沪科版七年级数学上册数学期末

合集下载

2022年沪科版数学七年级上册期末测试题附答案(共3套)

2022年沪科版数学七年级上册期末测试题附答案(共3套)

沪科版数学七年级上册期末测试题(一)(时间:120分钟 分值:120分)一选择题(本大题共10小题,每小题4分,满分40分)1.如图所示,a,b,c 表示有理数,则a,b,c 的大小顺序是 ( )A.a <b <c Ba <c <b C. b <a <c D.c <b <a 2.多项式3222m n --是( )A.二次二项式B.三次二项式C.四次二项式D.五次二项式 3.与方程12x x -=的解相同的方程是( )A. x-2=1+2xB. x=2x+1C.x=2x-1D. 12x x +=4.用代入法解方程组124y xx y =-⎧⎨-=⎩ 时,代人正确的是( )A.x-2-x=4B.x-2-2x=4C. x-2+2x=4D.x-1+x=4 5. 20011精确到百位的近似数可表示为( )A.200B. 200×510C. 2×410D. 2.00×410 6.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( )A.CD=AC-BDB.CD=12BC C.CD=12AB -BD D.CD=AD-BC7.在8︰30时,时钟上的时针和分针之间的夹角为( ) A.85° B.75° C. 80° D.70° 8.化简[]235(27)a b a a b ----的结果是( ) A. -7a-10b B.5a+4b C.-a-4b D.9a-10b9.小明在做解方程题目时,不小心将方程题目中的一个常数污染了看不清楚,被污染的方A C DBb程是:11222y y -=-℘ ,小明想了一想,便翻看书后答案,此方程的解是53y =- ,很快补了这个常数,迅速地完成了作业,同学们,你能补出这个常数吗?它应是( ) A. 1 B.2 C.3 D.4二.填空题(本大题共4小题,每小题5分,满分20分)10.已知4a + 和2(3)b -互为相反数,那么3a b +等于 。

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损3.数据274.8万用科学记数法表示为()A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为()A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是()A .31B .31-C .41D .41-6.下列计算结果正确的是()A .22321x x -=B .235325x x x +=C .22330x y yx -=D .44x y xy+=7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为()A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB =,点Q 为PB 中点,则线段AQ 的长为()A .6B .8C .10D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为()A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为()A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______.13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____.14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+;(2)()411582733-+-+÷-⨯19.解方程(组):(1)121134x x ++=-(2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA ⊥OB 于点O ,∠AOD :∠BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分∠BOE ,求∠COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠.(1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a-b .15.15042'16.x-2=0(答案不唯一)17.65618.(1)20(2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2)解:()411582733-+-+÷-⨯11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)用加减消元法解方程组即可.