等差数列的前项和性质及应用优秀课件

合集下载

等差数列的性质和应用PPT优秀课件

等差数列的性质和应用PPT优秀课件
解 a n: S nS n 1(n2 ) a nn 2 2 n (n 1 )22 (n 1 )2 n 3(n2 ( )* )
又当 n1时, a1 S1 1适合 (*) an 2n3,此a时 n1an 2 an为等差数 . 列
16
思考 :若此题S改 n n为 22n2, 试判断{a数 n}是 列否成数 等列 ?差
解 :由题意得 :
a1 S1 1, a2 1, a3 3 而2a2 a1 a3 ,
故{an }不成等差数列.
事实a上 n 12, n3
n1 n2
17
评注:
1.利用 an S n S n1 (n 2)解题时 一定 要注意 验 证 a1是否适合通项公式 .
19
例3:设等差{数 an}的 列前 n项和S为 n, 若a5 5a3,则SS95 ______
解:
9(a1 a9)
S9 2 9a5 959
S5 5(a1a5) 5 a3 5
2
评注:S在n
a1
an 2
n中可利用性质
将a1 an转换成数列中另外之两和.项
20
例4:若数{a列 n}为等差数列 Sp , Sq,且
(pq, p,qN) 求Spq
解:
Sp
Sq pa1
Sk,S2kSk,S3kS2k成等差数列? 。如何证
略证S:k a1
ak 2
k
(1)
S2kSk
ak1

ak2
a2k
ak1 a2k 2
k
(2)
(S31k )(S23k得 )a2S k: k 12a(S 3k3kkS2k)k 2a1aka2k(13)a3k
解:由推广的通项公 知式 :

4.2.2等差数列的前n项和公式(2)课件

4.2.2等差数列的前n项和公式(2)课件

(3)由(2)知,当 n≤17 时,an≥0; 当 n≥18 时,an<0. 所以当 n≤17 时,Sn′=b1+b2+…+bn =|a1|+|a2|+…+|an| =a1+a2+…+an=Sn=33n-n2. 当 n≥18 时,
Sn′=|a1|+|a2|+…+|a17|+|a18|+…+|an| =a1+a2+…+a17-(a18+a19+…+an) =S17-(Sn-S17)=2S17-Sn =n2-33n+544. 故 Sn′=3n32-n-33nn2+n≤54147n,≥18.
第四章 数 列
4.2.2等差数列的前n项和公式(2)
学习目标
1.等差数列掌握等差数列前n项和的性质及应用(重点). 2.会求等差数列前n项和的最值(重点).
课前小测
1.思考辨析
(1)若 Sn 为等差数列{an}的前 n 项和,则数列Snn也是等差数列.(
)
(2)若 a1>0,d<0,则等差数列中所有正项之和最大.( )
归纳总结
1.在等差数列中,求Sn的最小(大)值的方法: (1)利用通项公式寻求正、负项的分界点,则从第一项起到分界点该项的
各项和为最大(小). (2)借助二次函数的图象及性质求最值. 2.寻求正、负项分界点的方法: (1)寻找正、负项的分界点来寻找. (2)利用到y=ax2+bx(a≠0)的对称轴距离最近的左侧的一个正数或离对称轴
跟踪训练
跟踪训练1. 某抗洪指挥部接到预报,24小时后有一洪峰到达,为确保安全, 指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除 现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工 作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔 20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑 成第二道防线?

《等差数列的概念》课件

《等差数列的概念》课件

等差数列在实际问题中的应用
物理学中的周期问题
在物理学中,很多周期性问题可以用等差数 列来表示和解决。例如,摆动问题、振动问 题、波动问题等。
统计学中的数据分组
在统计学中,数据分组是常见的数据处理方 法。而等差数列可以用来表示数据的组距和 分组范围。例如,将一组数据分成若干组, 每组的组距相等,就可以用等差数列来表示 各组的范围。
题目二
等差数列的通项公式是什么? 如何推导?
题目三
等差数列的前n项和公式是什 么?如何推导?
题目四
等差数列的性质有哪些?请举 例说明。
习题答案与解析
答案一
等差数列是指每一项与它前一项的差等于同一个常数的数列。例如:1, 4, 7, 10, 13...,其 中每一项与前一项的差为3。
解析一
通过举例说明等差数列的定义,帮助学生理解等差数列的基本概念。
总结词:严谨规范
详细描述:等差数列的一般形式是 a_n=a_1+(n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公 差,n 是项数。
等差数列的图像表示
总结词:直观形象
详细描述:等差数列的图像是一条直线,任意两个相邻的点在这条直线上等距。首项 a_1 是图像在 y 轴上的截距,公差 d 控 制着直线的斜率。
答案二
等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$是首项,$d$是公差,$n$是项 数。推导过程如下:$a_n=a_1+(n-1)d=a_1+a_2+(n-2)d=...=a_1+a_2+...+a_{n1}+nd=S_n+nd$,其中$S_n$为前n项和。
习题答案与解析

