火电厂煤种的混配
燃煤掺配技术措施

燃煤掺配技术措施1.煤炭种类掺配:选择热值相近的煤炭进行掺配,以保持锅炉的稳定燃烧状态。
常见的种类掺配方法有高热值煤与低热值煤掺配,危化煤与无烟煤掺配等。
通过煤种掺配可以提高燃烧效率,降低煤耗和污染物排放。
2.煤炭粒度掺配:根据锅炉的燃烧特性和煤粉的旋流燃烧器的规格,选择适当的煤粒度进行掺配。
煤粉的粒度大小影响煤粉的燃烧速度和燃烧效果,对燃煤锅炉的燃烧效率和环境排放均有影响。
合理控制煤粉的粒度,掺配不同粒度的煤粉,可以提高燃烧效率和燃尽率,减少燃烧过程中的污染物排放。
3.煤炭性质掺配:根据不同煤炭的挥发份、灰分、硫分等特性,选择不同性质的煤炭进行掺配。
例如,高硫煤和低硫煤掺配可以降低燃烧过程中的SO2排放;高灰煤和低灰煤掺配可以降低煤灰的产量,减少锅炉结渣和堵塞问题;高挥发份煤和低挥发份煤掺配可以改善煤粉的燃烧性能,提高锅炉燃烧效率。
4.煤炭化学成分掺配:根据燃烧过程中的氧化还原反应要求,选择煤炭中含有适当氢氧比和C/S的煤进行掺配。
适当的氢氧比可以提供足够的燃烧温度和燃烧里,确保充分燃烧;合理的C/S比可以保证锅炉燃烧过程中的氧化还原反应均衡,减少CO和NOx的生成和排放。
5.燃煤掺配比例控制:根据煤炭质量和实际需要,确定合适的煤种掺配比例。
掺配比例的合理控制可以保证燃烧过程的稳定性和可控性,提高燃烧效率和降低污染物排放。
总之,燃煤掺配技术是一种能够提高煤炭的综合利用效益、降低锅炉污染物排放、降低能源消耗的技术手段。
通过合理的掺配,可以提高煤炭的燃烧效率、减少渣化物生成、降低污染物排放水平、降低能耗,对于实现清洁能源利用、改善环境质量具有重要意义。
浅谈火力发电厂配煤掺烧

浅谈火力发电厂配煤掺烧火力发电厂是一种通过燃烧煤炭、燃气或石油等化石能源来产生电力的设施,是中国主要的能源发电方式之一。
而随着环保意识的提高和能源结构的调整,火力发电厂也逐渐开始引入清洁能源和技术,其中配煤掺烧技术被广泛应用于火力发电厂。
本文就浅谈火力发电厂配煤掺烧的相关知识。
火力发电厂配煤掺烧是指在传统的燃煤锅炉中添加部分生物质燃料或者废弃物等可再生资源,以降低燃煤的碳排放、提高发电效率和资源利用率的一种技术。
配煤掺烧技术能够有效地减缓大气污染的程度、降低火力发电厂的环境影响,同时也有利于提高火力发电的清洁度和可持续发展性。
火力发电厂配煤掺烧技术的关键在于选用合适的生物质燃料或废弃物,并且确定合理的混合比例。
目前常见的生物质燃料包括秸秆、木屑、锯末、木质料、稻壳等,在一定程度上也可以使用沼气、城市垃圾焚烧渣、生活污泥等废弃物。
选择适宜的生物质燃料资源对配煤掺烧的效果至关重要,不仅需要考虑其可再生性和环保性,还需要考虑其供应稳定性和经济性。
与此合理的混合比例也需要通过严谨的科学研究和实验数据来确定,以确保火力发电厂的运行平稳和稳定。
火力发电厂配煤掺烧技术的优势主要体现在以下几个方面。
配煤掺烧可以有效减缓燃煤锅炉的碳排放,从而降低大气污染物的排放量,有利于改善空气质量。
生物质燃料和废弃物的加入可以提高燃煤的燃烧效率,减少燃料成本和减少二氧化碳的排放。
配煤掺烧可以减少对传统能源的依赖,促进清洁能源的发展和利用。
配煤掺烧技术还可以有效利用可再生资源和废弃物,起到节能减排和资源循环利用的作用。
