16级高等数学1(2)期中试卷
2016年11月高数1(期中)试题答案

x
2
密 封 线
cos x e x0 x4
x2 2
= lim
1 4 12 x o( x 4 ) 1 = x0 x4 12
1 2 , x0 x x sin 九、 (本题满分 8 分) 设 f ( x) 在 x 0 处可导, 试确定 a x , x0 ax b 和 b 的值,并讨论 f ( x ) 在 x 0 处的连续性.
三、 (本题满分 7 分)求 y xsin x ( x 0) 的导数和微分. 解: 等式两边取对数,得
ln y sin x ln x
---- 2 分
上式两边对 x 求导,注意到 y y ( x) ,得 1 1 y cos x ln x sin x y x 于是
2016 年 11 月
题号 分数 签名
一 20
二 20
三 7
四 7
五 8
六 8Βιβλιοθήκη 七 8八 8九 8
十 6
总分 100
考试时间
参考答案与评分标准
一、单项选择题(每小题 4 分,满分 20 分) 1. 设当 x 0 时, 2( 1 cos x ) ln ( 1 x) 是与
燕 山 大 学 试 卷
解:由于 f ( x) 在 x 0 处可导,故 f ( x) 在 x 0 处连续,于是有 lim f ( x) lim f ( x) f ( 0)
x 0 x 0
共
3
则 lim (ax b) lim ( x x 2 sin
x 0 x 0
1 ) x
页 第
3
n
n
---- 8 分
七、 (本题满分 8 分)设如图两个正圆锥,顶在下的圆锥在另一个圆锥里面,两圆锥的 底面是平行的,大锥的高 H 1 、底面半径 R 3 ,小锥的顶点在大锥的底面中心, 问:小锥的底面半径 r 等于多少时,才能使得小锥的体积最大? 解:设小锥的高为 h ,由相似性得 H h r r r ,则 h (1 ) H =1 H R R 3 1 H 2 r r (1 ) 小锥的体积 V (r ) r 2 h 3 3 R r r3 r 2 (1 )= (r 2 ) 3 3 3 3 其中 0 r 3 ---- 3 分 V (r ) r (2 r ) 则 3 当 r 2 时, V (r ) 0 ---- 6 分 又因为,
右玉一中2016-2017学年高二上学期期中考试数学试题 含答案

数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的.1。
正方形绕某一条对角线所在直线旋转一周,所得几何体是( ) A .圆柱 B .圆锥 C .圆台 D .两个圆锥 2.若直线1x =-的倾斜角为α,则α=( )A .0︒B .45︒C .90︒D .不存在 3.平面α与平面β平行的条件可以是( ) A .α内有无数条直线都与β平行 B .直线a α⊂,直线b β⊂,且//,//a b βα C .α内的任何直线都与β平行D .直线//,//a a αβ,且直线a 不在α内,也不在β内4。
设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( )①若,m ααβ⊥⊥,则//m β; ②若,//,m n ααββ⊥⊂,则m n ⊥; ③若,,//m n m n αβ⊂⊂,则//αβ; ④若,,n n m αββ⊥⊥⊥,则m α⊥. A .①② B .③④ C. ①③ D .②④5.三角形ABC 的斜二侧直观图如图所示,则三角形ABC 的面积为( )A .1B .2 C.22D .26.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .16B .26 C. 32 D .252034+7.已知过点()2,2P 的直线与圆()2215x y -+=相切,且与直线1ax y -+垂直,则a =( )A .12- B .1 C 。
2 D .128.设P 是圆()()22314x y -++=上的动点,Q 是直线3x =-上的动点,则PQ 的最小值为( )A .6B .4 C. 3 D .29.一只蚂蚁从正方体1111ABCD A BC D -的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A .①②B .①③C 。
2016 年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2262016年普通高等学校招生全国统一考试 理科数学(Ⅰ)参考答案第Ⅰ卷(选择题 共60分) 一、选择题 (60分) 1—12 DBCBA ADCCB AB 第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分13.2- 14.10 15.64 16.216000三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分为12分) 解:(I )由已知及正弦定理得, ()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.∴2sinCcosC sinC =.可得1cosC 2=,所以C 3π=. (II)由已知,1sin C 2ab =.又C 3π=,所以6ab =.由已知及余弦定理得, 222cosC 7a b ab +-=.∴2213a b +=,从而()225a b +=.∴C ∆AB的周长为5.18.(本小题满分为12分) 解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,∴平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG =可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =, ∴//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,∴C F ∠E 为二面角C F -BE-的平面角,C F60∠E =.从而可得(C -.∴(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-.设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧=⎪⎨=⎪⎩, ∴可取(3,0,n =. 设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-∴二面角C E -B -A 的余弦值为19-. 19.