课题学习-选择方案
19.3课题学习选择方案(1--4)

4 3 2 1
0
1
2
3
4
x/件
反馈检测
如图,l1、l2分别表示一种白炽灯和一种节能灯的费用y(费用= 灯的售价+电费,单位:元)与照明时间x的函数图象,假设两种灯 的使用寿命都是2000小时,照明效果一样。据图象解答下列问题: (1)一个白炽灯的售价为____元;一个节能灯的售价是____元; (2)分别求出 l1、l2的解析式; y(元) (3)当照明时间,两种灯的费用相等? L1(白) (4)小亮房间计划照明2500小节) 请你帮他设计最省钱的用灯方法。
即当照明时间小于2280小时,购买白炽灯较省钱.
从“形”上解 问题:(1)X取何值时,y1=y2?
(2)X取何值时,y1=y2?
(3)X取何值时,y1=y2? 探究二:你能利用函数的图象给出解答吗?
解法二:
解:设照明时间是x小时, 节能灯的费用y1元表示,白炽灯的费用y2 元表示,则有:y1 =0.005x +60, y2 =0.03x + 3 列表,画图,得
哪种灯更钱省
灯具店老板介绍说:
一种节能灯的功率是10瓦(即0.01千瓦),售价60元; 一种白炽灯的功率是60瓦(即0.06千瓦),售价为3元.两种 灯的照明效果是一样的,使用寿命也相同(3000小时以 上)。
父亲说:“买白炽灯可以省钱”.而小刚正好读八年级, 他在心里默算了一下说:“还是买节能灯吧”.父子二人 争执不下。咱们本地电费为0.5元/千瓦.时,请聪明的你 帮助他们选择哪一种灯可以省钱呢?
y1 =60+0.5×0.01x=0.005x+60;
y2 =3+0.5×0.06x =0.03x+3.
问题4:观察上述两个函数
(1)若使用两种灯的费用相等,它的含义是什么?y1= y2 (2)若使用节能灯省钱,它的含义是什么? y1< y2 (3)若使用白炽灯省钱,它的含义是什么? y1> y2
19.3 课题学习 选择方案

首先应考虑到影响水的调运量的因素有 两个,即水量(单位:万吨)和运程 (单位:千米),水的调运量是两者的 乘积(单位:万吨· 千米);其次应考虑 到由A、B水库运往甲、乙两地的水量共4 个量,即A--甲,A--乙,B--甲,B--乙 的水量,它们互相联系。
设从A水库调往甲地的水量为x吨,则有:
调入地 水量/万吨 调出地
甲
x 15-x
乙
14-x x-1
总计
14 14
A
B
总计
15
13
28
设水的运量为y万吨· 千米,则有: y=50x+30(14-x)+60(15-x)+45(x-1)
(1)y=5x+1275
y/万吨· 千米
1≤x≤14
( 2)
1345
1280
O
1
14
x/吨
(3)最佳方案为:从A调往甲1万吨水, 调往乙13万吨水;从B调往甲14万吨水。 水的最小调运量为1280万吨· 千米。
(1)要保证240名师生有车坐 (2)要使每辆汽车上至少要有1名教 师 6 根据(1)可知,汽车总数不能小于____;根据 6 (2)可知,汽车总数不能大于____。综合起来 6 可知汽车总数为 _____。 设租用x辆甲种客车,则租车费用y(单位:元) 是 x 的函数,即 y=400x+280(6-x) 化简为: y=120x+1680
问题
4两甲种客车,2两乙种客车; y1=120×4+1680=2160
5两甲种客车,1辆乙种客车; y2=120×5+1680=2280
应选择方案一,它比方案二节约Fra bibliotek20元。从A、B两水库向甲、乙两地调水, 其中甲地需水15万吨,乙地需水13万 吨,A、B两水库各可调出水14万吨。 从A地到甲地50千米,到乙地30千米; 从B地到甲地60千米,到乙地45千米。 设计一个调运方案使水的调运量(单 位:万吨· 千米)尽可能小。
14.4课题学习选择方案