火力发电厂配煤掺烧技术也存在一些挑战和问题需要解决。
生物质燃料和废弃物的质量和供应稳定性难以保证,这在一定程度上限制了配煤掺烧技术的推广应用。
配煤掺烧需要对燃煤锅炉进行改造和优化,投入成本较高,需要通过长期的投资回报才能实现经济效益。
配煤掺烧技术还需要解决生物质燃料和废弃物的运输、储存和管理等技术问题,以确保供应的稳定和可靠性。
火电厂配煤掺烧分析研究

火电厂配煤掺烧分析研究1. 引言1.1 背景介绍随着我国工业化进程的加快和城市化进程的不断扩大,能源消耗量不断增加,对环境的影响也日益加重。
火电厂作为我国主要的电力供应设施之一,其对环境的污染程度和能源消耗量也备受关注。
为了实现节能减排、保护环境的目标,火电厂配煤掺烧技术逐渐被引入。
配煤掺烧是指在火电厂燃烧过程中,将不同种类的煤炭混合使用。
通过合理搭配不同种类的煤炭,可以达到提高燃烧效率、减少污染物排放、节约能源等效果。
配煤掺烧技术的研究和应用,对于提高火电厂的燃烧效率、降低排放量、减少能源消耗具有重要意义。
本文旨在探讨火电厂配煤掺烧技术的实际应用情况,分析其优势和影响因素,为火电厂的环保降耗提供理论支持和实践指导。
通过对火电厂配煤掺烧技术的研究,进一步推动我国能源结构调整和节能减排工作的开展,实现可持续发展的目标。
1.2 研究意义煤炭作为我国主要的能源资源之一,在火电厂中占据着非常重要的地位。
随着环保意识的增强和能源结构调整的要求,火电厂配煤掺烧技术逐渐引起了研究者的关注。
配煤掺烧技术可以有效地改善燃煤发电的环保性能,减少污染物的排放,提高燃煤资源的利用效率,具有重要的实践意义和应用前景。
火电厂配煤掺烧技术的研究意义主要包括以下几个方面:配煤掺烧技术可以降低火电厂的燃煤成本,提高能源利用效率。
通过合理地选择不同种类的煤炭进行掺配燃烧,可以实现燃煤资源的互补利用,减少对高成本煤种的依赖,降低生产成本。
配煤掺烧技术可以减少火电厂的污染物排放。
掺烧高氮低硫煤可以有效减少氮氧化物的排放,掺烧高硫煤可以降低二氧化硫的排放,从而减少对大气环境的污染。
配煤掺烧技术可以提高火电厂的大气效率,降低温室气体排放,适应我国低碳经济发展的需求。
通过将不同种类的煤炭进行掺配燃烧,可以提高锅炉燃烧效率,减少二氧化碳的排放,促进火电厂向清洁、低碳的方向发展。
研究火电厂配煤掺烧技术的意义在于提高能源利用效率、减少环境污染、促进能源结构调整,对推动火电厂可持续发展具有重要的意义。
火电厂入炉配煤掺烧管理

火电厂入炉配煤掺烧管理发布时间:2021-06-22T05:19:29.057Z 来源:《中国电业》(发电)》2021年第5期作者:刘欣[导读] 国家能源菏泽发电有限公司一期两台125MW机组,设计煤种为山西晋城和长治地方煤矿的混煤,其中无烟煤占1/3、贫煤占2/3,现脱氮改造为烟煤,但制粉系统无变化。
国家能源集团菏泽发电有限公司摘要:针对煤种变化对火电厂机组燃烧造成的影响,大力开展入炉煤掺配,积极适应电煤资源结构变化的影响,降低发电成本,合理的配煤掺烧是保证机组安全运行的重要手段。
关键词:火电厂、配煤掺烧、运行管理、节能、技术措施1概述国家能源菏泽发电有限公司一期两台125MW机组,设计煤种为山西晋城和长治地方煤矿的混煤,其中无烟煤占1/3、贫煤占2/3,现脱氮改造为烟煤,但制粉系统无变化。