(本小题满分12分) 解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;22716.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ; 24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ; 2.02.02.04.02.02)20(=⨯+⨯⨯==X P ; 08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P . 所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当19=n 时,192000.68(19200500)0.2EY =⨯⨯+⨯+⨯(192002500)0.08+⨯+⨯⨯+(192003500)0.044040⨯+⨯⨯=; 当20=n 时,202000.88(202002500)0.08EY =⨯⨯+⨯+⨯⨯(202002500)0.044080+⨯+⨯⨯=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .20.(本小题满分12分) 解:(Ⅰ)因为||||AC AD =,AC EB //,∴ADC ACD EBD ∠=∠=∠, ∴||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x . ∴34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x ky ,A 到m 的距离为122+k , ∴1344)12(42||22222++=+-=k k k PQ .∴四边形MPNQ 的面积341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.21.(本小题满分12分)解:(Ⅰ)()(1)2(1)x f x x e a x '=-+-(1)(2)x x e a =-+.(i )设0a =,则()(2)xf x x e =-,()f x 只有一个零点. (ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.∴()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->,228∴()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,∴当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,∴当(1,ln(2))x a ∈-时,'()0f x <; 当(ln(2),)x a ∈-+∞时,'()0f x >. ∴()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设12x x <,由(Ⅰ)知 12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,∴122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,∴222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.∴当1x >时,'()0g x <,而(1)0g =, ∴当1x >时,()0g x <. 从而22()(2)0g x f x =-<,∴122x x +<.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)设E 是AB 的中点,连结OE , ∵,120OA OB AOB =∠=︒, ∴OE AB ⊥,60AOE ∠=︒. 在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径, ∴直线AB 与⊙O 相切.(Ⅱ)∵2OA OD =,∴O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上, ∴'OO AB ⊥.同理可证,'OO CD ⊥. ∴//AB CD . 23.(本小题满分10分)解:(I )由cos 1sin x a ty a t =⎧⎨=+⎩ (t 均为参数)消去参数t 得1C 的普通方程为 ()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆. 方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程(II )24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =.229由题意:1C 和2C 的公共方程所在直线即为3C .①—②得:24210x y a -+-=,即为3C ,∴210a -=∴1a =或1a =-(舍去).24.(本小题满分10分)解:(I )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()y f x =如图所示:(II )由⑴及()1f x >得当1x -≤时,由41x ->,解得5x >或3x <, 1x -∴≤;当312x -<<时,由321x ->,解得1x >或13x <,113x -<<∴或312x <<.当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >. 综上,13x <或13x <<或5x >, ()1f x >∴的解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.2302016年普通高等学校招生全国统一考试理科数学(Ⅱ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题 (60分)1—12 ACDAB CBCDC AB第Ⅱ卷(非选择题 90分)二、填空题13.211314.②③④ 15.1和3 16.1ln2-三.解答题17.(本题满分12分) 解:(I )设{}n a 的公差为d ,72874S a ==,∴44a =,∴4113a ad -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===, [][]1111lg lg111b a ===, [][]101101101lg lg 2b a ===.