BTA16双向可控硅学习资料

合集下载

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Triode Thyristor,简称BTT)是一种特殊的可控硅器件,其工作原理和应用领域在电力电子领域具有重要意义。

本文将详细介绍双向可控硅的工作原理,并提供相应的原理图。

一、双向可控硅的工作原理双向可控硅是一种四层PNPN结构的半导体器件。

它由两个PN结组成,每一个PN结都有一个控制极和一个主极。

其工作原理如下:1. 静态工作原理:当双向可控硅两个主极之间的电压为正向时,即正向工作状态,两个PN结之间的结电容会妨碍电流的流动,双向可控硅处于关断状态。

当双向可控硅两个主极之间的电压为反向时,即反向工作状态,两个PN结之间的结电容充电,当电压达到一定的阈值时,双向可控硅会进入导通状态。

2. 动态工作原理:当双向可控硅处于导通状态时,惟独当两个主极之间的电流方向与PN结的导通方向一致时,双向可控硅才干正常导通。

当双向可控硅导通后,惟独当两个主极之间的电流方向与PN结的导通方向相反时,双向可控硅才干正常关断。

二、双向可控硅的原理图下面是一种常见的双向可控硅的原理图,用于说明其电路连接方式和控制方式。

```+----|>|----|>|----+| || || |+----|<|----|<|----+```在上述原理图中,两个箭头表示双向可控硅的两个主极,箭头方向表示电流的流动方向。

两个箭头之间的线段表示PN结。

三、双向可控硅的应用领域双向可控硅由于其双向导通的特性,在电力电子领域有广泛的应用。

以下是一些常见的应用领域:1. 交流电控制:双向可控硅可以用于交流电的控制,例如交流电的调光、机电的调速等。

2. 电力系统:双向可控硅可以用于电力系统中的电压和电流控制,例如电力调度、电力传输等。

3. 电力电子变换器:双向可控硅可以用于电力电子变换器中的电流控制,例如直流-交流变换器、交流-直流变换器等。

4. 光伏发电系统:双向可控硅可以用于光伏发电系统中的电流控制,例如光伏逆变器、光伏充电控制器等。

BT 双向可控硅中文资料

BT 双向可控硅中文资料
10.5 0.47 14 0.85
2.9 2.8 1.3 16.1
T2+ GT2- G-
T2- G+
T2+ G+
控制极触发电压
T2+ GT2- G-
T2- G+
VDRM IDRM VRRM IRRM VTM IH
IGT
VGT
测试条件
ID= 0.1mA VDRM= 520V ID= 0.1mA VRRM= 520V
IT= 6A IT= 0.1A;IGT= 20mA
VAK= 12V;RL= 100Ω
最小值
8.8 9.5 4.2 1.2 φ3.4
9.5 0.43 13 0.75
2.7 2.7 1.2 15.7
深圳市商岳电子有限公司
典型值
9 10 4.5 1.25 φ3.6 2.54 10 0.45 13.5 0.8 5.08
2.8 2.75 1.25 15.9
最大值
9.2 10.5 4.8 1.3 φ3.8
VD= 12V;RL= 100Ω
规范值
最小值 最大值 600 10 600 10 1.7 15 6 6 6 15 1.5 1.5 1.5 1.8
单位
V µA V µA V mA
mA
V
深圳市商岳电子有限公司
TO - 220 外形尺寸图
单位:mm
符号
A B C D F G H J K L N P Q R S Z
名称
符号
VDRM VRRM
IT I TSM Tjm Tstg
额定值
600 600
4 40 110 - 55 ~ 150
单位
V V A A ℃ ℃

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Switching Thyristor,简称BST)是一种具有双向导通能力的半导体器件。

它在电力控制、电子调光、机电控制等领域有广泛的应用。

本文将详细介绍双向可控硅的工作原理及原理图。

一、工作原理双向可控硅由四个PN结组成,分别是两个P区和两个N区。

它具有两个控制极,即门极G和门极G'。

当G极和G'极之间施加正向电压时,双向可控硅处于导通状态;当G极和G'极之间施加反向电压时,双向可控硅处于关断状态。

