第三章 应变测量技术
应变测试技术

圆环 平均直径。
A或B处的应变:
54Fd 100bh2E
力作用点相对挠度:y 18Fd3 1000EJ
式中,J—惯性矩。 最低自振频率:
f
0
10.72 2πd 2
EJ
A
式中,A—圆环截面积。
应变片电测技术具有以下优点: ①非线性小,电阻的变化同应变成线性关系。 ②应变片尺寸小(我国的应变片栅长最小达
0.178mm),重量轻(一般为0.1~0.2g),惯 性 小,频率响应好,可测0-500kHz的动态应 变。 ③测量范围广,一般测量范围为10~10-10量级的 应变。 ④误差小,整个测量系统的误差可控制在1%以内。 ⑤可在各种复杂或恶劣的环境中进行测量。
悬臂梁为具有一个固定端,另一端处于自由状 态的弹性元件 。
等截面梁
悬臂梁 等强度梁
(1)等截面梁
图8-2 等截面梁
作用力F与梁上某一位置处的应变关系可用下式表
示:
x
6F(l x) Ebh2
式中,εx—距支点x处的应变值; l—梁的长度;
x—梁上某一位置距支点的距离;
E—梁材料的弹性模量;
b—梁的宽度;
Sn ↑→K ↓→fn↓ fn ↑→K ↑→Sn↓
弹性敏感元件材料选择:
弹性敏感元件在传感器中直接参与变换和测量, 要求弹性元件的材料需保证具有良好的弹性特性, 足够的精度及稳定性,在长期使用中温度稳定性要 好。
基本要求有: 1)弹性滞后要小; 2)弹性模量的温度系数要小; 3)线膨胀系数要小且稳定; 4)弹性极限和强度极限要高; 5)具有良好的稳定性和耐腐蚀性; 6)具有良好的机械加工和热处理性能。
当α=0时,力F在轴向产生的应力和应变为
F A
应变测试原理

应力应变测试原理电阻应变测量方法是将应变转换成电信号进行测量的方法,简称电测法。
电测法的基本原理是:将电阻应变片(简称应变片)粘贴在被测构件的表面,当构件发生变形时,应变片随着构件一起变形,应变片的电阻值将发生相应的变化,通过电阻应变测量仪器(简称电阻应变仪),可测量出应变片中电阻值的变化,并换算成应变值,或输出与应变成正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应变或应力值。
其工作过程如下所示:应变——电阻变化——电压(或电流)变化——放大——记录——数据处理电测法具有灵敏度高的特点,应变片重量轻、体积小且可在高(低)温、高压等特殊环境下使用,测量过程中的输出量为电信号,便于实现自动化和数字化,并能进行远距离测量及无线遥测。
(R=ρL/A)在使用应变片测量应变时,必须用适当的办法测量其电阻值的微小变化。
为此,一般是把应变片接入某种电路,让其电阻值的变化对电路进行某种控制,使电路输出一个能模拟该电阻值变化的信号,然后,只要对这个电信号进行相应的处理就行了。
常规电测法使用的电阻应变仪的输入回路叫做应变电桥,它是以应变片作为其部分或全部桥臂的四臂电桥。
它能把应变片电阻值的微小变化转化成输出电压的变化。
在此,仅以直流电压电桥为例加以说明。
一、电桥的输出电压电阻应变仪中的电桥线路如图A -4所示,它是以应变片或电阻元件作为电桥桥臂。
可取1R 为应变片、1R 和2R 为应变片或1R ~4R 均为应变片等几种形式。
A 、C 和B 、D 分别为电桥的输入端和输出端。
根据电工学原理,可导出当输入端加有电压I U 时,电桥的输出电压为()()I43214231O U R R R R R R R R U ++-=当0O =U 时,电桥处于平衡状态。
因此,电桥的平衡条件为4231R R R R =。
当处于平衡的电桥中各桥臂的电阻值分别有1R ∆、2R ∆、3R ∆和4R ∆的变化时,可近似地求得电桥的输出电压为⎪⎪⎭⎫ ⎝⎛∆-∆+∆-∆≈44332211I O 4R R R R R R R R U U 由此可见,应变电桥有一个重要的性质:应变电桥的输出电压与相邻两桥臂的电阻变化率之差、相对两桥臂电阻变化率之和成正比。
第3-3章 应力应变测量(电阻应变测量技术)