高中数学全程学习方略配套课件:2.3.1等差数列的前n项和(人教A版必修5)

高中数学全程学习方略配套课件:2.3.1等差数列的前n项和(人教A版必修5)

故n=13时,Sn有最大值169.
……………………12分
【误区警示】对解答本题时易犯错误的具体分析如下:
1.在等差数列{an}中,已知a1=4,a6=6,则前6项和S6=( )
(A)70 (B)35 (C)30 (D)12
【解析】选C.S6=(6 a1 a6)=6=(340.6)
2
2
2.等差数列{an}的前n项和为Sn,若a3+a17=10,则
1 099 100
11=0 -110190. (
2
11 50
)
故此数列的前110项之和为-110.
方法二:数列S10,S20-S10,S30-S20,…,S100-S90,S110-S100成等差 数列,设其公差为D,前10项和为10S10+102 9·D=S100=10 D=-22,∴S110-S100=S10+(11-1)D =100+10×(-22)=-120.
②若共有2n+1项,则S2n+1=(2n+1)an+1; S偶-S奇=-an+1;S偶∶S奇=n∶(n+1); ③“片段和”性质: 等差数列{an}中,公差为d,前k项的和为Sk,则Sk,S2k-Sk, S3k-S2k,…,Smk-S(m-1)k,…构成公差为k2d的等差数列.
【例2】Sn是等差数列{an}的前n项和,且S10=100,S100=10, 求S110. 【审题指导】题目给出等差数列{an}中的S10=100, S100=10,欲求S110,可由等差数列前n项和公式列出方程 组,求出a1和d,然后求出S110.或由等差数列“片段和”性 质Sk,S2k-Sk,S3k-S2k,…,Smk-S(m-1)k,…构成公差为 k2d的等差数列求出公差,然后求出S110.

等差数列的前n项和公式说课课件

等差数列的前n项和公式说课课件
创设和谐,互动的课堂环境,组织引导学生自主学习与合作探究相结合地探索新知.
三、教学分析---(二)学法分析
问题情景
观察、探究、反思、交流
知识、技能、核心素养
三、教学分析---(三)教学思路
环节一:重温经典算法,归纳“探”公式
本节课首先从古希腊毕达哥斯拉学派的数学家常用小石子在沙
滩上摆成各种形状来研究数.比如:他研究

三、教学分析---(三)教学思路
环节六:分层作业,应用迁移
1.基础性作业
(1)必做题:教材第22-23页练习第1,2,3题.;
(2)选做题:类比等差数列的通项公式与一次函数的关系,思
考等差数列前n项和公式与一元二次函数之间有什么关系?从函
数的角度可以发现哪些差数列前n项和公式的性质?
三、教学分析---(四)板书设计
定.等差数列的通项公式和前n项和公式中,共有“a1,d ,n,an,
Sn”五个量,故知三可求其二.
学生经历从历史到现实,特殊到一般,数与形的探究过程,最终提炼出一
般公式,提炼出等差数列前n项和的五个决定量,感受了数学研究的一般过程。
三、教学分析---(三)教学思路
环节三:运用公式,巩固理解
例6 已知数列{an}是等差数列.
探究方法:经历了研究函数的一般路径
能力水平:学生已经具备一定的抽象、推理、类比等能力
障碍分析:公式的灵活应用能力不足、从实际情境中建立数
学模型的能力还有待提升.
二、教学目标分析---(三)教学目标和重、难点
教学目标:
经历几种求和方法的比较
,体会历史与现实,简单到
复杂,特殊到一般,数与形
的有机结合,培养学生化归
重公式与函数之间的联系,强化对等差数列的整体认识,

