第三章信号与系统连续时间信号与系统的傅里叶分析
信号与系统第三章:傅里叶变换

由于这里用于系统分析的独立变量是频率,故称为频域分析。
6
3.1 信号分解为正交函数
信号分解为正交函数的原理与矢量分解为正交矢量的
y
概念相似。
AC1vxC2vy
C 2v y
A
v x , v y 为各相应方向的正交单位矢量。 C 1v x
❖ 1、时域分析的基本概念 系统时域响应的概念和四种主要响应形式。
❖ 2、离散系统的时域分析 差分和差分方程的含义和建立;差分方程的经典解法,以及各种响应的具体求解。
❖ 3、单位冲击响应与单位样值响应 单位冲击响应和单位样值响应的概念和实质;通过微分方程或差分方程的求解方法。
❖ 4、卷积积分 卷积积分的基本概念和意义;采用定义法和图解法进行求解的方法和步骤;卷积积分 的重要性质。
❖ 采用变换域分析的目的:主要是简化分析。这章傅里叶变 换主要从信号分量的组成情况去考察信号的特性。从而便 于研究信号的传输和处理问题。
5
本章以正弦函数或(虚指数函数)为基本信号 任意周期信号可以表示为一系列不同频率的正弦或虚
指数函数之和。 sin(n1t),cos(n1t),ejn1t
n0,1,2
❖ 5、卷积和 卷积和的基本概念和意义;通过定义、性质以及图解法和不进位乘法熟练进行求解的 方法和步骤。
2
第三章主要内容
❖3.1 信号分解为正交函数 (一般了解) ❖3.2 傅里叶级数 ❖3.3 周期信号的频谱 ❖3.4 非周期信号的频谱(傅里叶变换) ❖3.5 傅里叶变换的性质 ❖3.6 卷积定理 ❖3.7 周期信号的傅里叶变换 ❖ 3.8.抽样信号的傅里叶变换与取样定理
x
它们组成一个二维正交矢量集。
信号与系统分析PPT电子教案第三章连续时间信号与系统的频谱分析

f (t ) A0 An cos(n1t n ) n1
A0
n1
An 2
[e e ] j(n1t n ) j(n1t n )
A0
1 2
n1
An
e e jn jn1t
1 2
n1
An
e e jn jn1t
上式中第三项的n用–n代换,则上式写为
f (t)
A0
1 2
n1
An e jn e jn1t
T0
因此,信号绝对可积就保证了 ak 的存在。
② 在任何有限区间内,只有有限个极值点,且极值
为有限值。
③ 在任何有限区间内,只有有限个第一类间断点。
其它形式
余弦形式 f (t) A0 An cos n1t n
2
n1
A0 a0
an An cosn
An an2 bn2
bn An sinn
cos
2 1 t
4
,
请画出其幅度谱和相位谱。
化为余弦形式
f (t) 1
5
cos(1t
0.15
)
cos
2 1 t
4
三角形式的傅里叶级数的谱系数
三角函数形式的频谱图
A0 1
0 0
An A1 2.24
A0 1
A2 1
0 1 21
n
0.25
1
0
21
0.15
A1 5 2.236 1 0.15
在时域可以看到,如果一个周期信号的周期趋 于无穷大,则周期信号将演变成一个非周期信 号;反过来,任何非周期信号如果进行周期性 延拓,就一定能形成一个周期信号。我们把非 周期信号看成是周期信号在周期趋于无穷大时 的极限,从而考查连续时间傅立叶级数在 T趋 于无穷大时的变化,就应该能够得到对非周期 信号的频域表示方法。
信号与系统 第3章-3

解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0
∞
式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0
信号与系统王明泉第三章习题解答