温度自补偿应变片法:通过对应变片的敏感栅材料和制造 工艺上采取措施,使其在一定温度范围内的ΔRt=0,该
方法常用于中、高温下的应变测量;
桥路补偿法:用于常温下。是通过布片和桥接的方法消除 温度影响。
3)桥路补偿法:
补偿块补偿法 工作片补偿法
Sichuan University
5
§3-3应变(应力)测量
二、 温度补偿
3)桥路补偿法:
补偿块补偿法:图a构件上的工作片和补偿块上的补偿片,接成板桥(图C), 桥臂R1为工作片,桥臂R2为温度补偿应变片,阻值R1=R2,k也相同,粘贴工艺 也相同,处于相同温度场中,但补偿块不受力,故温度变化导致R1和R2的阻值 变化相同,根据电桥(相减)特性,电桥不会因温度变化而输出。故可消除温度 影响。
贴在主应力方向,而补偿片R3、R4贴在不受力的补偿块上,分别测出σ1、σ2方向 的应变ε1、ε2,可用下式计算
E 1 2 1 2 1 E 2 2 1 2 1
Sichuan University
σ2 ε2
ε1
ε3 ε4
Sichuan University
12
§3-3应变(应力)测量
3. 主应力方向未知的平面应力测量
从而求出主应力及其方向
E ( x y ) x 2 1 E ( y x ) y 2 1 E xy xy 2(1 )
臂,电桥测试精度提高了一倍。在两贴片位置的应变关系已知时,
可采用此法。
仪=1 2 3 4
当单纯补偿片所用的补偿板和待测材 料不同时, 产生的虚假应变值εf为多大?
应变测量原理

应变测量原理
应变测量原理是测量物体在受力作用下产生的形变或变形的方法之一。
它是通过测量物体的应变来获得受力大小的一种手段。
应变是物体在受到外力作用后发生的长度、形状、体积等尺寸的变化。
不同的材料在受到外力作用后,会产生不同的应变形式。
一般来说,应变可以分为线性应变和剪切应变两种形式。
在应变测量中,常用的原理包括电阻应变原理、光学应变原理、声学应变原理和电容应变原理等。
电阻应变原理是利用材料受到外力作用后其电阻值发生变化的特性进行测量的方法。
这种方法利用了材料的电阻与其长度、截面积等参数之间的关系,通过测量电阻的变化来推算出应变的大小。
光学应变原理是利用材料在受力作用下产生的光学参数变化来测量应变的方法。
通过将光线传递到受力物体上,再将光线传递到光电探测器上,测量光线的强度变化,从而推算出应变的大小。
声学应变原理是利用材料在受力作用下产生的声波传播速度变化来测量应变的方法。
这种方法是通过测量声波在材料中传播的时间来间接推算出应变的大小。
电容应变原理是利用材料受到外力作用后其电容值发生变化的特性进行测量的方法。
这种方法利用了材料的电容与其长度、
截面积等参数之间的关系,通过测量电容的变化来推算出应变的大小。
以上所述的原理只是应变测量中的几种常见方法,实际上还有许多其他原理和方法可以用于测量应变。
不同的应变测量方法适用于不同的应变范围、精度要求和环境条件等因素。
在实际应用中,选择合适的应变测量原理及方法是十分重要的。
应变测试技术

目录第1章应变测试概况 (1)第2章应变测试的原理 (2)2.1 应力与应变的关系 (2)2.2 电阻应变片的构造 (8)2.3 应变片的工作原理 (9)第3章主要设备及配套器材 (10)3.1 电阻应变片 (10)3.2 电阻应变仪 (16)3.3 应变测试系统 (16)第4章应变测试的工艺要点 (17)4.1 应变片的选型 (17)4.2 选择粘贴应变片用胶黏剂 (18)4.3 应变片的粘贴 (19)第5章应变测试的应用 (21)5.1 运动构件的应变测量 (21)5.2 高(低)温条件下应变测量 (25)第6章应变测试方法的特点及适用范围 (27)参考文献 (29)第1章应变测试概况应变测试是当各种机械或者结构物有外力作用时,通过它来获得各部分发生的应变大小、应力状态和最大应力所在位置和大小,以此判断各部件的尺寸、形状和使用的材料是否合适,从而达到安全、价廉和经济的设计。
