实验一 离散时间信号与系统的傅里叶分析
第6章 离散时间信号的傅里叶变换汇总

例:周期单位脉冲序列dN[k]
1 N 1 1 - jk0 n X [m] d N [n]e N n 0 N
信号
?
系统
响应
6.3 离散时间信号的傅立叶变换
1.离散时间周期信号的傅立叶变换
设时限非周期信号 f [n] 如图所示,对它进行周期 拓展可构成周期信号 f N [n]
筛选性
(2)
F ()
d [n] 1
F
n n jn a u [ n ] e ,
a 1
1 , j 1 ae
a 1
信号
?
系统
响应
幅度谱
F ()
1 [1 a cos()]2 a2 sin 2 ()
F()
2
a 1/ 2
2/3 2
信号
?
系统
响应
1.离散时间周期信号的傅立叶级数
推导系数 ak 的计算公式 :
N 1 k 0
f [n] ak e jk 0n
两端乘以
e
jm0 n
并在一个周期 N内关于n求和
j ( k m ) 0 n
f [n]e
n 0
N 1
jm0 n
ak e
n 0 k 0
a
n
e
jn
1 a , a 1 2 1 2a cos a
N
0 d
k0
1 f [ n] 2
F ()e jn d
信号
?
系统
响应
频谱密度函数
F ()
n
f [n]e
信号与系统实验六离散时间信号与系统的频域分析

杭州电子科技大学信号与系统实验报告课程名称:信号与系统实验实验名称:离散时间信号与系统的频域分析一、实验目的1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。
2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。
3、掌握离散时间傅里叶变换的特点及应用4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法二、预习内容1.离散时间信号的傅里叶变换与逆变换2.离散时间信号频谱的物理含义3.离散时间系统的频率特性4.离散时间系统的频域分析方法三、实验原理1. 离散时间系统的频率特性在离散LTI 系统时域分析中得到系统的单位冲激响应可以完全表征系统,进而通过h[n]特性来分析系统的特性。
系统单位冲激响应h[n]的傅里叶变换H () 成为LTI 系统的频率响应。
与连续时间LTI 系统类似,通过系统频率响应可以分析出系统频率特性。
与系统单位冲激响应h[n]一样,系统的频率响应H ( ) 反映了系统内在的固有特性,它取决于系统自身的结构及组成系统元件的参数,与外部激励无关,是描述系统特性的一个重要参数,H () 是频率的复函数可以表示为其中,||随频率变化的规律称为幅频特性;ϕ(ω)随频率变化的规律称为相频特性。
2. 离散时间信号傅里叶变换的数值计算方法算法原理,由傅里叶变换原理可知:序列f [n]的离散时间傅里叶变换F是ω的连续函数。
由于数据在 matlab 中以向量的形式存在,F ()只能在一个给定的离散频率的集合中计算。
然而,只有类似形式的e− jω的有理函数,才能计算其离散时间傅里叶变换。
四、实验内容1 离散时间傅里叶变换(1)下面参考程序是如下序列在范围−4π≤ω≤4π的离散时间傅里叶变换修改程序,在范围 0≤ω≤π内计算如下有限长序列的离散时间傅里叶变换h1=[1 2 3 4 5 6 7 8 9];h2=[zeros(1,10),h1];w=0:pi/511:pi;h=freqz(h2,1,w);subplot(4,1,1)plot(w/pi,real(h));grid;title('实部')xlabel('omega/\pi');ylabel('振幅');subplot(4,1,2)plot(w/pi, imag(h));grid;title('虚部')xlabel('omega/\pi');ylabel('振幅'); figure;subplot(4,1,3)plot(w/pi, abs(h));grid;title('幅度谱')xlabel('omega/\pi');ylabel('振幅');subplot(4,1,4)plot(w/pi, angle (h));grid;title('相位谱')xlabel('omega/\pi');ylabel('以弧度为单位的相位');(2)利用1的程序,通过比较结果的幅度谱和相位谱,验证离散时间傅立叶变换的时移特性。
离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告实验报告:离散时间信号的时域分析一、实验目的本实验旨在通过MATLAB软件,对离散时间信号进行时域分析,包括信号的显示、基本运算(如加法、减法、乘法、反转等)、以及频域变换(如傅里叶变换)等,以加深对离散时间信号处理的基本概念和原理的理解。