(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。
信号与系统第6讲第3章周期信号的傅里叶级数表示

sin(2 k(1/ 4)) k
sin(k k
/ 2)
根据Example3.5的结果,用性质计算傅里叶级数的系数
分析:原函数为x(t),本函数为g(t)
g (t )
x(t
1)
1 2
,周期方波的参数T
4,T1
1,
如果原函数的系数为ak,x(t 1)的系数为bk
bk
a e jk (2 / 4)1 k
在不连续点上,傅里叶级数的收敛趋势-吉伯斯现象
不连续点上收敛于不连续点的平均值 不连续点附近呈现起伏现象,起伏的峰值不随N增加而降低 峰值为不连续点差值的9%
吉伯斯现象的实际意义
不连续信号的傅里叶级数截断近似在接近不连续点有高频起伏 选择足够大的N,可以保证这些起伏的总能量可以忽略
2024/6/10
2024/6/10
信号与系统-第6讲
19
§3.5 连续时间傅里叶级数性质
(4)Example3.8 计算周期冲激串的傅里叶级数系数 根据性质计算周期方波的系数
周期冲激串可表示为x(t) (t kT ) k
ak
1 T
T / 2 (t)e jk 2t /T dt 1
T / 2
T
周期方波为g (t ),它的导数为q(t )
c0为直流分量, c0 2T1 / T
对照前面 例题验证
结果
20
§3.5 连续时间傅里叶级数性质
(5)Example3.9
1.x(t)是实信号
2.x(t)是周期信号,T 4,傅里叶级数系数ak
3.ak 0,k 1
4.傅里叶系数为bk
e
j
k
/
2
a
的信号是奇信号
信号与系统第三章

1
2 t0 T1
2 t0 T1
2
[ T1
t0
f (t) cos n 1tdt
j T1
t0
f (t) sin n 1tdt]
1 t0 T1
T1 t0 f (t)[cos n 1t j sin n 1t]dt
1 t0 T1 f (t)
T1 t0
2e jn 1t dt
2
1 t0
T1
f (t)e
jn 1t dt
1768年生于法国 1807年提出“任何周
期信号都可用正弦函 数级数表示”
拉格朗日,拉普拉斯 反对发表
1822年首次发表在 “热的分析理论”
一书中
一、频域分析
从本章开始由时域转入变换域分析,首先讨 论傅里叶变换。傅里叶变换是在傅里叶级数正交 函数展开的基础上发展而产生的,这方面的问题 也称为傅里叶分析(频域分析)。将信号进行正 交分解,即分解为三角函数或复指数函数的组合。
t0 T1 t0
f (t)e jn1tdt
n 0,1, 2,3 。
Fn
1 t0
T1
f (t)e
jn 1t dt
T1 t0
n 0, 1, 2, 3 。
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
T1 2
推导完毕
f (t)
n
Fne jn 1t F0
Fne jn 1t
n1
1
Fne jn 1t
n
(形式一) f (t) a0 an cos(n1t) bn sin(n1t) n1
傅氏级数展开实质就是确定展开式中各分量系数
确定系数:
f (t) a0 an cos(n1t) bn sin(n1t) n1
信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0
∫
∫
t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n
∞
jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2
−
T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
连续时间信号与系统的傅里叶分析