二期工程装机容量为2×300MW,设计煤种为山西晋中地区无烟煤;三期工程装机容量为2×330MW,锅炉设计燃煤为烟煤。
国家能源菏泽发电有限公司是目前菏泽市唯一一家城市供热热源。
电厂的燃煤运输条件为,13公里的铁路货运专线为主,当地煤矿公路汽车运输为辅。
近些年来,由于煤炭行业矿难频发,国家对煤矿的整顿进一步加大力度,随着小煤矿的关停,全国的煤炭供应日趋紧张。
面对严峻的形式,采购环节也“饥不择食”,煤源由原来相对单一的矿点转向多个煤矿,煤炭质量较以往有很大的变化,煤种杂、煤质差,入厂来煤质量严重偏离锅炉的设计煤种,燃料采购成本和运价持续上升。
来煤煤种参差不齐、花样繁多的变化出现的“五谷杂粮”,不仅增加了卸车、输煤系统、锅炉系统的负担,更因堵煤粘仓设备故障显著增加,值班人员劳动强度明显加大,工作环境有所恶化,而且造成锅炉燃烧运行困难,出现了燃烧不稳定,严重结焦的情况。
如何根据不同特性的来煤进行有效的掺烧、消除煤质差、煤质上下波动大对锅炉安全运行带来的威胁,成了我们面临的一大课题。
2煤质和煤种的变化对锅炉系统安全经济运行的影响首先对煤质不同成分对锅炉燃烧的影响进行全面分析,提出应对措施,保证锅炉安全平稳运行。
火电厂配煤掺烧分析研究

火电厂配煤掺烧分析研究1. 引言1.1 研究背景随着工业化和城市化的快速发展,我国对能源的需求持续增长。
在以煤为主要能源的情况下,燃煤火电厂作为重要的电力供应方式,也成为我国能源结构中不可或缺的组成部分。
燃煤火电厂在发电过程中会产生大量的烟气排放,其中包含了大量的二氧化硫、氮氧化物、颗粒物等对环境和人类健康有害的物质。
为了降低燃煤火电厂的环境影响,提高能源利用效率,研究火电厂配煤掺烧技术成为当前的研究热点。
通过合理的配煤搭配和掺烧操作,可以降低烟气排放中的有害物质排放量,同时提高燃煤的利用率,实现资源的高效利用与环境保护的双赢局面。
燃煤火电厂配煤掺烧技术仍然处于探索阶段,对于不同煤种的搭配比例、掺烧方式等方面仍有待进一步研究和优化。
本研究旨在对火电厂配煤掺烧技术进行深入分析研究,探讨其在环境保护和能源利用方面的作用与价值,为我国火电厂的可持续发展提供理论支持和技术指导。
1.2 研究目的研究目的是为了探讨火电厂配煤掺烧技术在提高热力系统效率、降低烟气排放、减少能源消耗等方面的应用和影响。
通过分析不同煤种的配煤对烟气排放的影响,研究火电厂掺煤比例的优化,探讨热力系统效率提升的措施,并通过实践案例分析,总结火电厂配煤掺烧技术的实际应用效果,为火电厂的可持续发展提供参考。
通过研究火电厂配煤掺烧技术的发展趋势,探讨对环境保护和能源利用的启示,为未来研究方向的展望提供理论支持。
通过本研究,旨在促进火电厂配煤掺烧技术的进一步发展和推广,实现能源效率和环境保护的双赢目标。
1.3 研究意义研究火电厂配煤掺烧技术可以有效提高火电厂的燃烧效率,降低燃煤造成的能源浪费,实现能源的有效利用。
通过研究火电厂配煤掺烧技术对烟气排放的影响,可以有效降低火电厂排放的污染物含量,减少对环境的污染。
优化火电厂燃煤掺煤比例可以降低生产成本,提高火电厂的竞争力和盈利能力。
研究火电厂配煤掺烧技术不仅具有重要的经济意义,更有着重要的环保和能源利用意义。