(1)解:121134x x ++=-去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2)解:27320x y x y -=⎧⎨+=⎩①②2⨯+①②得714x =解得2x =把2x =代入①得47y -=解得3y =-∴原方程组的解为23x y =⎧⎨=-⎩【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键.20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+()2211122a a a =-+,2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解∠BOD 的度数,即可求得∠BOE 的度数,再利用角平分线的定义可求得∠BOC 的度数,进而可求解∠COD 的度数.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,∵∠AOD :∠BOD =7:2,∴∠BOD =29∠AOB =20°,∴∠BOE =180°﹣∠BOD =160°.∵OC 平分∠BOE ,∴∠BOC =12∠BOE =80°,∴∠COD =∠BOC+∠BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD 的度数是解题的关键.22.52x y =⎧⎨=⎩;23.【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入②,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①②②-①得x−3y =−1③联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩,代入②,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案.23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可;(3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解:∵当x =10时,6x +16=6×10+16=76(元),∴文文在甲超市购买10kg 苹果需付费76元;∵10×10×0.8=80(元),∴文文在乙超市购买10kg 苹果需付费80元;∴文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502 x yx y+=⎧⎨=-⎩,解得:2426 xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出∠NOB 和∠MOB,相加即可求得∠MON,(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可,(3)同(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可,【详解】(1)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠NOB=12∠COB=22.5°,∠MOB=12∠AOD=30°,∴MON ∠=∠NOB+∠MOB=22.5°+30°=52.5°,(2)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB 12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠+∠,()122AOD COB BOD =∠+∠+∠,()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,,(3)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB=12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠,()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。

沪科版七年级上册期末检测数学卷(含答案)

沪科版七年级上册期末检测数学卷(含答案)

沪科版数学七年级上册期末检测卷满分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.-2022的绝对值是( )A.-2022B.2022C.-12022D.120222.有理数a,b在数轴上的对应点的位置如图所示.把-a,b,0按照从小到大的顺序排列,正确的是( )A.0<-a<bB.-a<0<bC.b<0<-aD.b<-a<03.下列说法正确的是( )A.-2不是单项式B.-a表示负数C.12πx2y的次数是4 D.多项式x2+23x-1是二次三项式4.体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,其中16320000用科学记数法表示为( )A.1632×104B.1.632×107C.1.632×106D.16.32×1055.初中生骑电动车上学存在安全隐患,为了解某初中2200名学生家长对“中学生骑电动车上学”的态度,从中随机调查200名家长,结果有160名家长持反对态度,则下列说法正确的是( ) A.调查方式是全面调查 B.该校只有160名家长持反对态度C.样本是200名家长D.该校约有80%的家长持反对态度6.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其蕴含的道理应是( )A.