连续时间信号与系统的傅里叶分析连续时间信号与系统的傅里叶分析是一种非常重要的数学工具和技术,广泛应用于信号处理、通信系统、控制系统等领域。
通过傅里叶分析,我们可以将一个复杂的时域信号分解成一系列简单的正弦函数(或复指数函数)的叠加,从而更好地理解和处理信号。
在傅里叶分析中,我们首先需要了解傅里叶级数和傅里叶变换两个概念。
傅里叶级数是将一个周期信号分解成一系列正弦和余弦函数的叠加。
对于一个连续时间周期为T的周期信号x(t),其傅里叶级数表示为:x(t) = a0/2 + ∑ {an*cos(nω0t) + bn*sin(nω0t)}其中,n为整数,ω0为角频率(ω0 = 2π/T),an和bn为信号的系数。
傅里叶级数展示了信号在频域上的频谱特性,即信号在不同频率上的成分。
通过傅里叶级数,我们可以得到信号的基频和各个谐波分量的振幅和相位信息。
而对于非周期信号,我们则需要使用傅里叶变换来分析。
傅里叶变换可以将一个非周期信号分解成一系列连续的正弦和余弦函数的叠加。
对于一个连续时间信号x(t),其傅里叶变换表示为:X(ω) = ∫ x(t)*e^(-jωt) dt其中,X(ω)为信号在频域上的频谱表示,ω为角频率,e为自然对数的底。
通过傅里叶变换,我们可以将信号从时域转换到频域,从而得到信号在不同频率上的成分。
同时,我们还可以通过逆傅里叶变换将信号从频域再转换回时域。
傅里叶分析的重要性在于它能够提供信号在时域和频域之间的转换关系,从而可以更好地理解信号的特性和行为。
通过傅里叶分析,我们可以确定信号的频谱特性、频率成分等信息,从而在信号处理、通信系统设计等方面进行相应的优化和调整。
除了傅里叶级数和傅里叶变换,还有诸如快速傅里叶变换(FFT)、傅里叶变换对(FT pair)、功率谱密度(PSD)等相关概念和技术。
这些工具和技术在实际应用中非常有用,例如在音频处理、图像处理、雷达信号处理等方面经常被使用。
总之,连续时间信号与系统的傅里叶分析为我们提供了一个强大的数学工具,能够将信号从时域转换到频域,揭示信号的频谱特性和频率成分,为信号处理和系统设计提供了有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n = 2, 4, 6, n = 1, 3, 5,
信号与系统
一、周期信号的傅立叶级数
所以有
an 0
0
bn
4
n
n = 2, 4, 6, n = 1, 3, 5,
f
(t)
4
[sin 0t
1 sin 3
3
0t
1 5
sin
5
0
t
1 n
sin n
0t
]
信号与系统
一、周期信号的傅立叶级数
2 . 复指数形式的傅立叶级数
a
b
0
信号与系统
一、周期信号的傅立叶级数
三角函数集:
{1, cos0t, cos 20t, , cos n0t, , sin 0t, sin 20t, , sin n0t, }
在区间 (t0 ,
t0
T)
内是一完备正交函数集。
T
2 0
正交性:(m 和 n 都是整数)
0
t0 T cos
t0
m0t
cos
信号与系统
§ 3.2 周期信号的 傅立叶级数展开
信号与系统
周期信号
周期信号: 定义在区间 (, ) ,每隔一定时间 T ,按 相同规律重复变化的信号,如图所示 。它可表示为
f (t)=f ( t+mT )
其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。
f t
1
0 T/2 T
t
1
信号与系统
f (t) a0 a1 cos0t a2 cos 20t b1 sin 0t b2 sin 20t
a0 an cos n0t bn sin n0t
n1
式中各正、余弦函数的系数 an , bn ,称为傅立叶系数。
信号与系统
一、周期信号的傅立叶级数
根据正交函数展开理论,容易得到傅立叶系数公式如下
傅立叶分析:用频谱分析的观点来分析系统,或称为系统 的频域分析。
频域分析法在系统分析中极其重要,主要是因为: (1) 频域分析法易推广到复频域分析法,同时可以将两者统一起来; (2) 利用信号频谱的概念便于说明和分析信号失真、滤波、调制等许多 实际问题,并可获得清晰的物理概念;
(3) 连续时间系统的频域分析为离散时间系统的频域分析奠定坚实基础。 (4) 简化了求解微分方程的过程
n0tdt