火电厂配煤掺烧分析研究

火电厂配煤掺烧分析研究火电厂配煤掺烧是指在燃烧过程中,同时使用多种不同的煤炭进行燃烧的一种技术。
这种技术可以提高火电厂的热效率,降低排放物的排放量。
火电厂是目前全球主要的发电方式之一,其主要原料为煤炭。
单一煤种的使用会导致火电厂燃烧过程中不充分燃烧,热损失增加,排放物增加等问题。
为解决这些问题,火电厂开始采用多种不同煤种的混合燃烧方式。
火电厂配煤掺烧的优点之一是可以提高热效率。
由于不同种类的煤炭在成分和特性上有所不同,因此混合使用可以增加燃烧的热值,提高燃烧效率。
掺烧还可以减少燃烧过程中的热损失,从而提高发电效率。
火电厂配煤掺烧还可以降低排放物的排放量。
不同种类的煤炭在硫分、灰分、挥发分等方面差异较大,因此混合使用可以平衡这些差异,降低排放物的含量。
特别是在减少二氧化硫排放方面,掺烧可以起到较好的效果。
火电厂配煤掺烧也可以降低对单一煤种的依赖程度。
由于不同种类的煤炭在资源分布和价格上存在差异,因此多煤种掺烧可以减少燃料成本的波动,提高火力发电的稳定性。
火电厂配煤掺烧也存在一些问题和挑战。
不同种类煤炭的混燃会对火电厂的燃烧设备造成一定的影响,需要进行适当的改造和调整。
掺烧需要进行煤炭配比的优化,不同比例的配烧会对燃烧效果产生不同的影响。
火电厂在实施掺烧技术时还需要考虑气候因素、煤炭供应的稳定性等问题。
综合以上分析,火电厂配煤掺烧是一种有效利用多种不同煤炭提高热效率和减少排放物的技术。
在实施中还需要克服一些技术和管理方面的困难,以确保其效果最大化。
我们可以通过进一步的研究和实践来不断完善和推广火电厂配煤掺烧技术,以促进火力发电的可持续发展。
浅谈火力发电厂配煤掺烧

浅谈火力发电厂配煤掺烧火力发电厂是利用燃料燃烧产生热能,然后将热能转化为电能的一种电厂。
而煤炭作为传统的火力发电厂主要燃料,一直以来都扮演着重要角色。
随着环境保护意识的增强和能源结构调整的不断深化,火力发电厂配煤掺烧成为了近年来备受关注的话题。
火力发电厂配煤掺烧,简单地说就是在传统的燃煤锅炉中添加其他生物质燃料或废弃物燃料进行掺混燃烧。
这种方式不仅可以减少对煤炭的需求,降低成本,还能减少煤炭燃烧排放的温室气体和污染物排放,达到节能环保的目的。
二、火力发电厂配煤掺烧的优势1. 节约能源资源:通过配煤掺烧,可以有效减少对煤炭的需求,节约能源资源。
尤其是可以利用一些废弃物或者农作物秸秆等生物质能源进行掺烧,充分利用资源,减少能源浪费。
2. 减少污染物排放:传统的燃煤锅炉会排放大量的二氧化硫、氮氧化物和颗粒物等污染物,对环境和人体健康造成极大影响。
而采用掺烧的方式可以减少煤炭燃烧排放的污染物浓度,减少对环境的污染。
3. 降低成本:生物质能源的价格相对于煤炭来说一般会更加低廉,而且部分生物质能源还属于废弃物资源,可以在一定程度上解决废弃物处理的问题,降低了成本。
4. 增加电站的运行灵活性:掺烧可以增加燃料的多样性,使得电站在面临原煤供应不足的情况下,可以通过增加生物质燃料的比例来保障电厂的正常运行,提高电厂的运行灵活性和可靠性。
5. 利于政策导向:随着环保政策的不断加码,采取环保措施将成为企业的必然选择。
而掺烧生物质燃料符合环保政策导向,有利于企业的可持续发展。