两点之间的所有连线中,线段最短B.直线可以向两边延长C.经过两点有一条直线,并且只有一条直线D.两点之间线段的长度,叫做这两点之间的距离7.若x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为( )A.-16B.-8C.8D.168.某校甲、乙、丙三个班为“希望工程”捐款,甲班的捐款数目是另外两个班捐款数目总和的一半,乙班的捐款数目是另外两个班捐款数目总和的13,丙班共捐了160元,则这三个班捐款数目的总和为( )A.384元B.382元C.378元D.364元9.已知线段AB=8 cm,C是线段AB所在直线上一点.下列说法:①若C为线段AB的中点,则AC=4 cm;②若AC=4 cm,则C为线段AB的中点;③若AC>BC,则点C一定在线段AB的延长线上;④线段AC与BC的长度和一定不小于8 cm.其中正确的说法是( )A.①②B.②③C.③④D.①④10.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图中的次序铺设地砖,把第n个图形用图n表示,那么第50个图形中的白色小正方形地砖的块数是( )图1图2图3A.150B.200C.355D.505二、填空题(本大题共8小题,每小题3分,共24分)11.-2022的倒数是.12.某校为了解七年级学生的视力情况,从七年级的10个班级共450名学生中,随机抽取了50名进行分析.在这个问题中,样本容量是.13.3.52×104精确到位.14.如果|a|=2,b2=9,且a>b,那么a+b的值是.15.已知一个角的余角比这个角的补角的一半小25°,则这个角的度数为.16.若|x+y-3|与(2x+3y-8)2互为相反数,则3x+4y=.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,第20个图需要黑色棋子的个数为.18.如图,OB与OA互相垂直,OC与OD互相垂直,垂足为点O,有如下结论:①∠BOD=∠BOC =∠AOC;②∠AOC=∠BOD;③∠BOC与∠AOD互补;④若∠AOD=2∠BOC,则∠BOC=60°.其中正确的结论有.(填写序号)三、解答题(本大题共7小题,共66分)19.(8分)先化简,再求值:5(3ba2-b2a)-(ab2+3a2b),其中a=12,b=13.20.(8分)如图,已知线段a,b,射线AM.在射线AM上作线段AB=a,AC=a-b.(要求:尺规作图,保留作图痕迹,不写作法)21.(9分)如图,AC=8,CB=6,O是线段AB的中点.(1)求线段OC的长;(2)若D是直线AB上一点,BD=2,E是线段BD的中点,求线段CE的长.22.(9分)某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的新能源汽车每辆进价分别为多少万元?(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,试写出该公司的采购方案,并说明理由.23.(10分)某校数学实践小组就人们比较关注的五个话题:A.5G通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会,对某小区居民进行了随机抽样调查,每人只能从中选择一个自己最关注的话题.根据调查结果绘制了如图所示的两幅统计图(不完整).请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将条形统计图补充完整;(3)扇形统计图中的a=,话题D所在扇形的圆心角是°;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注话题B的人数.24.(10分)如图1,O为直线AB上一点,过点O作射线OC,使∠BOC=50°.现将一个直角三角板的直角顶点放在点O处,一边OD与射线OB重合,如图2.(1)∠EOC=.(2)如图3,将三角板DOE绕点O逆时针旋转一定角度,此时OC是∠BOE的平分线,求∠BOD的度数.(3)将三角板DOE绕点O逆时针旋转,在OE与OA重合前,是否有某个时刻满足∠COD=13∠AOE?如果有,求此时∠BOD的度数;如果没有,请说明理由.图1图2图325.(12分)如图,线段AB=24,动点P从点A出发,以每秒2个单位长度的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当点P在线段AB上运动时,试说明2BM-PB为定值.(3)当点P在线段AB的延长线上运动时,N为BP的中点,下列两个结论:①MN的长度不变;②AM +PN的值不变.选择正确的结论,并求出其值.参考答案1.B2.A3.D4.B5.D6.C7.A8.A9.D 10.C11.1202212.50 13.百14.-1或-5 15.50°16.11 17.440 18.②③④19.解:原式=15ba2-5b2a-ab2-3a2b=12a2b-6ab2.当a=12,b=13时,原式=12×14×13﹣6×12×19=1﹣13=23.20.解:如图,AB,AC即为所作.21.解:(1)OC=1.(2)因为E是BD的中点,BD=2,所以BE=DE=12BD=1.当点D在点B的左侧时,CE=BC-BE=6-1=5;当点D在点B的右侧时,CE=BC+BE=6+1=7.综上所述,线段CE的长为5或7.22.