另外,应变测试可以估计断裂负荷,并能进行断裂预测而不需要损坏部件材料,因此它是无损检测的一个重要领域。
电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。
该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。
电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。
这是一种将机械应变量转换成电量的方法,其转换过程如图1-1所示。
测量电路的输出信号经放大、模数转换后可直接传输给计算机进行数据处理。
图1-1 用电阻应变片测量应变的第2章应变测试的原理2.1 应力与应变的关系2.1.1 应力的种类应力是在施加的外力的影响下物体内部产生的力。
第三章 应力应变的量测理论与技术

(1)电阻值(Ω) 由于应变仪的电阻值一般按120Ω设计,所以应变片的电阻
值一般也是120 Ω。
第三节 电阻应变片
(2)标距l 用应变片测得的应变值是整个标距范围内的平均应变,
测量时应根据试件测点的应变梯度的大小来选择应变片的 标距。
(3)灵敏系数K K表示单位应变引起应变片的电阻变化。应使应变片的
第二节 测试仪器
6、稳定性:指测量值不变,仪器在规定时间内保持示值与 特性参数也不变的能力。
7、重复性:在同一工作条件下,用同一台仪器对同一观测 对象进行多次重复测量,其测量结果保持一致的能力。
8、频率响应:动测仪器仪表输出信号的幅值和相位随输入 信号的频率而变化的特性,常用幅频和相频特性曲线来表 示。
振弦式应变计是以被拉紧的钢弦作为转换元振弦式应变计是以被拉紧的钢弦作为转换元件钢弦的长度确定以后其振动频率仅与拉力有件钢弦的长度确定以后其振动频率仅与拉力有振弦式应变计的测量仪器是频率计由于测振弦式应变计的测量仪器是频率计由于测量的信号是电流信号所以频率的测量不受长距量的信号是电流信号所以频率的测量不受长距离导线的影响而且抗干扰能力较强对测试环离导线的影响而且抗干扰能力较强对测试环境要求较低因此特别适用于长期检测和现场测境要求较低因此特别适用于长期检测和现场测缺点是这类应变计较复杂温度变化对测量缺点是这类应变计较复杂温度变化对测量结果有一定的影响
(7)可制成各种高精度传感器,测量力、位移、加速度等物理 量。
第一节:基本原理
缺点:
(1)只能测量构件表面的应变,而不能测构件内部的应变。 (2)一个应变片只能测定构件表面一个点沿某一个方向的应变,
不能进行全域性的测量。
(3)只能测得电阻应变片栅长度内的平均应变值,因此对应变 梯度大的应变场无法进行测量 。
第3-1章 电阻应变片(电阻应变测量技术)

L=150mm,室温、单向受力状态, 应变片丝栅方向与最大主应变方 向一致,采用砝码在梁一端施加
梁高 h=5mm
作 用 力 P=0.1KN , 测 得 挠 度 为
P
1.5mm,实测量得电阻由120Ω
变为120.12Ω,求得应变片的实 梁长
际灵敏度K。
L=150mm
Sichuan University
25
§3-1 电阻应变片
4 应变片的参数和工作特性
(7)应变极限:应变片最大应变测量值。
一般规定:应变片显示的值与机械应变的相对误差达到 规定标准(一般10%)时的机械应变即为应变极限。此时, 认为应变片失去了工作能力。
(8)绝缘电阻:敏感栅及引线与被测试件之间的
电阻值。
应变片粘结层固化程度和是否受潮的标志。一般 >2M 欧,高精度测试>50M欧。
Sichuan University
29
§3-1 电阻应变片
5 应变片的选用与应变片粘结工艺
(2)应变片粘结工艺:
1 应变片检查:外观检查、电阻值检查 2 表面处理:刮刀除锈、砂布打磨、脱脂棉擦洗、吹风 机烘干 3 贴片与固化:画线、涂胶、用玻璃纸压、调整、补胶 4 粘贴质量检查:外观检查、电阻值检查、绝缘电阻检 查、连接电阻应变仪检查 5 连接导线:导线固定、导线焊接 6 防潮处理:凡士林、石蜡等
15
§3-1 电阻应变片
3 分类