最新-2021届高三数学理一轮总复习江苏专用课件:第六章第二节 等差数列及其前n项和 精品

最新-2021届高三数学理一轮总复习江苏专用课件:第六章第二节 等差数列及其前n项和 精品

=a1+(n-1)-631a1≥0,可得 n≤634=2113,所以数列
{an}的前 21 项都是正数,以后各项都是负数,故 Sn 取
最大值时,n 的值为 21.
答案:21
2.已知数列{an}的前 n 项和 Sn=n2-6n,则{|an|}的 前 6 项和 T6=________. 解析:由 Sn=n2-6n 得{an}是等差数列,且首项为-5, 公差为 2.所以 an=-5+(n-1)×2=2n-7,当 n≤3 时, an<0;当 n>3 时,an>0;所以 T6=-a1+(-a2)+(-a3) +a4+a5+a6=5+3+1+1+3+5=18. 答案:18
2.求等差数列前 n 项和 Sn 最值的 2 种方法 (1)函数法:利用等差数列前 n 项和的函数表达式 Sn= an2+bn,通过配方或借助图象求二次函数最值的方法求解. (2)邻项变号法:
nan=1,∴2an=an-1+an+1(n≥2),
∴数列{an}为等差数列.
[变式 3] 若母题变为:已知数列{an}中,a1=2,an=2-an1-1 (n≥2,n∈N*),设 bn=an-1 1(n∈N*).求证:数列{bn}是 等差数列.
证明:∵an=2-an1-1,∴an+1=2-a1n. ∴bn+1-bn=an+11-1-an-1 1 =2-a11n-1-an-1 1=aann--11=1, ∴{bn}是首项为 b1=2-1 1=1, 公差为 1 的等差数列.
考点一 等差数列的基本运算基础送分型考点——自主练透 [题组练透]
1.(2015·全国卷Ⅰ改编)已知{an}是公差为 1 的等差数列, Sn 为{an}的前 n 项和,若 S8=4S4,则 a10=________.

等差数列前n项和的性质及应用

等差数列前n项和的性质及应用

S偶
an1
性质4:(2)若项数为奇数2n-1,则 S2n-1=(2n- 1)an (an为中间项),
此时有:S偶-S奇= an ,
S奇 S偶
n n1
Sn 性质5: { } 为等差数列. n
两等差数列前n项和与通项的关系
性质6:若数列{an}与{bn}都是等差数列,且 a n S 2 n 1 前n项的和分别为Sn和Tn,则 bn T2 n 1
等差数列{an}前n项和的性质 在等差数列{an}中,其前n项的和为Sn,则有 性质1:Sn,S2n-Sn,S3n-S2n, …也是等差数列 ,公差为 n2d 性质2:若Sm=p,Sp=m(m≠p),则Sm+p= - (m+p) 性质3:若Sm=Sp (m≠p),则 Sp+m= 0 性质4:(1)若项数为偶数2n,则 S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中 间两项), S奇 an 此时有:S偶-S奇= nd ,
2: 若数列{an}的前n项和Sn满足 Sn=an2+bn,试判断{an}是否是等差数列 。 3、设等差数列{an}的前n项和为Sn, 已知a3=12, S12>0, S13<0。 (1)求公差d的取值范围; (2)指出S1 , S2, … , S12中哪个值最大,
95 25a 5b 1、 设Sn=an2+bn, 则有: 。 200 64a 8b
等差数列{an}前n项和的性质 例8.设等差数列的前n项和为Sn,已知 a3=12,S12>0,S13<0. (1)求公差d的取值范围; (2)指出数列{Sn}中数值最大的项,并说明 理由. a1+2d=12 解:(1)由已知得 12a1+6×11d>0

等差数列前n项和课件

等差数列前n项和课件

即Sn=a+n an-1+an-2+…+a3+ a2 +a1,
+得: 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1).
由等差数列的性质:当m+n=p+q时,am+an=ap+aq 知: a1+an=a2+an-1=a3+an-2=…=an+a1,所以式可化为: 2Sn=(a1+an)+(a1+an)+ … +(a1+an) = n(a1+an).
an = Sn - Sn-1
= n2 + 1 n -[(n - 1)2 + 1(n - 1)]= 2n - 1 .
2
2
2
当n = 1时,
a1
=
S1
=
12
+
1×1 2
=
3 ,也满足上式. 2
所以数列an 的通项公式为an
=
2n
-
1. 2
由此可知,数列an
是一个首项为3 2
,公差为2的等差数列.
技巧方法:
下面来看1+2+3+…+98+99+100的高斯算法.
设S100=1 + 2 + 3 +…+98+99+100 作
+ +++
+ + +加
反序S100=100+99+98+…+ 3+ 2 + 1 法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档