1. 燃烧稳定性:生物质燃料的燃烧性能和煤炭有很大不同,加入生物质燃料后,煤炭锅炉的燃烧过程往往会出现不稳定的情况,需要对燃烧系统进行调整和优化,以保证燃烧的稳定性和高效性。
2. 燃烧排放物控制:生物质燃料的燃烧排放物和煤炭也有所不同,对于掺烧后的燃烧排放物的控制要求会更加严格,需要进行更加精细的排放控制。
3. 燃料供给和储存:生物质燃料的供给和储存也面临诸多挑战,包括采购渠道、储存条件、保质期等问题,需要进行有效的管理和控制。
浅谈火力发电厂配煤掺烧

浅谈火力发电厂配煤掺烧火力发电厂是利用燃烧燃料产生高温高压蒸汽,驱动汽轮机发电的一种能源转换系统。
而煤炭作为火力发电厂的主要燃料之一,占据了很大比重。
由于煤炭资源的有限性和环境污染问题,火力发电厂配煤掺烧成为了当前的一个研究热点。
火力发电厂采用配煤掺烧的主要目的是提高发电厂的效率和降低环境污染。
配煤掺烧利用两种不同煤种的低位发热量的差异,以及不同燃料间的协同效应,达到提高发电厂热效率和减少排放物的目的。
配煤掺烧还可以降低燃烧过程中的火候、减轻炉膛负荷、促进煤炭资源的合理利用。
通过煤质的匹配和优化,可以减少传统燃煤过程中的二氧化硫、氮氧化物和烟尘的排放,降低对大气和环境的污染。
合理的配煤掺烧还可以减少火力发电厂的煤炭消耗,降低发电成本。
火力发电厂配煤掺烧也面临一些挑战和问题。
燃烧过程中煤炭的烧性、灰化特性、粒度等差异会影响燃烧的稳定性和效率,需要在配煤过程中进行灰熔点的匹配和燃尽度的调整。
不同煤种和其他燃料间的反应和氧化特性差异,也会对燃烧过程的稳定性和污染物排放产生影响,需要进行燃料豪斯分析和先进控制技术的应用。
火力发电厂的锅炉结构、燃烧装置以及除尘、脱硫装置等系统的改造,也需要投入大量的资金和技术力量。
为了解决这些问题,研究人员开展了大量的实验和数值模拟研究,利用先进的热化学计算软件和燃烧分析仪器,对煤质、燃烧过程和污染物排放进行了深入研究。
也探索了一些新型燃料和燃烧技术,如液化石油气、生物质能和氢气等绿色清洁能源的应用。
这些研究为火力发电厂配煤掺烧提供了理论依据和实验验证,为火力发电行业的可持续发展提供了新的思路和方法。
火力发电厂配煤掺烧是目前的一个研究热点,通过合理的煤质配比和燃料掺杂,可以提高火力发电厂的效率和降低环境污染。
配煤掺烧也面临着一些挑战和问题,需要依靠先进的燃烧技术和燃烧控制系统进行解决。
随着研究的继续深入,火力发电厂配煤掺烧将在未来发挥更重要的作用,为能源的可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火电厂煤种的混配配煤,就是燃料生产流通部门根据用户对煤质的要求,将若干种不同种类、不同性质的煤按照一定比例掺配加工而成的混合煤,它虽然具有掺配单煤的某些特征,但其综合性能已有所改变,实际上是人为加工而成的一个新的“煤种”。
动力配煤的基本原理就是利用各种煤在性质上的差异,相互“取长补短”,发挥各掺配煤种的优点,最终使配出的混合煤在综合性能上达到“最佳性能状态”以满足用户的要求。
火电厂煤种的混配就是在燃煤电厂输煤系统中,利用某些手段,使混配出的混煤性能能够满足锅炉设计要求。
一、配煤的意义动力配煤技术作为较成熟易行的煤炭燃前加工技术之一,以其投资抵、效果显著而成为能够尽快投入使用的洁净煤技术之一。