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元.依题意,得2380,3295,x yx y+=⎧⎨+=⎩解得25,10.xy=⎧⎨=⎩答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n(m<n)辆.依题意,得25m+10n=200,所以m=8-2 5 n.因为m,n均为正整数,所以n为5的倍数,所以6,5mn=⎧⎨=⎩或4,10mn=⎧⎨=⎩或2,15.mn=⎧⎨=⎩因为m<n,所以6,5mn=⎧⎨=⎩不合题意,舍去,所以共有2种购买方案,方案1:购进A型汽车4辆,B型汽车10辆;方案2:购进A型汽车2辆,B型汽车15辆.23.解:(1)200(2)选择C的居民有200×15%=30(人),选择A的居民有200-60-30-20-40=50(人),补图略.(3)25 36(4)10000×30%=3000(人).答:估计该小区居民中最关注话题B的人数有3000人.24.解:(1)40°(2)因为OC是∠BOE的平分线,所以∠COE=∠BOC=50°.因为∠DOE=90°,所以∠COD=40°,所以∠BOD=10°.(3)有两种情况:①当OD在∠BOC外部时,设∠COD=α,则∠AOE=3α.因为∠BOC=50°,所以∠COD+∠AOE=180°-50°-90°=40°,所以∠COD=10°,所以∠BOD=∠BOC+∠COD=60°;②当OD在∠BOC内部时,设∠COD=β,则∠AOE=3β.因为∠BOC=50°,所以∠BOD=50°-β.因为∠DOE=90°,所以∠AOE+∠BOD=90°,所以3β+50°-β=90°,所以β=20°,所以∠BOD=50°-20°=30°.综上所述,∠BOD的度数为60°或30°.25.解:(1)设出发t秒后,PB=2AM.易知点P只能在点B左边,所以P A=2t,AM=t,PB=24-2t,所以24-2t=2t,解得t=6.所以出发6秒后,PB=2AM.(2)设运动时间为x秒.由题意知BM=24-x,PB=24-2x,所以2BM-PB=2(24-x)-(24-2x)=24,所以2BM-PB为定值.(3)①正确.设运动时间为y秒,则P A=2y,AM=PM=y,PB=2y-24,PN=12PB=y-12,所以MN=PM-PN=y-(y-12)=12,所以MN的长度不变,为定值.②AM+PN=y+y-12=2y-12,所以AM+PN的值是变化的.综上所述,①正确,且MN的长为12.。

沪科版七年级上册数学期末考试试卷含答案

沪科版七年级上册数学期末考试试卷含答案

沪科版七年级上册数学期末考试试题一、单选题1.﹣2022的绝对值是( )A .12022B .12022-C .2022D .﹣20222.数据649000000用科学记数法表示应为( )A .64.9×107B .6.49×108C .6.49×109D .0.649×1093.下列各式计算正确的是( )A .8a ﹣b =7abB .2a+3a =5a 2C .4m 2﹣2m 2=2D .8yx ﹣3xy =5xy 4.已知3a b -=,则()64b a --=( )A .12-B .18C .18-D .12 5.方程5y -7=2y -中被阴影盖住的是一个常数,此方程的解是y =-1.这个常数应是( ) A .10 B .4 C .-4 D .-106.我国古代数学名著《孙子算经》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?如果设有x 人,该物品值y 元,那么可列方程组为( )A .8374y x y x +=⎧⎨-=⎩B .8374x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374y x y x -=⎧⎨+=⎩7.下列调查中,适宜采用全面调查方式的是( )A .了解全国各地学生带手机进课堂的情况B .了解全班学生某个周末的睡眠时间C .了解广西各中小学校垃圾分类情况D .调查柳江的水质情况8.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >09.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .2410.如图,点O 在直线AB 上,90COB EOD ∠=∠=°,那么下列说法错误的是( )A .1∠与2∠相等B .AOE ∠与2∠互余C .AOD ∠与1∠互补D .AOE ∠与COD ∠互余二、填空题11.比较大小:49-___﹣1;(用“>”、“<”或“=”填空) 12.一件上衣x 元,先提价10%,再打八折后出售的价格是____元/件.13.若x =2是关于x 的一元一次方程mx ﹣n =3的解,则2﹣4m+2n 的值是_____.14.某运动品牌店把一件T 恤衫按标价的八折出售,仍可获利20%,若该恤衫的进价为46元,则标价为_____元.15.已知∠AOB=80°,∠BOC=50°,OD 是∠AOB 的角平分线,OE 是∠BOC 的角平分线,则∠DOE=_________.16.多项式﹣3x 2y ﹣x 3+xy 3的次数是_____次.17.如图所示,将两块三角板的直角顶点重叠,若124AOD ∠=,则BOC ∠=______ .三、解答题18.