(II )记{}n b 的前n 项和为n T ,则 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时, 100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=. 18.(本题满分12分) 解:(I )设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=. (II )设续保人保费比基本保费高出60%为事件B ,()0.100.053()()0.5511P AB P B A P A +===.(Ⅲ)设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20EX a a =⨯++⨯1.50.20 1.750.1020.05a a a +⨯+⨯+⨯0.2550.150.250.3a a a a =+++0.1750.1 1.23a a a ++=,∴平均保费与基本保费比值为1.23. 19.(本小题满分12分)解:(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =; 又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . (II )建立如图坐标系H xyz -. ()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur,,,()060AC =uuu r,,,设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量 ()2301n =u u r,,,∴1212cosn nn nθ⋅==u r u u ru r u u r,∴sinθ.20.(本小题满分12分)解:(I)当4t=时,椭圆E的方程为22143x y+=,A点坐标为()20-,.由已知条件及椭圆的对称性知,直线AM的倾斜角为4π,直线AM的方程为2y x=+.将2x y=-代入22143x y+=,并整理得27120y y-=,解得0y=或127y=,∴1127y=.∴AMN△的面积为11212144227749AMNS∆=⨯⨯⨯=.(II)由已知条件知,3,0,(t k A>>,直线AM的方程为(y k x=.联立(2213x yty k x⎧+=⎪⎨⎪=+⎩并整理,得()222223230tk x x t k t+++-=,解得x=x=∴AM=+=由已知条件知,直线AN的方程为(1y xk=-,∴同理可得AN=.由2AM AN=得22233ktk k t=++,即23632k ktk-=-.∵椭圆E的焦点在x轴,所以3t>,即236332k kk->-,整理得()()23122k kk+-<-2k<.21.(本小题满分12分)解:(I)()f x的定义域为()()22,-∞--+∞,.()()()22224ee222xxx xf xx x x⎛⎫-' ⎪=+=⎪+++⎝⎭.∵当x∈()()22,-∞--+∞,时,()0f x'>,∴()f x在()()22,-∞--+∞,和上单调递增,∴0x>时,()2e0=12xxfx->-+,∴()2e20xx x-++>.(II)()()()24e2ex xa x x ax ag xx----'=()4e2e2x xx x ax ax-++=()322e2xxx axx-⎛⎫+⋅+⎪+⎝⎭=,[)01a∈,.由(I)知,当0x>时,()2e2xxf xx-=⋅+的值域为()1-+∞,,只有唯一解使得2e2ttat-⋅=-+,(]02t∈,.当(0,)x t∈时()0g x'<,()g x单调减;当(,)x t∈+∞时()0g x'>,()g x单调增.()()()222e1ee1e22t tt ttta t th at t t-++⋅-++===+.记()e2tk tt=+.231232在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22.(本小题满分10分) 解:(I )∵DF EC ⊥, ∴,DEF CDF ∆~∆∴GDF DEF FCB ∠=∠=∠,DF DE DGCF CD CB ==, ∴,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠= ∴,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥.连结GB .由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ ∴四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=23.(本小题满分10分)解:(I )由c o s ,s i nx y ρθρθ==可得C的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-= 12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-.24.(本小题满分10分)解:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-,∴112x -<≤-;当1122x -<<时,()2f x <恒成立;当12x ≥时,由()2f x <得22,x <解得1x <, ∴112x ≤<.综上可得,()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时, 11,11a b -<<-<<,∴222222()(1)1a b ab a b a b +-+=+-- 22(1)(1)0a b =--<, ∴|||1|.a b ab +<+2332016年普通高等学校招生全国统一考试理科数学(Ⅲ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题(60分)1—12 DCADA ABCBB A C第Ⅱ卷(非选择题 90分)二、填空题:本大题共3小题,每小题5分 13.32 14.32π 15.21y x =-- 16.4 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由题意得1111a S a λ==+,∴1≠λ,λ-=111a ,01≠a .由n n a S λ+=1,111+++=n n a S λ得 n n n a a a λλ-=++11,即n n a a λλ=-+)1(1.