二、实验原理离散时间信号是在时间轴上离散分布的信号,其数学表示为离散时间函数。
与连续时间信号不同,离散时间信号只能在特定的时间点取值。
离散时间信号的时域分析是研究信号的基本属性,包括幅度、时间、频率等。
通过时域分析,我们可以对信号进行各种基本运算和变换,以提取有用的信息。
三、实验步骤1.信号生成:首先,我们使用MATLAB生成两组简单的离散时间信号,一组为正弦波,另一组为方波。
我们将这些信号存储在数组中,以便后续分析和显示。
2.信号显示:利用MATLAB的绘图功能,将生成的信号在时域中显示出来。
这样,我们可以直观地观察信号的基本属性,包括幅度和时间关系。
3.基本运算:对生成的信号进行基本运算,包括加法、减法、乘法、反转等。
将这些运算的结果存储在新的数组中,并绘制出运算后的信号波形。
4.傅里叶变换:使用MATLAB的FFT(快速傅里叶变换)函数,将信号从时域变换到频域。
我们可以得到信号的频谱,进而分析信号的频率属性。
5.结果分析:对上述步骤得到的结果进行分析,包括比较基本运算前后的信号波形变化,以及傅里叶变换前后的频谱差异等。
四、实验结果1.信号显示:通过绘制图形,我们观察到正弦波和方波在时域中的波形特点。
正弦波呈现周期性的波形,方波则呈现明显的阶跃特性。
2.基本运算:通过对比基本运算前后的信号波形图,我们可以观察到信号经过加法、减法、乘法、反转等运算后,其波形发生相应的变化。
例如,两个信号相加后,其幅度和时间与原信号不同。
反转信号则使得波形在时间轴上反向。
3.傅里叶变换:通过FFT变换,我们将时域中的正弦波和方波转换到频域。
正弦波的频谱显示其频率为单一的直流分量,方波的频谱则显示其主要频率分量是直流分量和若干奇数倍的谐波分量。
实验一离散时间信号的时域分析

实验一离散时间信号的时域分析离散时间信号是一种离散的信号形式,其具有离散的时间间隔。
这种信号在数字信号处理中得到了广泛的应用。
时域分析是分析信号的一种方法,它通常包括分析信号的幅度、相位、频率等参数,并从中获得信号的特征。
在本实验中,我们将探讨离散时间信号的时域分析方法。
1.实验目的• 了解离散时间信号的基本概念和性质。
• 熟悉MATLAB软件的使用,理解信号处理工具箱的使用方法。
2.实验原理离散时间信号是一种在离散时间点上定义的数列。
它通常用序列来表示,序列的元素是按照一定的时间间隔离散采样得到的。
离散时间信号的采样频率通常表示为Fs,单位是赫兹。
离散时间信号可以写成如下的形式:x(n) = [x(0),x(1),x(2),...,x(N-1)]其中,n表示离散时间点的下标,N表示离散时间信号的长度。
• 幅度分析:指分析离散时间信号的振幅大小。
离散时间信号的幅度、相位、频率的分析通常使用傅里叶变换、离散傅里叶变换等变换方法来实现。
3.实验步骤3.1 生成离散时间信号使用MATLAB编写程序,生成一个离散时间信号。
例如,我们可以生成一个正弦信号:t = 0:0.01:1;x = sin(2*pi*100*t);其中,t表示时间向量,x表示正弦信号。
将信号进行离散化,得到离散时间信号:其中,fs表示采样频率,n表示采样时间点,xn表示采样后的信号。
使用MATLAB的plot函数,绘制离散时间信号的时域图像。
figure(1);plot(n, xn);xlabel('Time');ylabel('Amplitude');其中,figure(1)表示创建一个新的窗口,用于显示图像。
xlabel和ylabel用于设置图像的横轴和纵轴标签。
3.3 使用FFT进行幅度分析X = fft(xn);n = length(X);f = (0:n-1)*(fs/n);power = abs(X).^2/n;其中,X表示离散时间信号的傅里叶变换结果,n表示离散时间信号的长度,f表示频率向量,power表示幅度谱。
第3章离散时间傅里叶变换

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散傅里叶级数、离散时间傅里叶变换与DFT

j )
n
F
j
n
tm
Sa(tm
n
)
(6.1-3)
式中 tm
1。
2 fs
模拟信号数字化处理系统
模拟信号数字化处理系统结构如图6.1-7所示的结构,它由 模数转换、数字信号处理和数模转换三部分组成。
图6.1-7 模拟信号数字化处理系统结构
(1)模数转换:要对模拟信号实现数字化处理,首先要将模 拟信号离散化。在实际中,让模拟信号通过一个A/D转换器就 实现了信号数字化。A/D转换器是一个具有取样、量化和编码 功能的采样保持电路。由于本书主要关心的是模拟信号转化为 离散信号的问题,所认下面仅仅把A/D转换器看作一个采样器, 采样器可用一个开关表示。
