初中数学(代数)知识口诀大全
初中数学知识点归纳口诀

初中数学知识点归纳口诀一、整数运算整数加减,运算不难。
同号相加大,异号相减减。
乘法运算有规律,同号得正号,异号得负号。
除法要特别注意,同正得正,同负得正,异号得负来运算。
二、分数运算分数加减,先通分。
分母相同添一起,分子加减化简求。
分数乘法,直接就行。
分母乘分子,结果不罢工。
分数除法,转化清。
乘以倒数,除法成。
三、平方根开根号,车轮戳。
根号下数字,找平方。
比较大小,估个数。
方根结果,保留几位。
四、代数式代数式展开,乘分配。
符号相同就加,符号相反减。
分组提取公因子,合并同类项。
整理整个式子,完成展开。
五、一元一次方程一元方程,求它解。
字母在哪边,数字弄过去。
方程两边乘或除以同一个数。
清零舍得自己会。
六、百分数百分数换分数,除100就行。
分数换百分数,乘100再展。
七、平移与旋转平移操作,横纵轴都变化。
横坐标加或减,纵坐标不变。
旋转法则,逆顺时针。
确定中心和角度,运算按规律。
八、圆根据半径找直径,直径乘π。
根据半径找周长,周长乘2π。
根据半径找面积,面积乘π。
九、三角形根据两边和夹角,用余弦公式。
根据两边和夹角,用正弦公式。
已知三边,用海伦公式求面积。
等腰三角形,底边寻,顶角等于底角。
十、平行四边形对边相等成立,同一边则并列。
对角线交于一点,三角形全齐。
总结:初中数学知识点归纳口诀,帮助你记牢。
整数、分数运算,平方根都掌握。
代数式,方程也不难,平移旋转要懂。
圆、三角形、四边形,规则统统记住。
数学路漫漫,从基础做起,慢慢学,慢慢走,数学就能搞定到。
初中数学顺口溜(大全)

初中数学顺口溜(大全)初中数学顺口溜(大全)有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y 相反, Y 轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
巧用顺口溜熟记初中数学公式和规律

巧用顺口溜熟记初中数学公式和规律数学公式和规律在初中阶段是非常重要的,它们是解题的基础和指导,也是理解数学概念和思维的关键。
然而,对于许多学生来说,记住这些公式和规律并不容易。
为了帮助学生更好地掌握数学知识,我整理了一些巧妙的顺口溜,通过这些顺口溜,学生能够轻松地记住一些重要的数学公式和规律。
一、顺口溜记代数公式:1. 一元二次方程求根法,b²-4ac你得掌握。
一大再小两个根,<0无实根,=0一个根。
2. x = (-b ± √(b²-4ac))/(2a)二次方程求解都留下。
3.(a+b)(a-b)=a²-b²平方差公式背下来。
4.a²-b²=(a-b)(a+b)平方差公式很容易。
5.二项式展开好简单,我的名字叫齐考公式。
(a+b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... + C(n,n-1)abⁿ⁻¹ +C(n,n)bⁿ。
二、顺口溜记几何公式:1.长方形底乘高,得到面积的好帮手。
A=l×w,四边都相对。
2.正方形的面积,直接边长相乘。
A=s²,正方形停不住。
3.三角形面积公式,底边高你有。
A=1/2×b×h,底高更容易。
4.圆的面积公式,先半径,再面积。
A=πr²,记住吗?5.圆的弧长、扇形和正圆角,顺口溜心中藏。
L=2πr,S=1/2πr²,360度它很逆。
三、顺口溜记运算规律:1.交换律、结合律勿忘,运算啥都变得容。
a+b=b+a,a+(b+c)=(a+b)+ca×b=b×a,a×(b×c)=(a×b)×c。
2.分配律快记清,a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c,加减乘除好朋友。
初一数学必背口诀大全