由01≠a ,0≠λ得0≠n a , ∴11n n a a λλ+=-. ∴}{n a 是首项为λ-11,公比为1-λλ的等比数列, ∴1)1(11---=n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1(1--=λλ, 由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321,解得1λ=-.18.(本小题满分12分) 解:(Ⅰ)由折线图中数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y,=40.1749.32 2.89=-⨯=,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb, 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. ∴y 关于t 的回归方程为: t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. ∴预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 19.(本小题满分12分)解:(Ⅰ)由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,∴TN AM ,四边形AMNT 为平行四边形,∴AT MN //.∵⊂AT 平面PAB ,⊄MN 平面PAB ,∴//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE . 由AC AB =得BC AE ⊥,从而 AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE .234以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =,∴2558|||||,cos |==><AN n AN n . 20.解:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且221(,0),(,),(,),222a b A B b P a - 11(,),(,)222a b Q b R +--.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=. ∴FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=.由题设可得221211ba x ab -=--,∴01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合.∴所求轨迹方程为12-=x y . 21.(本小题满分12分)解:(Ⅰ)'()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f = ∴32A a =-.当01a <<时,将()f x 变形为2()2c o s (1)c o s 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-. 令1114a a--<<,解得13a <-(舍去),15a >.235(ⅰ)当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>.又1(1)(17)|()||(1)|048a a a g g a a --+--=>,∴2161|()|48a a a A g a a-++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |f x a x a x =--- 2|1|a a ≤+-.当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥, ∴'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,∴'|()|2f x A ≤.22.(本小题满分10分) 解:(Ⅰ)连结BC PB ,,则,BFD PBA BPD ∠=∠+∠ PCD PCB BCD ∠=∠+∠.∵AP BP =,∴PCB PBA ∠=∠, 又BCD BPD ∠=∠, ∴PCD BFD ∠=∠.又180PFD BFD ∠+∠=, 2PFB PCD ∠=∠,∴1803=∠PCD , ∴ 60=∠PCD .(Ⅱ)∵BFD PCD ∠=∠, ∴ 180=∠+∠EFD PCD ,由此知E F D C ,,,四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,∴G 就是过E F D C ,,,四点的圆的圆心, ∴G 在CD 的垂直平分线上, ∴CD OG ⊥.23.(本小题满分10分)解:(I )1C 的普通方程为2213x y +=, 2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()d α=sin()2|3πα=+-.当且仅当2()6k k Z παπ=+∈时,()d α,此时P 的直角坐标为31(,)22.24.(本小题满分10分) 解:(Ⅰ)当2a =时,()|22|2f x x =-+. 解不等式|22|26x -+≤,得13x -≤≤. ∴()6f x ≤的解集为236 {|13}x x -≤≤.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++- |212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立, ∴当x R ∈时,()()3f xg x +≥等价于|1|3a a -+≥. ① 当1a ≤时,①等价于13a a -+≥,无解. 当1a >时,①等价于13a a -+≥,解得2a ≥.∴a 的取值范围是[2,)+∞.。
15~16高数期中考

(
oe
r
.
,
3
1 Bd x
y' =
x
( u r »)
>
t
2
/
T eo
)
< x 1 JL o · e 1
:1 I
c ,
a i f *o )
@ 354 b
.
,
壮 舌 汝 ·
·
乙
··
Lw
¥
1A
::
00
71 po
1乇 亡 Q 呻 w /
飞弦直 芍
币小 结牡 代 ·
A
0)= 0
五 某地区防空洞的截面拟建成矩形加半圆 ( 见图) 截面的面积为 6 2 问底
则存在 C E (0, 1) 使 F (C) = 0
( 12 分)
> W W / e t * ,
Cor Ï J
· ·+ ° l+ x
六 +
·
千 均
·!
