对称操作 晶体学中的对称图形是通过对称操作来表征的。 对称操作 周期平移对称操作(晶体中) 有公度的
无公度的 准周期平移对称操作(准晶体中) 严格自相似准周期
点对称操作
旋转 反映 反伸
统计自相似准周期
1.1 平移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档