(3)应变花: 在一个基底上有几个按一定角度排列的
敏感栅的应变片。
测量主应力方向未知条件下平面应力状态。 自补偿应变片:用于高低温和温差大的条件
Sichuan University
16
§3-1 电阻应变片
4 应变片的参数和工作特性
应变测量的基本原理是

应变测量的基本原理是
应变测量的基本原理是通过测量物体在受力作用下的形变来确定应变的大小。
具体原理如下:
1. 应变传感器:使用应变导线或应变计作为传感器,将其固定在物体表面或内部。
当物体受到力的作用时,物体会发生形变,导致应变传感器发生应变。
2. 应变测量方法:通过连接应变传感器和测量设备,如电桥或应变仪等,来测量应变传感器上的电阻、电压或电流的变化。
这些变化与物体受到的力的大小成正比。
3. 工作原理:应变测量设备根据应变传感器上的信号变化来计算物体受到的应变。
应变传感器的电阻、电压或电流的变化被转换为与受力物体的应变直接相关的物理量。
4. 数据处理:测量设备将测得的应变数据转化为应变应力,然后通过计算或转换,得到实际受力物体的应变量。
这些数据可以通过图表、曲线或数字表示,以便更好地理解物体受力的情况。
总结起来,应变测量的基本原理是根据应变传感器上的信号变化来测量物体受到的应变,通过连接测量设备和数据处理来确定应变的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章电测法电测法的应用特别广泛,涉及到许多领域。
在实验应力分析、断裂力学、静、动态试验、宇航工程中都有广泛的用途。
在桥梁结构试验中最常用的是电阻应变测试技术。
1938年,由E.Similton和A.Ruge等人首次制造出了丝绕式电阻应变片,57年出现了半导体应变片,至今各种规格的应变片已有二万多种。
1856年,W.Thomson在铺设海底电缆时发现了电缆随海水深度不同而变化,通过近一步对铁丝和铜丝近行拉伸试验,得到了三个结论:1.铜丝和铁丝的应变与其电阻的变化成涵数关系;2.铜丝和铁丝的应变对其电阻的变化有不同的灵敏度;3.铜丝和铁丝由于应变而产生的电阻变化可用惠斯通电桥测量。
这些结论是现代电测法的理论基础,他指出了应变可以转换成电阻的变化,从而使用电学方法测量应变成为可能。
电测法的优点:1.精度高,1%;2.分辨率高,可测出10-6,即1με,对钢只有0.2MPa的应力;(分辨率:可检测出的被测量的最小值。
灵敏度:输出量的变化值与相应被测量的变化值之比)。
3.测量范围广,可达23%;4.尺寸小(最小的0.2mm),可满足应力梯度较大的应变测量;尺寸小另一个重要意义在于当前某些工程结构(如船体、桥梁、飞机、桁架等)进行全面的应力分析时,往往要测量数十点甚至数百点的应力,电阻片很容易大量粘贴使用。
对于结构十分紧凑以至其他测量仪表(如杠杆引伸仪)根本无法安装的情况下,电测法就能发挥很大的作用,可以用来测量局部应力。
5. 质量小,便于安装,不会干绕构件的应力状态;这是一个突出的优点。
它使得电测不仅可以作静态应力的测量,而且可以在动态应力分析方面发挥独特作用。
对一系列重要的动力学参数(如加速度、振幅、频率等)能够比较精确地进行实验研究。
6.频率响应好,响应时间约为10-7s;在高频动应变(冲击力及爆炸压力等)测量中具有很好的动态响应。
7.可以在高温(800~1000℃)、低温(-100~-70℃)、高压(上万个大气压)、高速旋转(几千转/min~几万转/min)、核幅射等特殊条件下成功的使用;8.输出电信号,易于实现测量数字化和自动化,即适合于现场测量,也可以进行遥测,还可以制成各种传感器,可以作力,液压,位移,转角,速度及加速度等参量的测量,是一种使用方便、适用性强、比较完备的测试手段。
缺点是:1.只能测结构物表面应变;2.现场测量受环境温度和湿度影响大;3.对应力集中的测量不够精确。
主要缺点是:粘贴工作量大;粘贴好的应变片较为脆弱,野外防潮、防损伤难度大;由于每次使用前需平衡、归零,无法长期观测,一般仅用于短期测试,无法应用于施工监控中;重复使用困难。