彐
,
¢ I L Ë t
竹 他 I r
°"
r{
4
3 当X
O 时 (1 C0 Sx ) l n (1+ 3× Z ) 是比X a r c t a n x ( n 为正整数 ) 高阶的无穷小 而 X a r c t a n c x
是 比 e 1高阶的无 穷小 则 n - 2
2
4 设 f (x ) =
, 贝rj l im f ( x )=
;:
lim f (x )=
睾 X ) 求
6
h
3× + 2
" 0旧
求y
:::
·
= y : =j
2016级高等数学I(1)试卷(A)评分标准

令
S
(t
)
0
得驻点
t
4
.
⑦
S(0) 1,
S
4
2 1,
S
2
2
1,
⑨ O
由于 2 1 1 1, 2
故当
t
0
时
S
最大,
当
t
4
时
S
最小.
⑩
y sin x
t
/2 x
本题 得分
七、(本题满分 6 分)设常数 a 0, 函数 f (x) 在闭区间[a, a] 上可微且 | f (x)| 1, 又
江南大学考试卷专用纸
2016 级高等数学 I(1)考试卷(A)
使用专业、班级
题号
一
二
得分 阅卷人
学号
三
四
姓名
五
六
七
l
总分
(2)
设
x y
ln cost, sin t t
cos
t,
求 dy dx
x 3
和 d2 y dx2
x . 3
dy dx
cos t
cost sin t
t
sin t
t
cos t,
cos t
③
dy dx
x 3
6
;
④
d2 y cost t sin t cost cot t t cost,
dx2
sin t
cos t
⑦
d2 y dx2
x 3
高等数学考试试卷

高等数学考试试卷一、选择题(每题3分,共30分)1. 函数f(x)=x^2-1在x=2处的导数是:A. 2B. 4C. 3D. 52. 函数y=sin(x)的周期是:A. πB. 2πC. π/2D. 4π3. 若f(x)=2x+3,g(x)=x^2-1,求f(g(x))的导数:A. 2xB. 4x-1C. 2x^2D. 2x+14. 以下哪个级数是收敛的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 1 + 1 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 + 2 + 4 + 8 + ...5. 微分方程dy/dx + 2y = 6x的通解是:A. y = 3x^2 + CB. y = 2x + CC. y = x^2 + CD. y = 6x^2 + C6. 曲线y=x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 47. 函数f(x)=x^3-6x^2+11x-6的极值点是:A. x=1B. x=2C. x=3D. x=48. 以下哪个是二阶偏导数连续的充分条件?A. 函数f(x,y)在点(x0, y0)处可微B. 函数f(x,y)在点(x0, y0)处连续C. 函数f(x,y)在点(x0, y0)处一阶偏导数存在D. 函数f(x,y)在点(x0, y0)处二阶偏导数存在9. 以下哪个积分是发散的?A. ∫(0,1) 1/x dxB. ∫(0,1) x dxC. ∫(0,1) e^x dxD. ∫(0,1) sin(x) dx10. 以下哪个是泰勒级数展开的公式?A. f(x) = Σ[a_n * (x - x0)^n]B. f(x) = Σ[a_n * x^n]C. f(x) = Σ[a_n * (x - 1)^n]D. f(x) = Σ[a_n * (1 - x)^n]二、填空题(每题2分,共20分)11. 若f(x)=x^2+1,则f'(x)=________。
高等数学期中考试试卷及答案

高等数学期中考试试卷及答案XXX2005-2006学年第一学期高等数学期中考试试卷一、判断题(每题2分,共10分)1、若数列{x_n}收敛,数列{y_n}发散,则数列{x_n+y_n}发散。