它能够在煤炭入炉前,提高煤炭的品质。
其意义在于:⑴人们可以对煤炭的燃烧行为加以预测及控制,使原来低品质的劣质燃煤变成优质燃煤,是原来高污染、高硫排放的煤不经任何添加剂,仅仅通过配煤就可以变成低污染、低硫排放的煤。
在动力配煤的配制过程中,也可以通过添加适当的高温固硫添加剂,从而大大减少燃用配煤所产生的二氧化硫排放量;同时,由于燃烧效率的提高,排放烟气中的未燃烬粉尘及其他有害成分也能够相应减少,减轻了环境污染,并可使企业免支或少支二氧化硫排放费。
⑵使原来易结渣的煤变成不易结渣的煤,降低锅炉事故率;同时提高锅炉效率,节约大量煤炭。
我国燃煤锅炉热效率之所以低,最主要的原因是实际燃用的煤炭与锅炉设计使用的煤炭不一致,各种煤种之间燃烧性能相差甚远,煤质与炉型严重脱节。
特别是近几十年以来,随着国家煤炭政策的逐步开放,这种现象越来越严重。
过去一直采用的是以“炉改”去适应煤炭,很多新锅炉刚安装完毕就得改造,国家每年需要投入大量资金对易结渣、超温、磨损等问题锅炉进行改造。
当然改炉可以使炉型适应煤质,效果也相当明显,但“削足适履”,锅炉仍然不能适应煤种新的变化。
生产和使用动力配煤,以煤适炉,将多品种煤混合配置成接近锅炉设计煤质,然后送入锅炉中燃烧,既可以节约大量改炉费用,又可以提高锅炉效率,节约大量煤炭。
⑶提高劣质煤的利用率,充分利用当地煤炭资源。
长期以来,国家有关政策一直鼓励企业燃用当地煤。
但由于很多地方煤炭资源的质量较差,属于劣质煤,企业使用的积极性不高。
动力配煤的推广使用可以有效的改变这种情况,它能够使用户经过配煤得到质量稳定的煤炭,改善着火稳定性,提高燃烧效率。
同时又减少流通运输费用,是煤炭得到合理利用,提高流通效益。
⑷随着供用电矛盾的缓解,电网调峰任务日趋繁重,大量机组较长时间在低负荷下运行。
为了保证锅炉低负荷燃烧稳定,也需要进行煤种的混配。
⑸燃料费用占火电厂成本的比重高达70%左右,随着市场经济的深化改革,煤炭市场的开放,电厂在保证安全、经济运行的基础上,可以同时选择几个品种煤掺配燃烧,以降低燃料费用。
二、混配的约束条件为了保证锅炉的安全性、经济性的需要,对混配煤的煤质提出一定的约束条件。
假设有n种煤,各煤的配比分别为χ1、χ2、χ3、…、χn,则首先应满足下列两个约束条件。
χ1+χ2+χ3+…+χn=1χ1≥0,χ2≥0,χ3≥0,…,χn≥0其他约束条件根据需要从以下几项煤质指标中选择。
1、挥发分挥发分含量越高的煤,着火性能越好,燃烧稳定,飞灰可燃物越少;对于挥发分很少的无烟煤,焦炭很难燃尽,飞灰可燃物含量高,机械不完全燃烧热损失大。
挥发分是评价配煤的首要条件,是衡量燃煤着火难易程度的重要指标;挥发分对着火温度、着火速度都有明显的影响。
入炉煤挥发分变化太大时,空气过剩系数、热风温度、煤粉细度都要发生相应变化,给燃烧调整带来很大不便。
对于一台煤粉炉,其挥发分的适应范围很窄,挥发分不能小于某个下限值V daf,min,以维持低负荷燃烧的稳定性和经济性;挥发分也不能高于某个上限值V daf,max,以防止燃烧器喷口烧坏或引起其他事故。