在导通状态下,当正向电压施加在A极,负向电压施加在K极时,双向可控硅处于正向导通状态;当正向电压施加在K极,负向电压施加在A极时,双向可控硅处于反向导通状态。

换言之,双向可控硅可以实现双向导通。

双向可控硅的导通状态由控制极G和G'之间的电压决定。

当控制极G和G'之间的电压超过一定阈值时,双向可控硅将开始导通。

此时,只需保持控制极之间的电压在一定范围内,双向可控硅将向来保持导通状态。

二、原理图下面是一种常见的双向可控硅的原理图:```+-------+| |A--+ +--K| |G--+ +--G'| |+-------+```在上述原理图中,A极和K极分别表示双向可控硅的两个电极,G极和G'极分别表示双向可控硅的两个控制极。

三、应用示例1. 电力控制:双向可控硅可以用于电力控制领域,如电炉温控、电动机控制等。

通过控制控制极G和G'之间的电压,可以实现对电力的精确控制。

2. 电子调光:双向可控硅可以用于电子调光领域,如室内照明控制、舞台灯光控制等。

通过控制控制极G和G'之间的电压,可以实现对灯光亮度的调节。

3. 机电控制:双向可控硅可以用于机电控制领域,如直流机电控制、交流机电控制等。

通过控制控制极G和G'之间的电压,可以实现对机电的启停和转速控制。

以上仅为双向可控硅的工作原理及原理图的简要介绍。

双向可控硅

双向可控硅

通态均方根电流为16A
触发电流分档序号:B:IGT1~IGT3 50mA Max C:IGT1~IGT3 25mA Max
2

产品外形尺寸图 TO-220AB封装外形图
双向可控硅 BTA16、BTB16系列产品规格书
尺寸数据表(单位:mm):
符号
A
B
C
D
Semiwill Electronics Technology Limited
联系信息
望爵电子科技(上海)有限公司 Semiwill Electronics Technology Limited 地址:上海闵行漕河泾浦江创新科技园7B栋4楼 电话:86-21-34637172 传真:86-21-34637173 邮箱:sales@ 网址:
符号 Tcase Tstg
Tj VDWM VRWM VDRM VRRM IT(RMS)
ITSM
I2t di/dt
IGM PG(AV)
最小值 -40 -40 -40
数值 最大值 125 150 125 480 480 600 600 16
160 168 144
50
4
1
单位 ℃ ℃ ℃ V V A
A A2S A/uS
120
25
50
50
100
1.3
mA
mA V V V/uS
热阻
名称 热阻(结至壳温的最大值) 型号说明
符号 Rth(j-c)
BT A 16
数值 1.2/2.1
单位 ℃/W
可控硅产品
A:绝缘材料 B:非绝缘材料
600 B
阻断电压≥600V Semiwill Electronics Technology Limited

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(SCR)是一种半导体器件,常用于交流电路中的功率控制和开关。

它具有双向导通性,可以控制交流电路中的电流,从而实现电路的开关和调节。

本文将介绍双向可控硅的工作原理及原理图。

一、双向可控硅的基本结构1.1 门极:双向可控硅的门极用于控制器件的导通和关断。

1.2 主极:主极是双向可控硅的两个极性端,用于连接电路中的电源和负载。

1.3 控制电路:控制电路通过对门极施加控制信号,控制双向可控硅的导通和关断。

二、双向可控硅的工作原理2.1 导通状态:当双向可控硅的门极接收到正向触发脉冲时,器件将进入导通状态,电流可以从主极1流向主极2。

2.2 关断状态:当双向可控硅的门极接收到负向触发脉冲时,器件将进入关断状态,电流无法通过器件。

2.3 双向导通性:双向可控硅具有双向导通性,可以控制交流电路中的电流方向。

三、双向可控硅的应用3.1 交流电源控制:双向可控硅常用于交流电源控制中,可以实现对电路的精确调节和开关控制。

3.2 电动机控制:双向可控硅可以控制电动机的启动、停止和速度调节,广泛应用于工业控制领域。

3.3 灯光调节:双向可控硅可以用于调节灯光的亮度,实现灯光的调光功能。

四、双向可控硅的原理图4.1 主极1:连接电源的正极。

4.2 主极2:连接电路中的负载。

4.3 门极:用于接收控制信号。