某学校计划在总费用2300元的限额内,租用6辆汽车送 元的限额内,租用 辆汽车送 辆汽车送234名学生 某学校计划在总费用 元的限额内 名学生 名教师集体外出活动, 名教师负责。 和6名教师集体外出活动,每辆汽车上安排 名教师负责。出租汽车 名教师集体外出活动 每辆汽车上安排1名教师负责 公司现有甲、乙两种大客车,它们的载客量和租金如下表: 公司现有甲、乙两种大客车,它们的载客量和租金如下表: 甲种客车 乙种客车 载客量( 45 30 载客量(人) 租金( 辆 280 租金(元/辆) 400 (1)共需租多少辆汽车? )共需租多少辆汽车? (2)给出最节省费用的租车方案。 )给出最节省费用的租车方案。
电费
= 单价 × 用电量 =
灯的功率
用电量
× 照明时间
照明灯总费用=灯的售价+0.5×灯的功率(千瓦时) ×照明时间(小时)
小明想在两种灯中选购一种,其中一种是10瓦(即是 0.01千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦) 的白炽灯,售价3元.两种灯的照明效果一样,使用寿命也相 同(3000小时以上).节能灯售价高,但是较省电;白炽灯售价 低,但是用电多.如果电费是0.5元/(千瓦时),消费者选用哪 种灯可以节省费用? 两种灯的费用 分别是多少? . 设照明时间为x小时,则
y1 y2 节能灯的总费用为: =0.5×0.01x+60 白炽灯的总费用为: =0.5×0.06x+3.
讨论:
两种灯使用多少时间费用相等?
y1 =y2, 即0.005x+60=0.03x+3 解得:x=2280;
两种灯使用多少时间节能灯的费用小于白炽灯的费用时? y1 < y2 ,即0.005x+60<0.03x+3 解得: x>2280 两种灯使用多少时间使用节能灯的费用大于白炽灯的费用时?
19.3课题学习--选择实施方案

19.3 课题学习 选择方案
问题2 怎样租车?
某学校计划在总费用2300元的限额内,租用汽车送234名学 生和6名教师集体外出活动,每辆汽车上至少有1名教师. 现有甲、乙两种大客车,它们的载客量和租金如表所示:
(1)共需租多少辆汽车? Zx`````x``k (2)给出最节省费用的租车方案.
办 法 , 向 心 爱的人 去表达 自己的 心意。 这对我 来说比 死亡更 要可怕 。 10
(2)当学生数是多少时,两家旅行社的收费一样?
当x = 4时,两家旅行社的收费一样.
(3)就学生数讨论哪家旅行社更优惠.
当x < 4时,甲旅行社优惠;当x > 4时,乙旅行社优惠.
课堂小结
实际问题
抽象概括
函数模型
变式练习
1.某单位需要用车,准备和一个体车主或一国有出租公司其中
的一家签订合同. 设汽车每月行驶 x km,应付给个体车主的月
租费是y1元,付给出租公司的月租费是y2 元,y1,y2 分别与x之 间的函数关系图象是如图所示的两条直线,观察图象,回答下
列问题:
(1)每月行驶的路程在什么范围内,租国
y(元)
2000
y2 有出租公司的出租车合算? 当0<x<1500时,租国有的合算. (2)每月行驶的路程等于多少时,租两
y1 家车的费用相同? 当x=1500时,租两家的费用一样.
1000
(3)如果这个单位估计每月行驶的路程为
1000
2000
2300km,那么这个单位租哪家的车合算?
0
500
1500
2500 x(km) 租个体车主的车合算.
实际问题的解
还原说明
函数模型的解
课题学习选择方案

课题学习选择方案
目标引导:
1.能运用一次函数方程不等式等知识解决方案设计型问题。
2.在解决方案设计型问题过程中体会函数思想分类讨论思想数型结合思想方程思想
等学会一题多解。
学习重点:一次函数的模型建立及应用
学习难点:如何选择合适的模型
学法指导:
问题3:配送问题
从A B两水库向甲乙两地调水,其中甲地需水15万吨,乙地需水13万吨。
A B 两地水库各可调出水14万吨,从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米。
设计一个调运方案,使水的调运量尽可能小。
(调运量=水量*运程)
解析(1)找出关键量,分析多个变量之间的关系;
(2)选出具有代表性的变量作为自变量;注意
(3)用自变量代数式表示其它量,构建反映实际问题的一次函数模型;
(4)运用函数方程等知识解决实际问题,选择最佳方案。
A
城有肥料200吨,B 城有肥料300吨,现要把这些肥料全部运往C ,D 两乡。
从
A 城往C ,D 两乡运肥料的费用分别为每吨20元和25元;从
B 城往
C ,
D 两乡运肥料的费用分别为每吨15元和24元,现C 乡需肥料240吨,D 乡需肥料260吨,怎样调运可使运费最少。
八年级数学《课题学习-选择方案》听课记录