(×)2、limf(x)存在的充分必要条件是limf(x+)和limf(x-)都存在。
(×)3、limx→1 sin(πx/2) = limx→1 πx/2 = π/2.(√)4、limx→∞ sinx/x = 0.(√)5、若f(x)在闭区间[a,b]上有定义,在开区间(a,b)内连续,且f(a)·f(b)<0,则f(x)在(a,b)内有零点。
(√)二、填空题(每题2分,共10分)1、已知f'(3)=2,则lim(h→0) [f(3-h)-f(3)]/h = 2.(答案为2)2、y=π+xn+arctan(x),则y'|x=1 = n+1.(答案为n+1)3、曲线y=e^x在点(0,1)处的切线与连接曲线上两点(0,1),(1,e)的弦平行。
(答案为(1.e^1))4、函数y=ln[arctan(1-x)],则dy/dx = -1/(x^2-2x+2)。
(答案为-1/(x^2-2x+2))5、当x→0时,1-cosx是x的阶一无穷小。
(答案为x^2/2)三、单项选择题(每题2分,共10分)1、数列有界是数列收敛的(必要条件)。
2、f(x)在x=x处有定义是limx→x f(x)存在的(必要条件)。
3、若函数f(x)=(x-1)^2/2(x+1),则limx→1 f(x)≠f(1)。
(以上等式都不成立)4、下列命题中正确的是(无界变量必为无穷大)。
5、lim(n→∞) (1+1/n)^n+1000的值是(e^1000)。
四、计算下列极限(每题6分,共18分)1、lim(x+1-x^-1) = 2.2、lim(x→+∞) [sec(x)-cos(x)]/x = 0.3、lim(x→0) ln(1+x^2)/x = 0.五、计算下列各题(每题6分,共18分)1、y=e^(sin^2x)。
高等数学1期中考试试题参考答案

《高等数学(Ⅰ)》试卷学院:______ 班级:_____学号:________姓名:________任课教师:_____一、选择题(每题2分,共16分)1、 下列极限存在的是…………………………………………………………( ) (A )xx 21l i m ∞→(B ) 1310lim -→x x (C ) e x 1l i m ∞→ (D ) xx 3lim ∞→2、0)(lim =→x f ax ,∞=→)(lim x g ax ,则下列不正确的是…………………………( )(A ) ∞=+→)]()([lim x g x f ax (B ) ∞=→)]()([lim x g x f ax(C ) 0][lim )()(1=+→x g x f ax (D ) 0)](/)(lim[=→x g x f ax3、,0)(lim >=→A x f ax ,0)(lim <=→B x g ax 则下列正确的是…………………………( )(A ) f (x )>0, (B ) g(x )<0, (C ) f (x )>g (x ) (D )存在a 的一个空心邻域,使f (x )g (x )<0。
4、已知, ,2lim)(0=→xx f x 则=→)2x (sin3x 0limf x ………………………………………………( )(A ) 2/3, (B ) 3/2 (C ) 3/4 (D ) 不能确定。
5、若函数在[1,2]上连续,则下列关于函数在此区间上的叙述,不正确的是……( ) (A ) 有最大值 (B ) 有界 (C ) 有零点 (D )有最小值6、下列对于函数y =x cos x 的叙述,正确的一个是………………………………………( ) (A )有界,且是当x 趋于无穷时的无穷大,(B )有界,但不是当x 趋于无穷时的无穷大, (C ) 无界,且是当x 趋于无穷时的无穷大,(D )无界,但不是当x 趋于无穷时的无穷大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
du
.
2.对于二元函数 f ( x, y) ,在定义域 D 上总有 f x f y 0, 且 f (1,1) 3, 则
f (x, y)
.
3.