五、双向可控硅的优点5.1 高效率:双向可控硅具有低导通压降和高导通能力,能够实现高效的电路控制。

5.2 可靠性:双向可控硅的结构简单,工作稳定可靠,长寿命。

5.3 灵活性:双向可控硅可以实现对电路的精确控制,适用于各种功率控制和开关应用。

总结:双向可控硅是一种重要的半导体器件,具有双向导通性和精确控制能力,广泛应用于交流电路中的功率控制和开关。

掌握双向可控硅的工作原理及原理图,对于电路设计和控制具有重要意义。

bta16-800b可控硅工作原理

bta16-800b可控硅工作原理

文章内容如下:bta16-800b可控硅工作原理一、引言bta16-800b可控硅是一种常见的半导体器件,广泛应用于电力电子领域。

其工作原理涉及到电力控制、电路设计等多个方面,是一个非常重要的主题。

本文将从电子器件特性、工作原理和应用范围等方面进行全面评估,并结合个人观点和理解,撰写一篇有价值的文章,帮助读者更深入地理解bta16-800b可控硅的工作原理。

二、bta16-800b可控硅的特性bta16-800b可控硅是一种双向可控硅,具有较高的电压和电流承受能力,适用于交流电路。

其主要特性包括低功率损耗、可控性强、响应速度快等。

在电力控制领域,bta16-800b可控硅被广泛应用于各种类型的电力调节装置和电路中。

三、bta16-800b可控硅的工作原理1. 可控硅的结构和原理bta16-800b可控硅通常由PNP结构组成,其工作原理是利用控制极的触发电压,通过控制极和主极之间的电压来控制器件的导通和关断。

当控制极触发电压大于一定阈值时,可控硅将导通;当电压降至一定程度时,可控硅将关断。

这种特性使得可控硅可以被广泛应用于电力调节和开关控制中。

2. bta16-800b可控硅的工作原理bta16-800b可控硅的工作原理是基于PNP结构的双向可控硅。

当控制极施加一个触发脉冲信号时,可控硅将进入导通状态,电流将从主极流向控制极;当控制极的触发脉冲信号停止时,可控硅将进入关断状态。

这种双向可控硅的特性使得其适用于交流电路中的功率控制和开关控制。

四、bta16-800b可控硅的应用范围bta16-800b可控硅主要应用于电力电子领域,包括交流调压调速系统、电炉控制系统、交流电源控制系统等。

其高可靠性和稳定性,使得bta16-800b可控硅在工业控制和电力系统中发挥着重要作用。

五、个人观点和理解作为一名电力电子工程师,我对bta16-800b可控硅的工作原理有着深刻的理解。

在我看来,bta16-800b可控硅作为一种高性能的双向可控硅,其在电力控制领域的应用前景广阔。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bidirectional Controlled Silicon, BCR)是一种常用的电子器件,广泛应用于电力电子领域。

它具有双向导通的特性,可以控制交流电的正、反向导通和截止,从而实现对电流的控制。

本文将详细介绍双向可控硅的工作原理和原理图。

一、双向可控硅的工作原理双向可控硅由两个PNPN结构的晶体管组成,分别为正向PNPN结构和反向PNPN结构。

当双向可控硅的两个极端施加正向电压时,正向PNPN结构的PN结会导通,电流会从正向PNPN结的P区注入到N区,然后再通过反向PNPN结的N区注入到P区,最终形成P区的电流输出。

反之,当施加反向电压时,反向PNPN结的PN结会导通,电流则从反向PNPN结的P区注入到N区,再通过正向PNPN结的N区注入到P区,实现P区的电流输出。

因此,双向可控硅可以实现正、反向电流的导通和截止。

双向可控硅的导通需要通过控制电流注入或截止来实现。

通常使用一个触发脉冲来控制双向可控硅的导通。

当触发脉冲的幅值高于双向可控硅的触发电压时,双向可控硅会导通。

在导通状态下,双向可控硅的电压降低,形成一个低电阻通路,电流可以通过。

当触发脉冲的幅值低于双向可控硅的触发电压时,双向可控硅会截止,形成一个高电阻状态,电流无法通过。

二、双向可控硅的原理图双向可控硅的原理图如下所示:```+--------|>|--------+| BCR |+--------|<|--------+```在原理图中,BCR代表双向可控硅。

箭头表示PNPN结的正向或反向导通方向。