|
|
| | 10
10
又因 G() 1
Ts
F ( ns ) 15
F ( 30n)
采样后信号的频谱如图6.1-12所示。
要求通过一个理想低通滤波器后的信号频谱为 G() H( j) 5F( j) ,
故理想低通滤波器
H
(
j)
抽样信号的频谱
(a)
(b)
图6.1-2 抽样信号 f s (t)的频谱
抽样信号的频谱
(2)如果抽样脉冲序列 s(t )是窄脉冲序列,即它是幅度为1,脉宽 为τ的门序列,如图6.1-3所示。
图6.1-3 抽样脉冲序列 s(t) 是门函数序列
s(t)可写为 s(t)
pT
(t)
g
n
上的样点值
由时域抽样定理可知:为了能从抽样信号 fs (t) 恢复原信号 f (t)必须满足两个条件:
信号分析与处理第3章离散时间信号的分析_1-44
X (z) x(n)zn x(n)(re j )n [x(n)r n ]e j n
x
x
x
只有当 x(n)rn 符合绝对可和的收敛条件,即
x(n)r n
x=
时,x(n) 的 z 变换才有意义。对序列 x(n) ,其 z 变换 X (z)收
敛的所有 z 的集合称为 X (z)的收敛域,简记为 ROC
X (z) x(n)zn x(0) x(1)z1 x(2)z2 x0
上式是序列 x(n) 的单边 z 变换。
n<0 时样点均为零的序列称为因果序列,对因果序 列,其双边 z 变换与单边 z 变换相同。
单边 z 变换定义式表明,序列的单边 z 变换是复变 量 z 的负幂级数,该级数的系数即是序列 x(n) 本身。
1、 周期单位冲激串的傅里叶变换
周期单位冲激串,如图(a)所示。该函数在研
究信号的采样问题中经常用到,称为狄拉克梳状函数
或理想采样函数,用数学公式表示为
p(t) (t nT ) n
在 2.3 节中已得到,其傅里叶级数为 p(t) 1 ejkt
T k
上式表明,周期单位冲激串的傅里叶级数中,只包 含位于 0,0 ,20 ,…,k0 ,…处的频率分量, 每个频率分量的大小相等且都等于 1 。
两者进行相乘,如图(c) 所示,相乘结果 xS (t) x(t) p(t) 称为 x(t) 的采样信号(sampled signal),如 图(d)所示。xS (t) 中各分量的冲激强度构成的序列为 x(t) 的样本 x(n) 。
设采样间隔为TS ,采样角频率S
2
f
2 TS
。由采
样过程,有
xS (t) x(t) p(t)
为书写方便,对序列 x(n) 取 z 变换和对 X (z)取逆 z 变换常常记为
实验一-离散时间信号分析
实验一 离散时间信号分析一、实验目的1. 初步掌握 Matlab 的使用,掌握编写M 文件和函数文件2. 掌握各种常用序列的表达,理解其数学表达式和波形表示之间的关系。
3. 掌握生成及绘制数字信号波形的方法。
4. 掌握序列的基本运算及实现方法。
5. 研究信号采样时采样定理的应用问题。
二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列{x (n )}来表示,其中x (n )代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为-∞< n<+∞的整数,n 取其它值x (n )没有意义。
离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号x a (t ) 进行等间隔采样,采样间隔为T ,得到{x (nT )} a 一个有序的数字序列就是离散时间信号,简称序列。
2.常用序列常用序列有:单位脉冲序列(单位抽样)δ (n )、单位阶跃序列u (n )、矩形序列R N (n ) 、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。
4.序列的卷积运算 y(n)=∑x (m )h (n −m )+∞m=−∞=x(n)*h(n) 上式的运算关系称为卷积运算,式中* 代表两个序列卷积运算。
两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。
其计算的过程包括以下4 个步骤。
(1)反褶:先将x (n )和h (n )的变量n 换成m ,变成x (m )和h (m ),再将h (m )以纵 轴为对称轴反褶成h (-m )。
(2)移位:将h (-m )移位n ,得h (n- m )。
当n 为正数时,右移n 位;当n 为负数时, 左移n 位。
(3)相乘:将h (n -m )和x (m )的对应点值相乘。
(4)求和:将以上所有对应点的乘积累加起来,即得y (n )。