T
2
T
t0 T
sin m 0t
sin n
0tdt
0 T
t0
2
mn mn0 mn0
t0 T
sin m 0t cosn 0tdt 0
t0
mn
mn0
信号与系统
一、周期信号的傅立叶级数
指数函数集
{e jn0 t}(n 0, 1, 2, }
在区间
(t0 ,
t0
T)
内也是一完备正交函数集。
信号与系统
§ 3.1 引 言
信号与系统
变换域分析
变换域分析——就是选取完备的正交函数集来最佳逼近信
号 f (t) ,或者说,信号 f (t) 用完备的正交函数集来展
开,其展开系数就是信号的变换表示。不同的变换域的区 别就在于选取不同的正交完备集。
采用变换域分析的目的:主要是简化分析。
信号与系统
T
2 0
正交性:(m 和 n 都是整数)
t0T
t0
e jn0t e jm0t dt
t0 T
e j(nm)0t dt
t0
0 T
mn m=n
信号与系统
一、周期信号的傅立叶级数
1. 三角形式的傅立叶级数
周期信号
f (t)
,周期为
T
,角频率 0
2f 0
2
T
该信号可以展开为下式三角形式的傅立叶级数:
An 是 n 的偶函数, n 是 n 的奇函数。
信号与系统
一、周期信号的傅立叶级数
例:将图示的对称方波信号展成三角形式傅立 叶级数
f t
1
0 T/2 T
t
1
解:直接代入公式有
a0
1 T
T 0
f (t)dt
0
信号与系统
一、周期信号的傅立叶级数
直接代入公式有
T
T
an
2 T
2 T
f
(t) cos n0tdt
2 T
0
(1) cos n0tdt
T
2 T
2
(1) cos n0tdt
0
2
2
0
T
2 T
1
n0
( sin n0t)
T
2 T
1
n0
2
(sin n0t)
0
0
2
T
T
bn
2 T
2 T
2
f
(t) sin n0tdt
2 T
1
n0
cos n0t
0 T
2
2 T
1
n0
2
( cos n0t)
0
2
n
(1
cos
n
)
0 4
周期信号
f (t) ,周期为 T
,角频率 0
2f 0
2
T
该信号可以展开为下式复指数形式的傅立叶级数。
f (t) Fne jn0t
n
T
其中
Fn
1 T
2 T
f (t)e-jn0t dt,
2
式中 Fn 称为傅立叶系数,是复数。
其中
直流分量: A0
基波:
A1 cos(0t 1)
二次谐波: A2 cos(20t 2 )
依次类推,还有三次谐波、四次谐波、高次谐波等概念。
周期信号的傅立叶级数展开说明周期信号可以分解为直流分量、基
波分量以及各次谐波分量之和。。
根据前面的傅立叶系数公式知道:
an 是 n 的偶函数, bn 是 n 的奇函数。
还可以写成下面形式
f (t) A0 An cosn0t n
n1
两种形式之间系数有如下关系:
A0 a0
An an2 bn2
n
arctg
bn an
n 1, 2, L 或
a0 A0
an An cos n bn An sin n
n 1, 2,
信号与系统
一、周期信号的傅立叶级数
a0
1 T
t0 T
f
t0
(t)dt
an
2 T
t0 T
f
t0
(t) cos n0tdt
bn
2 T
t0 T
f
t0
(t) sin n0tdt
n 1,2, n 1,2,
式中积分可以取任意一个周期,一般情况下,取
(0, T) 或 ( T , T )
22
信号与系统一、周期信号的傅立叶级数
三角形式的傅立叶级数
傅立叶分析
连续时间LTI系统的时域分析: 以冲激函数为基本信号; 系统零状态响应为输入信号与系统冲激响应之卷积。
傅立叶分析: 以正弦函数或复指数函数作为基本信号; 系统零状态响应可表示为一组不同频率的正弦函数或复
指数函数信号响应的加权和或积分。
信号与系统
傅立叶分析
频谱分析:把信号表示为不同频率正弦分量或复指数分量 的加权和,简称信号的谱分析。
周期信号
周期信号的特点:
(1)它是一个无穷无尽变化的信号,从理论上也是无始无终的,时间
范围为 (, )
(2)如果将周期信号第一个周期内的函数写成 f0 (t),则周期信号 f (t)
可以写成
f (t) f0 (t nT Fra bibliotek n(3)周期信号在任意一个周期内的积分保持不变,即有
aT
bT
T
f (t)dt f (t)dt f (t)dt