(完整版)举一反三六年级奥数第24周比较大小

合集下载

六年级奥数全教程(举一反三)

六年级奥数全教程(举一反三)

第一章 数与计算第一单元 同余问题1. 知识前提。

(1) 整除:如果整数a 除以自然数b ,所得的商恰好是整数而没有余数(余数是0),我们就称a 能被b 整除或b 能整除a 。

(2) 乘方的意义:求n 个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。

n 个相同因数a 相乘,即n aa a a ∙个,记做n a 。

其中a 叫做底,n 叫做指数,na 读做a 的n 次方。

(3) 幂的运算法则:① 同底数的幂相乘,底数不变,指数相加。

即m n mn a a a +∙=。

② 幂的乘方,底数不变,指数相乘。

即()mnnm aa =。

③ 积的乘方,等于把积的每一个因数分别乘方,再把所得的幂相乘。

即 ()nnnab a b =∙。

2. 同余如果两个整数的a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记为a =‎h (mod m )。

我们把m 称为模。

如果a 、b 对于m 是同余的,那么a 与b 的差能被m 整除;反之,如果a 与b 的差能被M 整除,那么a 、b 对于m 是同余的。

3. 规律、方法应用。

(1) 反身性规律:a 和a 对于m 同余。

(2) 对称性规律:a 和b 对于m 同余,那么b 和a 对于m 同余。

(3) 传递性规律:如果a 和b 对于m 同余,b 和c 对于m 同余,那么a 和c 对于m 同余。

(4) 同余的加减法、乘法规律:如果a 和b 对于m 同余,c 和d 对于m 同余,那么a +c ,和b +d ,a -c 和b -d ,a c 和bd 对于m 同余。

(5) 同余的乘方规律:如果a 和b 对于m 同余,那么n a 和nb 也对于m 同余。

(6) 同余的连加规律:1a 和1b 对于m 同余,2a 和2b 对于m 同余,3a 和3b 对于m 同余……n a 和n b 对于m 同余,那么123n a a a a +++ 和123n b b b b +++ 也对于m 同余。

06 小学奥数举一反三 六年级

06 小学奥数举一反三 六年级
数 第")周抽屉原理一 !$(
第#*周抽屉原理二 !)'
奥 第#!周逻辑推理一 !(*
第#"周逻辑推理二 !(( 第##周行程问题一 #*"
级 第#$周行程问题二 #!%
'#)#(#$%)#(#,#+#如果& %"&&%&&#(#那么( 是几,
思路导航本题的新运算被定义为%!+ %!!"&"#!#!!!
&"#据此#可以求出 &% " & & %(#& ,#.",#& .#*#这 里 的 分 母 都 比
较大#不






果$根

& %
"
& &
%
& &
#(#可


%*&#(#,.#,!,.#,#&*#(
%*&#(!&*#(#,.#,
%&--#,.#,
%,.,-
!)
天才出自勤奋。
计算下面各题 &#('#(#'(#'!('#(#)'#+!.*#(#),#( +#+'(#&+#&!+'(#)+#+"&'(#()#' '#'#.(#.'("' *#(.'-!&,#+#,+#(

(2021年整理)小学奥数举一反三(六年级)A版

(2021年整理)小学奥数举一反三(六年级)A版

小学奥数举一反三(六年级)A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学奥数举一反三(六年级)A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学奥数举一反三(六年级)A版的全部内容。

小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5"与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人.抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

小学奥数举一反三(六年级)全

小学奥数举一反三(六年级)全

小学奥数举一反三(六年级)全一、拓展提优试题1.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.7.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.8.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.9.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.10.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.11.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.12.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.13.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.14.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.15.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.【参考答案】一、拓展提优试题1.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.7.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.8.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.9.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.10.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.11.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.12.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.13.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.14.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.15.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.。