计算:(1)21168225⎛⎫⎛⎫-+⨯--÷- ⎪ ⎪⎝⎭⎝⎭(2)321(1)12|5|32⎛⎫-+⨯--- ⎪⎝⎭19.化简:(1)3a 2﹣2a ﹣a 2+5a ;(2)a 2+(5a 2﹣2a )﹣2(a 2﹣3a ).20.计算已知A =x 2﹣5x ,B =x 2﹣10x+5.(1)列式求A+2B .(2)当x =﹣2时,求A+2B 的值.21.解方程(1)2121136x x -+-=; (2)解方程组8524310x y x y +=⎧⎨-=-⎩.22.如图,已知线段AB =24cm ,延长AB 至C ,使得BC =12AB , (1)求AC 的长;(2)若D 是AB 的中点,E 是AC 的中点,求DE 的长.23.如图,115BOD =∠︒,90COD ∠=︒,OC 平分AOB ∠,求AOD ∠的度数.24.某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:(1)此次调查中接受调查的人数为 人;(2)补全条形统计图;(3)该校共有900人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?25.某中学七年级(1)(2)两个班共104人,要去博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如图:其中七(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1240元.(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?参考答案1.C【分析】根据绝对值的意义可直接得出答案.【详解】解:−2022的绝对值是2022,故选:C.【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.2.B【分析】根据科学记数法的定义计算即可.【详解】解:649000000=6.49×108,故选:B.【点睛】本题考查较大数的科学记数法,把一个大于10(或者小于1)的数记为a×10n的形式(其中1≤| a| <10),这种记数法叫做科学记数法.3.D【分析】同类项可以合并,只要把同类项的系数相加,字母和字母的指数不变,不是同类项的项不能合并.根据同类项合并的法则进行判断即可.【详解】A、8a与-b不是同类项,不能合并,故错误;B、2a+3a=5a,故计算错误;C、4m2﹣2m2=2m2,故计算错误;D、8yx﹣3xy=5xy,计算正确;故选:D【点睛】本题考查了同类项的合并,掌握同类项合并的法则是关键.4.B【分析】利用等式的性质求出(b-a)的值,再代入代数式求值即可;【详解】解:∠a-b=3,等式两边都乘以-1则-(a-b)=-3,即(b-a)=-3;∠6-4(b-a)=6-4×(-3)=6-(-12)=18,故选:B.【点睛】本题考查了代数式求值,等式的性质,有理数的混合运算;掌握等式的性质是解题关键.5.A【分析】设这个常数为a ,将y 的值代入方程计算即可求出a 的值.【详解】解:设阴影部分表示的数为a ,将y=-1代入,得:-5-7=-2-a ,解得:a=10,故选:A .【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.C【分析】根据物品费用相同,且物品费用等于人数乘以每人出的钱数求解即可.【详解】设有x 人,该物品值y 元,那么可列方程组为8374x y x y -=⎧⎨+=⎩, 故选:C .【点睛】本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.7.B【分析】适宜采用全面调查方式的是:调查工作量小且容易实施,比较重要的需要全面调查的数据.【详解】A 选项:工作量太大,不适合全面调查,所以A 选项不符合;B 选项:工作量比较小,容易实施,所以B 选项符合要求;C 选项:工作量太大,不适合全面调查,所以C 选项不符合;D 选项:调查柳江的水质情况不容易实施,所以D 选项不符合;故选:B .【点睛】本题考查了全面调查的概念,能够区别全面调查和抽样调查是本题的解题关键.8.D【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab < 故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .9.C【分析】观察题中的两个代数式,可以发现,2x2-5x=2(x2-52x),因此可整体求出式x2-52x的值,然后整体代入即可求出所求的结果.【详解】解:∠x2-52x=6∠2x2-5x+6=2(x2-52x)+6=2×6+6=18,故选:C.10.D【分析】根据垂直的定义和余角,补角的定义和性质解答,即可.【详解】∠∠EOD=90°,∠COB=90°,∠∠1+∠DOC=∠2+∠DOC=90°,∠∠1=∠2,故A选项正确,不符合题意;∠∠AOE+∠2=90°,即AOE∠与2∠互余,故B选项正确,不符合题意;∠∠2+AOD∠=180°,∠∠1+AOD∠=180°,即:AOD∠与1∠互补,故C选项正确,不符合题意;∠∠1+∠AOE=∠1+∠COD,∠∠AOE=∠COD,∠D选项说法是错误的,符合题意故选:D.11.>【分析】先分别求出两个数的绝对值,再进行比较,根据“两个负数绝对值大的反而小”比较即可.