求二元函数的极限
lim
( x, y)(1,0)
x sin y x2 1
4.I=Biblioteka edxln x f (x, y)dy ,交换积分次序得 I=
1
0
5. 设 f(x+y, y )=x2—y2,则 f(x,y)= x
2. T 表示圆柱螺线 x 2cos t, y 2sin t, z 4t 在 t 所对应点处的单位
切向量,a (1,1,1) ,则T a 为
(
)
A -2
B -1
C1
D2
5
3. 下列哪个微分方程不是关于 y 的二阶齐次线性微分方程
(
)
A 2 y 4xy y 0
C
d 2 y dy x dx2 dx y 0
总分 总分人
得分 评分人
一、选择题(本大题共 5 小题,每题 3 分,共 15 分) 1. 若 函 数 z ln(x 1 y) 1 , 则 该 函 数 定 义 域 为
3 xy
A y x1
(
)
B y x 1 或 xy 0
C y x 1 且 xy 0
D y x 1 e 且 xy 0
B 4 x2( y 1)dxdy
D4
C 4 x2dxdy
D1
D x2dxdy D
5. 关于函数 f(x,y)在同一点,下列说法正确的是
(
)
A 可微必连续
B 连续必有偏导存在
C 偏导存在必连续
D 偏导存在则沿所有方向的方向导数都存在
得分 评分人
二、填空题(本大题共 5 小题,每题 3 分,共 15 分) 1. 已 知 函 数 u ex cos( y z) , 则 全 微 分 为
得分 评分人 体积.
四、综合题(本大题共 4 小题,每题 4 分,共 16 分)
1.计算由曲面 x2 y2 8 z, z x2 y2 所围成区域的 4
5/6
2. 设 z xf (x2 y 2 ) ,f 为可导函数,证明: x z y z y z . y x x
3. 设函数 f (x) 在[a,b] 上连续,试证明
b dx
x (x y)n2 f ( y)dy
1
b (b y)n1 f ( y)dy
a
a
n 1 a
4. 求 f(x,y,z)=lnx+lny+3lnz 在球面 x2+y2+z2=5R2(x 0 ,y 0 ,z 0 )上的最大值.
6/6
.
. .
得分 评分人 法线方程.
三、计算题(本大题共 9 小题,每题 6 分,共 54 分)
1.求曲面 x2 xy y2 z 0 在点 P0(1,1, 1)的切平面与
2/6
2. 已 知 函 数 y f( x) ( x 0所) 确 定 的 曲 线 过 点 (2,1) , 且 满 足 x dy 2 y x3 ,试求 f ( x) .
dx
3. 求 直 线 x 2t 1, y 3t 2, z 4t 3 与 直 线 x 2s , y 2s 的4 交z点, ,并求两s 直线4所确定的1平面.
4.计算 xdv ,其中Ω 为 z x2 y2 与 z=1 所围立体.
3/6
5.计算 f ( x, y) sin xy 的一阶偏导及 2 f .
B y y2 0
D
d2y ln t dt 2 y 0
1/6
4. 对于二重积分 I x2( y 1)dxdy,其中 D 表示由 x2 y2 1 与
D
4
y x , y x 所围区域, D1, D4 分别表示 D 在第一、四象限所在区域,则
下列哪个与之不等
(
)
A 2 x2( y 1)dxdy D1 D4
学院 数 计 制卷份数
出卷教师 向彩容 系主任签名 专 业 2016 级工科,本科 班级编号
江汉大学 2016——2017 学年第 2 学期
期中考试试卷
课程编号: 410801002 课程名称: 高
试卷类型:A 、B 卷 考试形式:开 、闭
题号
一
二三
四
得分
等 数 学 Ⅰ(2) 卷 考试时间:120 分钟
xy 6.求函数 z x3 y3 3 xy 的极值.
7. 若 D 是由圆心在原点,半径为 2 的圆盘区域,求 e x2 y2 d 。 D
4/6
8. 求微分方程 y" y sin 2x 的通解.
9. 求函数 z xe2y 在点 P(1, 0)处沿从点 P(1, 0)到点 Q(2, —1)方向的方向导数