小学六年级奥数专项练习24 比较大小

小学六年级奥数专项练习24  比较大小

小学六年级奥数专项练习专题24 比较大小【理论基础】我们已经掌握了基本的比较整数、小数、分数大小的方法。

本周将进一步研究如何比较一些较复杂的数或式子的值的大小。

解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进行推理判断。

如:a >b >0,那么a 的平方>b 的平方;如果a >b >0,那么1a <1b ;如果ab >1,b >0,那么a >b等等。

比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。

如果两个数的倒数接近,可以先用1分别除以这两个数。

再根据被除数相等,商越小,除数越大的道理判断原数的大小。

除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。

例1比较777773777778 和888884888889的大小。

这两个分数的分子与分母各不相同,不能直接比较大小,使用通分的方法又太麻烦。

由于这里的两个分数都接近1,所以我们可先用1分别减去以上分数,再比较所得差的大小,然后再判断原来分数的大小。

因为1-777773777778 =5777778 ,1-888884888889 =58888895777778 >5888889 所以777773777778 <888884888889。

练习11、 比较77777757777777 和66666616666663的大小。

2、 将9876598766 ,98769877 ,987988 ,9899 按从小到大的顺序排列出来。

3、 比较235861235862 和652971652974的大小。

例2比较1111111 和111111111哪个分数大?可以先用1分别除以这两个分数,再比较所得商的大小,最后判断原分数的大小。

因为1÷1111111 =1111111 =1011111÷111111111 =111111111 =1011111101111 >1011111 所以1111111 <111111111练习21、 比较A =3331666 和B =33166 的大小2、 比较111111110222222221 和444444443888888887 的大小3、 比较88888878888889 和99999919999994 的大小。

小学数学三年级奥数举一反三

小学数学三年级奥数举一反三
依据前面的公式: 项数= (末项-首项)÷公差+1 末项=(项数-1) ×公差+首项 末项=(10 -1 ) ×1 +16=25 等差数列的和= (首项+末项)×项数÷2 (16+ 25) ×10 ÷2 = 205
编辑ppt
35
【练习2】 (1)体育馆的东区共有30排座位,呈梯形,第1排有10个座
编辑ppt
29
【练习5】下面算式中,除数和商相等,被除数最小是几?
(1)[ (2)[ (3)[ (4)[ (5)[
]÷[ ]÷[ ]÷[ ]÷[ ]÷[
]=[ ]=[ ]=[ ]=[ ]=[
]……6 ]……8 ]……3 ]……9 ]……7
编辑ppt
30
小学数学 三年级 奥数举一反三
第3讲 配对求和
第33周 平均数问题(二)第34周 简单推理(二)第35周 巧求周长(一)第36周 巧求周长(二)

第37周 面积计算第38周 最佳安排第39周 抽屉原理第40周 一题多解
编辑ppt
2
小学数学 三年级 奥数举一反三
第1讲 找规律
同步教材教学视频
编辑ppt
3
按照一定次序排列起来的一列数,叫做数列。如 自然数列:1,2,3,4,……双数列:2,4,6, 8,……我们研究数列,目的就是为了发现数列中数 排列的规律,并依据这个规律来填写空缺的数。
9 43
编辑ppt
13
【思路导航】
经仔细观察、分析表格中的数可以发现: 1、每一列下面的数与上面的数的差均为4,即9-5=4,14-
10=4;11-7=4,16-12=4;13-9=4。依此规律,空格中应填的 数为:14+4=18。
2、左下角数与右上角数的商与上面数的乘积即为中间数。 如8÷2×4=16; 8÷4×7=14。依此规律,空格中应填的数为: 4÷3×9=12。