【详解】解:444,11,1 999-=-=<,419∴->-故答案为:>12.0.88x【分析】根据题意列代数式即可.【详解】解:提价后的价格为x×(1+10%)=1.1x,∠再打八折以后出售的价格为1.1x×80%=0.88x,故答案为0.88x .13.-4【分析】把x=2代入一元一次方程mx ﹣n=3,可得2m ﹣n=3;注意到2﹣4m+2n=2﹣2(2m ﹣n ),将(2m ﹣n )整体代入即可计算.【详解】将x=2代入一元一次方程mx ﹣n=3得:2m ﹣n=3,∠2﹣4m+2n=2﹣2(2m ﹣n )=2﹣2×3=﹣4.故答案为:﹣4.14.69【分析】设标价为x 元,根据题意列出方程即可求出答案.【详解】设标价为x 元,由题意可知:0.84646x -⨯100%=20%,解得:x=69.故答案为:69.15.65°或15°【详解】解:分两种情况:第一种情况,如图所示,∠OD 是∠AOB 的角平分线,OE 是∠BOC 的角平分线,∠AOB=80°,∠BOC=50°, ∠001140,2522BOD AOB BOE BOC ∠=∠=∠=∠= ,∠∠DOE=∠BOD+∠BOE=40°+25°=65°.第二种情况,如图所示,∠OD 是∠AOB 的角平分线,OE 是∠BOC 的角平分线,∠AOB=80°,∠BOC=50°, ∠001140,2522BOD AOB BOE BOC ∠=∠=∠=∠= , ∠∠DOE=∠BOD—∠BOE=40°—25°=15°.故答案为65°或15°.【点睛】本题考查了角平分线定义和角的有关计算的应用,解决本题时要注意有两种情况. 16.4.【分析】根据多项式的次数定义“多项式中次数最大的单项式的次数,叫做这个多项式的次数”即可得.【详解】多项式中三个单项式的次数分别是3、3、4,因此多项式的次数是4故答案为4.【点睛】本题考查了多项式的次数的定义,掌握定义是解题关键.17.56【分析】从图可以看出,∠BOC 的度数正好是两直角相加减去∠AOD 的度数,从而问题可解.【详解】∠∠AOB=∠COD=90°,∠AOD=124°,∠∠BOC=∠AOB+∠COD -∠AOD=90°+90°-124°=56°.故答案为:56°.【点睛】此题主要考查了余角关系、角的计算;解答此题的关键是让学生通过观察图示,发现几个角之间的关系.18.(1)6;(2)-4【分析】(1)先算乘方,再算乘除,最后算加减;(2)先算乘方,利用乘法分配律展开,同时求绝对值,再算乘法,最后算加减.【详解】解:(1)21168225⎛⎫⎛⎫-+⨯--÷- ⎪ ⎪⎝⎭⎝⎭=()168254-+⨯-⨯- =6210-++=6; (2)321(1)12|5|32⎛⎫-+⨯--- ⎪⎝⎭=2111212532-+⨯-⨯- =1865-+--=-4【点睛】此题考查了有理数的混合运算,以及绝对值,熟练掌握运算法则及绝对值的代数意义是解本题的关键.19.(1)2a 2+3a ;(2)4a 2+4a【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【详解】解:(1)原式=2a 2+3a ;(2)原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a .【点睛】本题考查了合并同类项法则,解题关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.20.(1)3x 2﹣25x+10;(2)72【分析】(1)直接根据整式的加减计算法则进行求解即可;(2)根据(1)中计算的结果代值计算即可.【详解】解:(1)∠25A x x =-,2105B x x =-+,∠()()22252105A B x x x x +=-+-+22522010x x x x =-+-+232510x x =-+;(2)当2x =-时,()()22232510322521072A B x x +=-+=⨯--⨯-+=.21.(1)76x =;(2)12x y =-⎧⎨=⎩ 【分析】(1)先去分母,然后去括号,移项,合并同类项,最后化系数为1即可;(2)直接利用加减消元法解二元一次方程组即可.【详解】解:(1)2121136x x -+-= 去分母得:()622121x x --=+,去括号得:64221x x -+=+,移项得:42126x x --=--合并同类项得:67x -=-,化系数为1得:76x =; (2)8524310x y x y +=⎧⎨-=-⎩①② 把∠ -∠×2得:1122y =,解得2y =,把2y =代入∠解得1x =-,∠方程组的解为12x y =-⎧⎨=⎩. 22.(1)36cm ;(2)6cm【分析】(1)根据BC 与AB 的关系可得BC ,由AC =AB+BC 可得答案;(2)根据线段中点的定义分别求出AE 和AD 的长度,再利用线段的和差得出答案.【详解】(1)∠BC =12AB ,AB =24cm ,∠BC =12×24=12(cm ), ∠AC =AB+BC =36(cm );(2)∠D 是AB 的中点,E 是AC 的中点,∠AD =12AB =12cm ,AE =12AC =18cm ,∠DE =18﹣12=6(cm ).23.65︒【分析】根据角度的计算先求出25BOC ∠=︒,再根据角平分线的性质得到50AOB ∠=︒,再根据AOD BOD AOB ∠=∠-∠故可求解.