三、主要实验仪器及材料PC 机、Matlab7.0。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子信息工程系实验报告
课程名称:数字信号处理
成绩:
实验项目名称:实验1 离散时间信号与系统的傅里叶分析时间:
指导教师(签名):
班级:电信092 姓名:XXX 学号:910706201
实验目的:
用傅里叶变换对离散时间信号和系统进行频域分析。
实验环境:
计算机、MATLAB软件
实验原理:
对信号进行频域分析即对信号进行傅里叶变换。
对系统进行频域分析即对其单位脉冲响应进行傅里叶变换,得到系统的传输函数;也可由差分方程经过傅里叶变换直接求其传输函数,传输函数代表的就是频率响应特性。
而传输函数是w的连续函数,计算机只能计算出有限个离散频率点的传输函数值,故可在0~2∏之间取许多点,计算这些点的传输函数的值,并取它们的包络,所得包络即所需的频率特性。
实验内容和步骤:
1、已知系统用下面差分方程描述:y(n)=x(n)+ay(n-1),试在a=0.95和a=0.5 两种情况下用傅立叶变换分析系统的频率特性。
要求写出系统的传输函数,并打印|H(e jω)|~ω曲线。
解:B=1;A=[1,-0.95]; [H,w]=freqz(B,A,'whole');
subplot(1,3,1);plot(w/pi,abs(H),'linewidth',2);grid on;
xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');
axis([0,2,0,2.5]);
B=1;A=[1,-0.5];[H,w]=freqz(B,A,'whole');
subplot(1,3,3);plot(w/pi,abs(H),'linewidth',2);grid on;
xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');
axis([0,2,0,2.5]);
图形如下图1、2所示:
图1 a=0.95时的幅频响应特性图2 a=0.5时的幅频响应特性
2、已知两系统分别用下面差分方程描述: y1(n)=x(n)+x(n-1) y2(n)=x(n)-x(n-1)
试分别写出它们的传输函数,并分别打印|H(e jω)| ~ω曲线。
解:B=[1,1];A=1;[H,w]=freqz(B,A,'whole');
subplot(1,2,1);plot(w/pi,abs(H),'linewidth',2);grid on;
xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');
axis([0,2,0,2.2]);
B=[1,-1];A=1;[H,w]=freqz(B,A,'whole');
subplot(1,2,2);plot(w/pi,abs(H),'linewidth',2);grid on;
xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');
axis([0,2,0,2.2]);
图形如下图3、4所示:
图3 y1(n)的幅频特性图4 y2(n)的幅频特性图5 x(n)=R3(n)的幅频响应特性
3、已知信号x(n)=R3(n),试分析它的频域特性,要求打印|X(e jω)|~ω曲线。
解:B=[1,0,0,-1];A=[1,-1];[H,w]=freqz(B,A,'whole');
plot(w/pi,abs(H),'linewidth',2);grid on;
xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');
axis([0,2,0,1.3]);
图形如上图5所示:
4、假设x(n)=δ(n),将x(n)以2为周期进行周期延拓,得到x'(n),试分析它的频率特性,并画出其幅频特性。
解:n=-20:20; x=[ones(1,1),zeros(1,1)];
xtide=x(mod(n,2)+1); grid on;
subplot(1,2,1),stem(n,xtide,'.')
xlabel('n'),ylabel('xtide(n)');title('延拓后周期为2的周期序列')
B=1;A=1;[H,w]=freqz(B,A,'whole');
subplot(1,2,2);plot(w/pi,abs(H),'linewidth',2);grid on;
xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2]);
图形如下图6、7所示:
图6 x(n)以2为周期进行周期延拓所得序列图7 x(n) 周期延拓后的幅频响应特性。