因此混配煤时,挥发分有两个约束条件,即χ1V1+χ2V2+χ3V3+…+χn V n≥V daf,minχ1V1+χ2V2+χ3V3+…+χn V n≤V daf,max2、发热量发热量,是表征煤质的综合性指标,是燃煤的最重要的性能指标。
发热量低,锅炉燃烧不稳,机械不完全燃烧和排烟热损失增大,磨煤机电耗增大,因此发热量有个最低限值Q net,armin。
χ1Q net,ar1+χ2Q net,ar2+χ3Q net,ar3+…+χn Q net,arn ≥Q net,armin3、灰分煤中灰分含量增加,火焰传播速度减缓,着火推迟,燃烧稳定性差;灰分含量增加,也会使焦炭燃尽程度变差,灰渣物理热损失增加;灰分含量增加,还会引起受热面污染和磨损增加,因此灰分有个最高限制A armax。
χ1A ar1+χ2A ar2+χ3A ar3+…+χn A arn≤A armax4、水分水分增加,煤的热量还有一部分将消耗在水分的蒸发和过热上,是炉膛燃烧温度水平降低,导致燃烧稳定性变差,减少煤粉的燃尽程度;水分增加还会引起输煤设备堵塞,因此水分就有个最高限值M armax。
χ1M ar1+χ2M ar2+χ3M ar3+…+χn M arn≤M armax5、硫分煤中硫分虽然是可燃物,但是硫份含量过高,会引起空气预热器腐蚀和堵灰同时还会引起环境污染恶化,因此硫份有个最高限值S armax。
χ1S ar1+χ2S ar2+χ3S ar3+…+χn S arn≤S armax6、灰熔点灰熔点是煤质是否容易结渣的指标,对锅炉的安全经济运行有重大的影响;特别要注意的是,混煤灰熔点不是单煤指标的简单线性函数关系,混煤的结果有可能使灰熔点降低很多,这一点在配煤时必须充分考虑。
三、混配比例对于多煤种混合,首先查看含硫份、水分、挥发分、灰分和热量,这几种指标哪几项偏离设计值太大,哪项指标是我们混配后需要满足要求的,例如我们主要关心挥发分、灰分,此时应采取下列步骤计算。
列出混配后指标方程式,即χ1V1+χ2V2+χ3V3+…+χn V n=V设计值χ1A1+χ2A2+χ3A3+…+χn A n=A设计值χ1M1+χ2M2+χ3M3+…+χn M n=M设计值χ1S1+χ2S2+χ3S3+…+χn S n=S设计值χ1+χ2+χ3+…+χn=1式中V1、V2、V3、…、V n--各煤种的平均干燥无灰基挥发分,%;A1、A2、A3、…、A n--各煤种的平均空气干燥基灰分,%;M1、M2、M3、…、M n--各煤种的平均空气干燥基水分,%;S1、S2、S3、…、S n--各煤种的平均空气干燥基硫分,%;χ1、χ2、χ3、…χn--各煤种的混合比例,%;如果是两种煤混配,就要从中选取两个方程式分别与χ1+χ2=1组成方组,解这个方程组,得到两组解。
如果是三种煤混配,就要选三个方程式分别与χ1+χ2+χ3=1组成方组,解这个方程组,得到三组解这些解都是有效解,但是究竟以哪组解为最优呢?判断方法是首先将所得到的全部有效解带入下列公式。
⑴混配后平均收到基低位发热量ΣQ(kJ/kg)ΣQ=Q1χ1+Q2χ2+Q3χ3+…+Q nχn式中Q1、Q1、Q1、…、Q n--各煤种的平均低位发热量,kJ/kg。
从中选择使ΣQ在(0-0.05)Q设计值≤ΣQ≤(0+0.05)Q设计值范围内的解。