小学数学 六年级奥数举一反三 教师教案 全20-40周

小学数学 六年级奥数举一反三 教师教案 全20-40周
同步教材免费视频
第23周 周期工程问题 疯狂操练二
【例题2】
【思路导航】
【练习2】
第23周 周期工程问题 疯狂操练三
【例题3】 一批零件,如果第一天甲做,第二天乙做,这样交替轮流做, 恰好用整数天数完成。如果第一天乙做,第二天甲做,这样交替轮流做, 做到上次轮流完成时所用的天数后,还剩60个不能完成。已知甲、乙工 作效率的比是5:3。甲、乙每天各做多少个?
【例题 1 】修一条路,甲队每天修 8小时, 5天完成;乙队每 天修10小时,6天完成。两队合作,每天工作6小时,几天可 以完成? 【思路导航】
【练习1】
1、 修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5 天可以完成。现在让甲、乙两队合修,要求2天完成,每天应修几小时?
2、 一项工作,甲组3人8天能完成,乙组4人7天也能完成。现在由甲组2 人和乙组7人合作,多少天可以完成?
【例题4】甲、乙两人合作加工一批零件,8天可以完成。中途甲因事
停工3天,因此,两人共用了10天才完成。如果由甲单独加工这批零件, 需要多少天才能完成?
【思路导航】
【练习4】 1、 甲、乙两人合作某项工程需要12天。在合作中,甲因输请假5天, 因此共用15天才完工。如果全部工程由甲单独去干,需要多少天才能完 成?
第25周 最大最小问题 疯狂操练四
【例题 4 】三个连续自然数,后面两个数的积与前面两个数 的积之差是114。这三个数中最小的是多少? 【思路导航】 因为:最大数×中间数-最小数×中间数= 114,即:(最 大数-最小数)×中间数=114 而三个连续自然数中,最大数-最小数= 2 ,因此,中间数 是114÷2=57,最小数是57-1=56
例题1思路导航同步教材免费视频练习1第21周抓不变量解题疯狂操练二例题2思路导航第21周抓不变量解题疯狂操练二练习2第21周抓不变量解题疯狂操练三例题3思路导航练习3第21周抓不变量解题疯狂操练四例题4思路导航练习4第21周抓不变量解题疯狂操练五例题5思路导航练习5六年级数学举一反三有些工程题中工作效率工作时间和工作总量三者之间的数量关系很不明显这时我们就可以考虑运用一些特殊的思路如综合转化整体思考等方法来解题

小学奥数举一反三(六年级)1-20周

小学奥数举一反三(六年级)1-20周

六年级数学奥数培训资料- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2.设a*b=a2+2b ,那么求10*6和5*(2*8)。

3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。

【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航】根据定义先算4△6。

在这里“△”是新的运算符号。

练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。

求30△(5△3)。

3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四周 比较大小
专题简析:
我们已经掌握了基本的比较整数、小数、分数大小的方法。

本周将进一步研究如何比较一些较复杂的数或式子的值的大小。

解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进
行推理判断。

如:a >b >0,那么a 的平方>b 的平方;如果a >b >0,那么<;如果1a 1b >1,b >0,那么a >b 等等。

a b 比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。

如果两个数的倒数接近,可以先用1分别除以这两个数。

再根据被除数相等,商越小,除数越大的道理判断原数的大小。

除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。

练习一
1、比较和的大小。

42134312
2、比较和的大小。

322122321123
3、比较和的大小。

904991
48练习二:
1、比较和的大小。

777777577777776666661
6666663
2、将,
,,按从小到大的顺序排列出来。

98765987669876987798798898993、比较和的大小。

235861235862652971652974练习三:
1、 比较A =和B =的大小
3331666331662、 比较和的大小
1111111102222222214444444438888888873、 比较和的大小。

8888887888888999999919999994
练习四
1、 已知A×1=B×90%=C÷75%=D×=E÷1。

把A 、B 、C 、D 、E 这5个数从小到234515大排列,第二个数是___ ___.
2、 有八个数,0.Error!Error! ,,,
0.5Error!,,是其中的六个数,如果从小到235924471325大排列时,第四个数是0.5Error!,那么从大到小排列时,第四个数是哪个?
3、 在下面四个算式中,最大的得数是几?
(1)(+)×20 (2)(+)×30
117119124129(3)(+)×40 (4)(+)×50
131137141147练习五
1、××××××××…×的积与比较,哪个大?12345678109121114131615181736356
1
2、××××…×与相比,哪个更大? 1234567899100110
3、×××…×的积与0.002比较,哪个大?5476981000001
1000000。

相关文档
最新文档