【详解】解:因为115BOD ∠︒=,90COD ∠=︒, 所以1159025BOC BOD COD ∠=∠-∠=︒-︒=︒,因为OC 平分AOB ∠,所以250AOB BOC ∠=∠=︒,所以1155065AOD BOD AOB ∠=∠-∠=︒-︒=︒.24.(1)50;(2)见解析;(3)828人【分析】(1)不关注、关注、比较关注的共有462434++=(人),占调查人数的132%68%-=,可求出调查人数;(2)接受调查的人数乘以非常关注的百分比即可得到非常关注的人数,即可补全统计图;(3)样本估计总体,样本中:“关注”、“比较关注”及“非常关注”占比68%,乘以该校人数900人即可求解.【详解】解:(1)不关注、关注、比较关注的共有462434++=(人),占调查人数的132%68%-=,∠此次调查中接受调查的人数为:3468%50÷=(人),故答案为:50;(2)5032%16⨯=(人),补全条形统计图见下图:(3)6241690082850++⨯=(人), 答:估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共828人.25.(1)七年级(1)班48人,七年级(2)班56人;(2)304(元);(3)购买51张票划算些,见解析【分析】(1)设七年级(1)班x 人,则七年级(2)班(104−x )人,根据两个班共付费1240元建立方程,即可求解;(2)先求出购团体票的费用,再用1240元−团体票的费用就是节约的钱;(3)先可以计算按照实际人数购票的费用,再计算购买51个人的票的费用,比较两个费用的大小就可以得出结论.【详解】解:(1)设七年级(1)班x 人,则七年级(2)班(104)x -人,由题意可得:1311(104)1240x x +-=,解得48x =,则10456x -=.答:七年级(1)班48人,七年级(2)班56人;(2)12401049304-⨯=(元);(3)七年级(1)班按照实际人数购票的费用为:4813624⨯=(元),购51张票的费用为:5111561⨯=元.∠624561>,∠购买51张票划算些.。

沪科版七年级上册数学期末考试试卷含答案

沪科版七年级上册数学期末考试试卷含答案

沪科版七年级上册数学期末考试试题一、单选题1.已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为( )A .2B .6C .2-D .6- 2.2-的相反数是( )A .2-B .2C .12 D .12- 3.计算()32---的最后结果是( )A .1B .1-C .5D .5- 4.将数7206万用科学记数法表示为( )A .77.20610⨯B .67.20610⨯C .80.720610⨯D .672.0610⨯ 5.如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6- 6.下列运算中,正确的是( )A .325a b ab +=B .325235a a a +=C .22330a b ba -=D .22541a a -=7.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅尚不完整的统计图,根据图中的信息,下列结论错误的是( )A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .样本中选择公共交通出行的有2400人D .若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人 8.若∠A =40°,则∠A 的补角为( )A .40°B .50°C .60°D .140°9.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 10.如图,观察图中正方形四个顶点所标的数字规律,可知数2020应标在( )A .第505个正方形的左下角B .第505个正方形的右下角C .第506个正方形的左下角D .第506个正方形的右下角 二、填空题11.用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为6C -︒,攀登2km 后,气温下降__________C ︒. 12.已知2a ﹣5b =3,则2+4a ﹣10b =________.13.点O 为数轴的原点,点A 、B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为______;(2)若线段5BM =,则线段OM 的长为______.14.将7张如图∠所示的小长方形纸片按图∠的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).15.若一个角的补角是1156'︒,则这个角的余角是________.16.如图所示,将两块三角板的直角顶点重叠,若124AOD ∠=,则BOC ∠=______ .17.对a b ,,定义新运算“*”如下:2*2a b a b a b a b a b +≥⎧=⎨-<⎩,,,已知*31x =-,则实数x =_______.三、解答题18.计算:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭.19.解方程:221123x x x ---=-.20.