⑵混配后原煤平均单价ΣY(元/t):ΣY= Y 1χ1+Y 2χ2+Y 3χ3+…+Y n χn式中Y 1、Y 2、Y 3…Y n —各煤种的平均单价,元/t 。
⑶混合后标准煤单价ΣY B (元/t):ΣY B =Q 29308∑∑Y ⨯经过计算后,ΣY B 最小者,为最优配比。
实际上⑵、⑶步就是比质比价方法的应用。
例如某厂1号煤干燥无灰基挥发分V 1=28%,空气干燥基灰分 A 1=15%,水分M 1=6%,低位发热量27000kJ/kg ,天然煤单价180元/t ;2号煤干燥无灰基挥发分V 2=18%,空气干燥基灰分 A 2=27%,水分M 2=8%,低位发热量16000kJ/kg ,天然煤单价120元/t 。
燃煤设计参数为:干燥无灰基挥发分V 3=24%,空气干燥基灰分 A 3=20%,水分M 3=8%,低位发热量22000kJ/kg,求其混配比。
解 首先解方程组:χ128%+χ218%=24%χ1+χ2=1得 χ1=0.6 、 χ2=0.4分别代入ΣQ=Q 1χ1+Q 2χ2=0.6×27000+0.4×16000=22600(kJ/kg )ΣY=Y 1χ1+Y 2χ2=0.6×180+0.4×120=156(元/t )ΣY B =Q 29308∑∑Y ⨯=2260015629308⨯=202.30(元/t ) 再求方程解组:χ115%+χ227%=20%χ1+χ2=1得 χ1=0.58 、 χ2=0.42分别代入ΣQ=Q 1χ1+Q 2χ2=0.58×27000+0.42×16000=22380(kJ/kg ) ΣY=Y 1χ1+Y 2χ2=0.58×180+0.42×120=154.8(元/t )ΣY B =Q 29308∑∑Y ⨯=223808.15429308⨯=202.72(元/t ) 由于202.72元/t >202.3元/t ,显然χ1=0.6、χ2=0.4是最优配比。
四、配煤方法1、国外配煤方法在配煤技术方面,国外配煤一般采用仓混式、带混式或采用炉内直接混合等形式,并且已经发展到依靠配煤理论、运用计算机指导煤场和电厂的动力配煤。
计算及优化配煤运行是一种应付当今火电厂燃煤频繁变更,控制入炉煤煤质的重要手段,可以有效的控制入炉煤质,保证锅炉的稳定运行,减轻锅炉受热面结渣、积灰、腐蚀和磨损。
例如美国Praxic 公司于20世纪90年代中期开发的电厂优化配煤系统(CBAS),已经用于美国和加拿大的部分电厂,根据Praxic公司的最新系统分析显示:美国Pennsylvania电厂在使用了CBAS系统后,一改往日只使用固定煤种的情况,采用多煤种的配煤燃烧,仅此一项每年可节约2,000,000美元。
肯塔基州电厂在使用了CBAS系统后,通过配煤燃烧,增加了廉价煤的使用量,降低了成本,同时降低了SO2和NO x的排放,全年总计节约1,000,000美元。
2、国内配煤途径我国按锅炉台数或容量统计,实际燃煤与设计煤种不符合的占60%以上,许多燃煤锅炉主动或被动地燃用混煤。
由此引起许多锅炉燃烧方面的问题,诸如结渣、腐蚀、磨损、燃烧效率低等,甚至出现由于混煤不当而造成的燃烧不稳定、结渣停炉等事故,严重的影响了电厂的安全和经济性。
按我国的国情,要从根本上解决煤质变差的问题,使锅炉燃用设计煤种存在很大困难。
而采用不同煤种掺配燃烧是解决锅炉煤质适应性的一个行之有效的办法。