初一数学必背口诀大全1.天减地求,下借上补,差等于被减减。
解释:两个数相减时,先从上面的数借位,然后将被减数的位数补齐,最后各位相减。
2.退位相减多进一,借位借、项项借,当时减到头”。
3.借位不规范,退后再借一、(借位候,低位顶上来)4.乘法口诀太简单,横竖行列一个个看,交叉相乘来相乘,累加法完成做乘。
5.一分成二短除法,左右路口分出来,取商加最右数。
6.一倍是小数,十倍补0。
7.正负两相乘,结果变负。
8.乘法公式要记牢,两括包个正放在号,正括绕左边,负括绕右边,乘到末,符号放中,按个数,化简它。
9.整数个奇数个,正负不变,奇负偶正。
10.同质意义何千变,约分是看齐二眼。
11.讲真分母同乘秋,分子合并参与运算。
12.分数分母大,整数插前边。
13.分数比较求大小:相同分母,比较分子;分母不同,通分比较。
14.正四边形庭院净,乘积二等于矩形,八平方分别算,加起来就是周长。
矩形肋骨拿,秦九将与乘法。
15.正三角形面积,底高乘以一半;等腰三角形去,边积以二和;底高平行四边形,同样从半来。
16.任意三角形求面积,先求周长再找高,底乘高整除二17.转化五类分数,利用乘除化简,找到最简形,化整小数到真分数。
18.黄金分割开,正比例下,大比身高,小比后胸。
19.变化相等,正比例取;比值不变,反比例找。
20.速度相比看行程,时间看分数的本领。
21.面积求最大,质相同,周长不一样。
周长相等,面积大,形状就歪。
22.均分没变也没变,补数个数最关键。
这些口诀涵盖了初一数学中的很多重要知识点,希望能够帮助你更好地记忆和理解这些知识。
记住这些口诀并不是唯一的学习方法,结合理解和实践更加重要。
希望你能够在初一数学的学习中取得好成绩!加油!。
初中数学知识点速记口诀大全

初中数学知识点速记口诀大全一、整数的概念和性质:正数负数概不忘零在其中别忘了。
同号相加取原号异号相加看绝对。
加减乘除顺利解取余是除的剩余。
二、运算顺序和公式:先括号后指数再乘除加减。
加减法交换律乘除法不变形。
分配律左右扩结合律加括号。
三、四则运算的口诀:口诀之一:两正相除,两负相除,一正一负取负。
口诀之二:正与负相加,大者的符号要保持。
口诀之三:括号后面要考,负号化为减号。
四、分数的运算:分母相同乘或除分子相同加或减。
分母乘得大分小分母除得小分大。
约分先后要整除约尽互素好约。
五、比例与类比:比例两项对两项乘积相等不错。
调换项的顺序它还是要成立。
比例是否成立你可以算一算。
类比只比一比第三项不参与。
六、百分数的计算:百分之一变小数移动两位是怎样?百分放大一百倍移动两位不累。
七、平方与平方根:平方根是平方的倒开平方先四后五括号里的数要加减正负两种情况。
四个相乘得平方二个相乘得平根。
八、图形的计算:周长长度加减乘除体积适用乘法。
小数点的位置要看好精确度别忘了。
形状知识要弄清楚计算时更从容。
九、坐标系和二次函数:直角坐标系有四象限二次函数翻转两个方向。
顶点坐标先写y后写x图形特点要掌握。
关于y轴情况对称关于x轴形状升降。
对称轴是x等于b开口方向看系数。
十、平行线和平面几何:平行线一窄一宽斜率相同线平行。
直线之间垂直就是斜率乘积为负是。
角度大于90°是钝角别忘记。
内角之和180°外角之和360°。
对于三角形求周长边长之和是关键。
初中数学(代数)知识口诀大全

初中数学(代数)知识口诀大全有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
初中数学知识点总结口诀

初中数学知识点总结口诀一、数与代数1. 整数运算要记牢,加减乘除顺序好。
正负符号看清楚,绝对值把负号消。
2. 分数运算不复杂,通分约分是关键。
分子分母记心中,乘法分母要互换。
3. 小数点位置要对准,加减乘除不费劲。
小数位数要算清,进位退位要分寸。
4. 代数表达式要简化,合并同类项先行。
幂的运算要记清,底数不变指数乘。
5. 一元一次方程解,移项合并要简便。
系数变号要记住,求根公式要熟练。
6. 二元一次方程组,代入消元或加减。
变量字母要分清,求解过程要连贯。
二、几何知识1. 平面几何基础牢,点线面体记心间。
直线射线与线段,性质区别要分辨。
2. 三角形性质多,边角关系记心窝。
等边等角要分清,内角和为一八零。
3. 特殊三角形记口诀,三六九十二边长。
直角三角形勾股定,斜边最长对角线。
4. 四边形性质要知道,平行四边形对角等。
矩形对角线相等,菱形对角线垂直平分。
5. 圆的基本性质记,圆心半径不分离。
直径是半径两倍,周长公式记心里。
6. 圆的面积公式记,半径平方乘π。
扇形弧长半圆心,面积计算要准确。
三、统计与概率1. 数据收集与整理,图表绘制要清晰。
平均数、中位数,众数计算不费力。
2. 概率基础要掌握,事件可能性分析。
必然事件概率一,不可能事件概率零。
3. 随机事件发生率,可能性大小来决定。
独立事件互不影响,相互独立要记清。
四、函数与图像1. 函数概念要理解,变量关系是关键。
定义域与值域,函数性质要熟悉。
2. 线性函数图像直,斜率截距要分辨。
正比例函数单调增,反比例函数曲线美。
3. 二次函数图像抛,开口方向看系数。
顶点坐标记心间,对称轴上最值找。
4. 函数图像变换记,平移伸缩有规律。
函数图像上下左右移,规律口诀要牢记。
通过以上口诀的总结,初中数学的主要知识点得到了简洁明了的梳理。
学生可以在记忆这些口诀的同时,结合实际的数学题目进行练习,以加深理解和应用。
这些口诀旨在帮助学生快速回顾和巩固所学的数学知识,提高解题效率和准确度。
初中数学必记口诀--代数部分