第一节电阻应变片1. 构造(图 3.1)绕线式应变片主要由敏感元件、基底、覆盖层和引出线等几部分组成。
(1)敏感丝栅是应变片的主要元件,一般由康酮、镍铬合金制成;对材料性能要求:电阻率高、灵敏系数大、线性范围大、电阻温度系数小、易于加工成丝。
-2△R /R 10 )ε (%)C u-N iPtF eN i-C u-M nN i(20%)-C u(80%)N iC u 3.02.52.01.51.00.55.03.04.02.01.0(2)基底和覆盖层一般有纸质和胶质;对材料性能要求:基底和覆盖层起定位和保护应变片几何形状的作用,也起到与被测试试件之间电绝缘作用,因此要求厚度小而机械强度高、绝缘性能好、热稳定性能好、耐腐蚀、抗潮湿、无滞后和儒变现象、稍透明等。
2. 工作原理金属应变片的工作原理在于导体的“电阻应变效应”。
所谓电阻应变效应是指导体或半导体在机械变形(伸长或缩短)时,其电阻随其变形而发生变化的物理现象。
AL R ρ= AdA LdL d RdR -+=ρρLdL DdD AdA μ22-==(dD/D:横向应变;DL/L:纵向应变;μ:泊桑比)ρρμμρρd LdL LdL LdL d RdR ++=++=)21(2LdL K LdL LdLd RdR 0))21((=++=ρρμ此式表明,导体(如金属丝)的电阻应变效应由两方面原因造成,一是由(1±2μ)表达的几何尺寸的改变;一是电阻率也随应变发生变化。
这就从机理上对电阻应变效应作了一定的说明。
可惜,电阻率ρ到底依什么规律随应变变化,至今尚无圆满的解释。
不过,实践表明,0K 值与合金的成分、含杂质情况、加工成丝的工艺以及热处理过程等有很大关系,故各种材料的灵敏系数均由实验测定。
3.灵敏系数的标定用应变片进行应变测量时,对应变片中金属丝需加一定的电压,为了防止电流过大,产生发热及熔断等现象,要求金属丝有一定的长度,以获得较大的初始电阻值;但测量构件应变时,又要求尽可能缩短应变片的长度,以接近一点的真实应变;因此,在应变片中的金属丝一般做成图3.1所示的栅状(称为敏感栅)。
固定在构件上的应变片,其敏感栅的电阻变化不仅与敏感栅轴线方向的构件应变有关,而且与敏感栅弯头圆弧方向的构件应变有关,因此应变片的灵敏系数与上节由一段直的金属丝在拉伸(或缩短)状态下所得灵敏系数不相同,他与被测构件的应变状态有关。
为了有一个统一标准,应变片的灵敏系数定义为;当将应变片安装在处于单向应力状态的试件表面,使其轴线与应力方向平行时,应变片电阻值的相对变化与沿轴线的应变之比值,即xRR K ε∆=应变片的灵敏系数一般由制造厂实验测定,称为应变片的标定。
灵敏系数的测定必需在符合上述定义的实验装置上进行,通常采用等弯矩梁与等强度梁两种测定方法,这两种测定方法的基本原理相同,图3.2为一个等弯矩梁实验装置,将被测定正值的应变片安装在梁的等弯矩区域内,并使其轴线与梁的轴线方向重合,当梁受载后,在等弯矩区域内,梁的上下表面是一个单向等应力场(但应变是双向的)。
可采用杠杆仪或挠度计以及理论计算方法确定梁的轴向应变,同时设法测定在该载荷下,此应变片的电阻值的相对变化,按照式3.8计算,即可求得应变片的灵敏系数。
在图3.2中,沿梁轴线方向安装了一个三点挠度计,当梁受载变形后,挠度计上千分表的读数与梁的轴向应变有如下关系: 2lfh =ε4 应变片的种类很多,至今各种规格的应变片已有二万多种。
根据不同的方法,有如下的分类。
1) 材料⎩⎨⎧半导体金属金属丝式应变片最常用的形式为丝绕式,又称为圆角线栅式。
它的制造设备和技术都较简便,但横向灵敏度较箔式应变片为大(横向灵敏度会给测量带来一定的误差)。
丝式应变片常用的金属材料是康酮、镍铬合金、铁镍铬合金和铂铱金等。
半导体应变片的优点是灵敏度高、频率响应好、可以做成小型和超小型应变片。
半导体应变片的出现为应变电测技术的发展开创了新的途径。
它的缺点是温度系数大,稳定性不及金属应变片等。