双向可控硅的两个极端分别连接到电路的输入和输出。

通过控制输入电路中的触发脉冲,可以实现对双向可控硅的导通和截止控制。

三、双向可控硅的应用双向可控硅广泛应用于电力电子领域,特别是交流电调制控制和电力控制系统中。

以下是一些常见的应用场景:1. 交流电调制控制:双向可控硅可以用于交流电的调制控制,通过控制双向可控硅的导通和截止,可以实现对交流电的调制,改变电流的波形和幅值。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bidirectional Controlled Silicon, BCR)是一种常用的电子元件,广泛应用于交流电路的控制和调节。

它具有双向导通的特性,可以实现对交流电的整流和控制。

本文将详细介绍双向可控硅的工作原理及原理图。

一、双向可控硅的工作原理:双向可控硅是一种双向开关,它由四个层次相互交叉的PNPN结构组成。

其中,P1、N1、P2、N2分别代表四个不同的半导体材料层。

双向可控硅的工作原理基于PNPN结构的特性。

当双向可控硅的控制端施加正向电压时,控制端与主电路之间的PN结会被击穿,形成一个低阻态。

此时,双向可控硅处于导通状态,可以传导电流。

当主电路中的电压为正向时,双向可控硅的导通方向与电压方向一致,电流可以正常传导。

当主电路中的电压为反向时,双向可控硅的导通方向与电压方向相反,此时双向可控硅处于关断状态,电流无法通过。

双向可控硅的关断状态可以有效阻断电流,起到控制和调节的作用。

二、双向可控硅的原理图:下面是一种常见的双向可控硅的原理图示例:```+----|>|----+| |A1 | | A2| |+----|<|----+```在上述原理图中,A1和A2分别代表双向可控硅的两个控制端。

双向可控硅的主电路连接在A1和A2之间。

当A1和A2之间施加正向电压时,双向可控硅处于导通状态,电流可以正常通过。

当A1和A2之间施加反向电压时,双向可控硅处于关断状态,电流无法通过。

三、双向可控硅的应用:双向可控硅广泛应用于交流电路的控制和调节。

以下是几个常见的应用场景:1. 交流电压调节:通过控制双向可控硅的导通或关断状态,可以实现对交流电压的调节。

例如,可以利用双向可控硅将交流电压进行调整,以满足不同电器设备的工作要求。

2. 交流电流控制:双向可控硅还可以用于控制交流电路中的电流大小。

通过调节双向可控硅的导通角度,可以实现对电流的控制。

这在一些需要精确控制电流的应用中非常有用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

器件型号:BTA16-600
封装形式: TO-220
脚位排列: T1-T2-G (A1-A2-G);A1主电极,A2主电极,G门极
BTA16引脚图
主要参数:
电流-IT(RMS): 16.0A
电压-VDRM: ≥600V
触发电流: IGT ≤18-25mA
附:
双向可控硅的检测
用万用表电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。

若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。

确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。

将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。

再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约10欧姆左右。

随后断开A2、G间短接线,万用表读数应保持10欧姆左右。

互换红、黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。

同样万用表指针应不发生偏转,阻值为无穷大。

用短接线将A2、G极间再次瞬间短接,给G极加上负的触发电压,A1、A2间的阻值也是10欧姆左右。

随后断开A2、G极间短接线,万用表读数应不变,保持在10欧姆左右。

符合以上规律,说明被测双向可控硅未损坏且三个引脚极性判断正确。

检测较大功率可控硅时,需要在万用表黑笔中串接一节1.5V干电池,以提
高触发电压。

相关文档
最新文档