1.有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.6.一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.7.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.8.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.9.完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.10.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.11.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.12.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊.13.最简根式的条件:最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学(代数)知识口诀大全有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
解比例外项积等内项积,列出方程并解之。
求比值由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例商定变量成正比,积定变量成反比。
正比例与反比例变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大) 军营里没老没少。
(大小小大就是它)大大小小解集空。
(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
A正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
用平方差公式因式分解异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
用完全平方公式因式分解两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
用公式法解一元二次方程要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势。
【注】恒等式解一元二次方程方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。
正比例函数的鉴别判断正比例函数,检验当分两步走。
一量表示另一量,是与否。
若有还要看取值,全体实数都要有。
正比例函数是否,辨别需分两步走。
一量表示另一量,有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量,是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质正比函数图直线,经过和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一一次函数一次函数图直线,经过点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数反比函数双曲线,经过点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。
上低下高很显眼。
如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。
【注】基础抛物线直线、射线与线段直线射线与线段,形状相似有关联。
直线长短不确定,可向两方无限延。
射线仅有一端点,反向延长成直线。
线段定长两端点,双向延伸变直线。
两点定线是共性,组成图形最常见。
角一点出发两射线,组成图形叫做角。
共线反向是平角,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
直平之间是钝角,平周之间叫优角。
互余两角和直角,和是平角互补角。
一点出发两射线,组成图形叫做角。
平角反向且共线,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
钝角界于直平间,平周之间叫优角。
和为直角叫互余,互为补角和平角。
证等积或比例线段等积或比例线段,多种途径可以证。
证等积要改等比,对照图形看特征。
共点共线线相交,平行截比把题证。
三点定型十分像,想法来把相似证。
图形明显不相似,等线段比替换证。
换后结论能成立,原来命题即得证。
实在不行用面积,射影角分线也成。
只要学习肯登攀,手脑并用无不胜。
解无理方程一无一有各一边,两无也要放两边。
乘方根号无踪迹,方程可解无负担。
两无一有相对难,两次乘方也好办。
特殊情况去换元,得解验根是必然。
解分式方程先约后乘公分母,整式方程转化出。
特殊情况可换元,去掉分母是出路。
求得解后要验根,原留增舍别含糊。
列方程解应用题列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
添加辅助线学习几何体会深,成败也许一线牵。
分散条件要集中,常要添加辅助线。
畏惧心理不要有,其次要把观念变。
熟能生巧有规律,真知灼见靠实践。
图中已知有中线,倍长中线把线连。
旋转构造全等形,等线段角可代换。
多条中线连中点,便可得到中位线。
倘若知角平分线,既可两边作垂线。
也可沿线去翻折,全等图形立呈现。
角分线若加垂线,等腰三角形可见。
角分线加平行线,等线段角位置变。
已知线段中垂线,连接两端等线段。
辅助线必画虚线,便与原图联系看。
两点间距离公式同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。
矩形的判定任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。
已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。
菱形的判定任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形。
已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。
初中几何常见辅助线作法歌诀汇编人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线加一倍。
梯形里面作高线,平移一腰试试看。
等积式子比例换,寻找相似很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,弦高公式是关键。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
要想作个外接圆,各边作出中垂线。
还要作个内切圆,内角平分线梦园。
如果遇到相交圆,不要忘作公共弦。
若是添上连心线,切点肯定在上面。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。