2) 制做工艺⎩⎨⎧箔式丝绕式丝绕式:价格低,但耐湿性差;箔式应变片是把康酮、镍铬等合金制成0.003~0.001的箔材,经一定热处理后,涂刷一层树脂(环氧、聚脂等),经聚合处理后形成基底,然后用由照相、光刻技术腐蚀成丝得到敏感栅,焊上引线,再涂一层保护层。
它在性能上的优点是:a.尺寸精确:随着光刻技术的发展,箔式片能保证尺寸准确、线条均匀,故灵敏系数分散性小,尤其突出的是能制成栅长很小(如0.2mm)或敏感栅图案特殊的应变片,易做成任意形状;b.散热性好,附着力大:箔式片栅丝截面为矩形,故栅丝周表面积大,因而散热性好。
同时附着力增大,有利于变形传递,因而增加了测量的准确性;c.横向效应很小:箔式片敏感栅横向部分的线条宽度比纵向部分的大得多,因而单位长度的电阻也小得多,使箔式片横向效应很小;逸散功率大,允许较大电流,d.绝缘性好,蠕变和机械滞后小,耐湿性好,因为箔式片均为胶基;e.生产率高,便于成批生产。
缺点是:工艺复杂,成本高3)使用温场:低温应变片(工作温度低于-30℃)常温应变片(工作温度低于-3~60℃)中温应变片(工作温度低于60~350℃)高温应变片(工作温度高于350℃)4)敏感栅形状: 单轴应变片应变花应变花:在两向应力状态时,需要测出一点的两个或三个方向的应变,才可求出此测点的主应力的大小和方向。
这就要使用粘贴在一个公共基底上,按一定方向布置的2-4个敏感栅组成的电阻应变片。
这种应变片叫做电阻应变花、应变花或多轴应变片。
对于箔式应变片组成的应变花,因其横向效应系数极小,故不考虑修正问题。
对于由半圆头丝绕式应变片组成的应变花,如果对测试结构要求不很严格的话,也不必考虑修正。
此外,按敏感栅的长度分,有大标距应变片和小标距应变片。
还有各种特殊用途的应变片如防磁应变片、防水应变片、埋人式应变片、层式应变片、可拆式应变片、疲劳寿命片、测压片、无基底式应变片、大应变片、裂缝探测片、温度自补偿应变片等。
5. 应变片的工作特性应变片的性能好坏直接影响应变测量的精确度,因此,应对应变片的性能(特称为工作特性)提出种种要求。
常温应变片的工作特性用以下八项标准:1)应变片电阻指应变片没有安装、也不受外力的情况下,于室温下测定的电阻值。
我国应变片名义阻值一般取120Ω,制造厂对应变片应逐个测量,并按阻值分装成包,注明每包中应变片的平均阻值(平均名义电阻值)及单个阻值与平均名义电阻值的最大偏差值。
A、B、C三级平均名义电阻值偏差分别为0.2%、0.4%、0.8%。
2)灵敏系数应变片安装在单向应办状态的试件表面上,且其轴线与应力方向重合。
在单向应力作用下,应变片电阻的相对变化与沿其轴向的应变之比值称为灵敏系数。
它经抽样标定,制造厂于包装上注明其平均名义值和标准误差。
它是使用应变片时的重要数据。
A、B、C三级标准误差一般分别为1%、2%、3%。
3)机械滞后在温度不变的情况下;对安装有应变片的试件加载和卸载,当试件到达同一应变水平时,来比较应变片在相应过程中的两个指示应变,它们的差值,取在各种应变水平下的最大者,作为这批应变片的机械滞后量,A、B、C三级分别为5、10、20με。
指示应变,是指应变片的电阻变化率除以其灵敏系数所得的商。
指示应变也可用经过校准的静态应变仪测得。
机械滞后现象总是存在,但经多次加卸载之后便趋于稳定。
因此,在使用应变片正式测量前,最好预先加载几次,以减小机械滞后的影响。
4)蠕变在温度不变的情况下,使安装有应变片的试件表面产生某恒定的应变,应变片的指示应变将随时间稍有下降,此现象称为应变片的蠕变,A 、B 、C 三级一般每小时分别为5、10、25με。
5)绝缘电阻 指应变片引出线与安装应变片的构件之间的电阻值。
使用应变片时,这个电阻值往往作为安装应变片肘粘结层固化程度和是否受潮的标志,室温下A 、B 、C 三级分别大于1000、500、500M Ω。
6)应变极限温度不变,使试件应变逐渐加大。
当应变片的指示应变与试件实际应变的相对误差达到某规定值(例如10%)时,此时的试件应变为该应变片的应变极限。