八年级数学《课题学习-选择方案》听课记录
班级:八年级
科目:数学
任课教师:刘慧
听课日期:2019年5月29日
教学内容:《课题学习-选择方案》
教学过程:
一、情境导入
某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?
二、合作探究
探究点:运用一次函数解决方案选择性问题
【类型一】利用一次函数解决自变量是非负实数的方案选择问题
方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际
问题的基本能力.
【类型二】利用一次函数解决自变量是非负整数的方案选择问题
方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题
方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题.
评:教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。
《课题学习选择方案》

分析问题
要比较三种收费方式的费用,需要做什么? 分别计算每种方案的费用. 怎样计算费用?
费用 = 月使用费 + 超时费 超时费 = 超时使用价格 × 超时时间
分析问题
A,B,C 三种方案中,所需要的费用是固定的还 是变化的?
方案C费用固定; 方案A,B的费用在超过一定时间后,随上网时间 变化,是上网时间的函数.
整理课件
分析问题
y
A
y1=
30, 0≤t≤25; 3t-45, t>25. 120
B y2=
50, 0≤t≤50; 3t-100,t>50. 50
30
C y3=120.
O 25
y1 y2 y3
50 75 t
分类:y1<y2<y3时,y1最小; y1=y2<y3时,y1(或y2)最小; y2<y1<y3时,y2最小; y1>y3,且y2>y3时,y3最小.
解决问题
解:令3t-100=120,解方程,得t
=73
1 3
;
令3t-100>120,解不等式,得t>73
1 3
.
当上网时间不超过31小时40分,选择方案A最省钱; 当上网时间为31小时40分至73小时20分,选择方案 B最省钱; 当上网时间超过73小时20分,选择方案C最省钱.
课后作业
小张准备安装空调,请你调查市场上不同节能级别 的空调的价格、耗电量,了解当地的电费价格,运用数 学知识进行分析,给小张提一个购买建议.把你的调查 分析及建议写成书面报告形式.
19.3 课题学习 选择方案(1)
课件说明
• 本课是在学习了函数概念、一次函数有关知识后, 让学生经历发现问题、提出问题、分析问题和解决 问题的全过程,学习建立一次函数模型解决问题的 方法,并通过比较几个一次函数的变化率来解决 方案选择问题.
课题学习选择方案教案

课题学习选择方案教案第一章:课题选择的重要性1.1 课题选择的背景和意义1.2 课题选择与学习目标的关系1.3 课题选择的原则和方法第二章:课题选择的准备与评估2.1 收集课题信息与资料2.2 分析课题的可行性与可行性研究2.3 评估课题的重要性和影响第三章:课题研究的设计与实施3.1 确定研究问题与假设3.2 制定研究方法与数据收集方式3.3 实施研究计划与数据分析和解释第四章:课题结果的展示与评价4.1 准备研究报告与展示材料4.2 进行口头报告与展示4.3 接受评价与反馈意见第五章:课题学习的总结与反思5.1 总结课题学习的成果和收获5.2 反思课题选择的合理性和改进方向5.3 提出对今后课题学习的建议和计划第六章:课题学习的拓展与深化6.1 探索相关课题的深入研究6.2 结合跨学科的知识和方法6.3 开展合作学习与交流分享第七章:课题学习的应用与实践7.1 将研究成果应用于实际情境7.2 培养解决问题的能力和创新思维7.3 开展社会实践活动和志愿服务第八章:课题学习的评价与反馈8.1 建立评价标准与评价方法8.2 进行自我评价与同伴评价8.3 教师评价与反馈指导第九章:课题学习的成果展示与交流9.1 准备成果展示与交流活动9.2 进行作品展示与分享经验9.3 接受评价与反馈并进行改进第十章:课题学习的总结与反思10.1 回顾整个学习过程与成长经历10.2 反思课题学习的收获与不足10.3 提出对今后学习的计划与目标重点和难点解析一、课题选择的重要性难点解析:如何引导学生理解课题选择的重要性,并掌握选择课题的原则和方法。
二、课题选择的准备与评估难点解析:如何引导学生有效地收集和分析课题相关的信息与资料,以及如何进行可行性研究。
三、课题研究的设计与实施难点解析:如何引导学生明确研究问题和假设,并选择合适的研究方法和数据收集方式。
四、课题结果的展示与评价难点解析:如何帮助学生准备清晰易懂的报告材料,并提高他们的口头表达能力。