已知方程组271x y x y +=⎧⎨-=-⎩的解也是关于x ,y 的方程4ax y +=的一个解,求a 的值.21.先化简,再求值:()()22232422b ab a a ab -+--,其中12a =-,2b =-.22.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.23.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.24.如图,已知∠AOB内部有三条射线,OE平分∠BOC,OF平分∠AOC.(1)若∠AOB=90°,∠AOC=30°,求∠EOF的度数;(2)若∠AOB= ,求∠EOF的度数(写出求解过程);(3)若将条件中“OE平分∠BOC,OF平分∠AOC.平分”改为“∠EOB=13∠COB,∠COF=23∠COA”,且∠AOB=,求∠EOF的度数(写出求解过程).25.为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).(1)求被调查的师生人数,并补全条形统计图,(2)求扇形统计图中表示“满意”的扇形圆心角度数.(3)若该校共有师生1800名,根据抽样结果,试估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数.26.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.参考答案1.A2.B3.C4.A5.A6.C7.C8.D9.D10.D11.1212.813.1-4或614.24a15.256'︒16.5617.118.1 619.2x=20.12a = 21.234b ab -,8【分析】先去括号,再合并同类项,最后将字母的值代入计算. 【详解】解:原式=22236442b ab a a ab -+-+ =234b ab -,当12a =-,2b =-时,原式=()()2132422⎛⎫⨯--⨯-⨯- ⎪⎝⎭=8.22.这种服装每件的标价是110元【分析】设这种服装每件的标价是x 元,根据题意列出方程进行求解即可. 【详解】解:设这种服装每件的标价是x 元,根据题意,得()100.81130x x ⨯=-,解得110x =;答:这种服装每件的标价是110元.23.(1)钢笔的单价为21元,毛笔的单价为25元;(2)王老师肯定搞错了.【分析】(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元.根据买钢笔30支,毛笔45支,共用了1755元建立方程,求出其解即可;(2)根据第一问的结论设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支,求出方程的解不是整数则说明算错了.【详解】解:(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元. 由题意得:30x+45(x+4)=1755 解得:x =21 则x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105﹣y )支. 根据题意,得21y+25(105﹣y )=2447. 解得:y =44.5 (不符合题意). 所以王老师肯定搞错了.二元一次不定方程的运用,在解答时根据题意等量关系建立方程是关键.24.(1)∠EOF=45°;(2)∠EOF=12α;(3)∠EOF=23α.【详解】∠∠AOB=90°,∠AOC=30°,∠∠COB=60°;∠OE平分∠BOC,OF平分∠AOC,∠∠FOC=15°,∠EOC=30°,∠∠EOF=∠EOC+∠FOC=45°∠∠AOB=α,OE平分∠BOC,OF平分∠AOC,∠∠EOF=∠EOC+∠FOC=12(∠BOC+∠AOC)=12∠AOB=12α;∠∠AOB=α,∠EOB=13∠COB,∠COF=23∠COA,∠∠EOF=∠EOC+∠FOC=23(∠BOC+∠AOC)=23∠AOB=23α.考点:角平分线的定义;角的和差.25.(1)200人;见解析;(2)126°;(3)1710人【分析】(1)根据很满意人数和所占的百分比可以求得本次调查的师生人数,进而可以将条形统计图补充完整;(2)根据(1)中的结果可以求得满意的人数的扇形圆心角度数;(3)总人数1800乘以很满意”或“满意”的比例和,即可求解.【详解】(1)师生人数为12060%200÷=.条形统计图如图.(2)表示“满意”的圆心角度数为70360126 200⨯︒=︒.(3)全校师生对食堂“半份菜”服务“很满意”或“满意”的师生总人数约有12070180********+⨯=人. 【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体等知识点,能根据图形得出正确信息是解此题的关键. 26.12cm ,16cm【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC -AE -CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长. 【详解】解:设BD xcm =,则3AB xcm =,4CD xcm =,6AC xcm =. 点E 、点F 分别为AB 、CD 的中点,1 1.52AE AB xcm ∴==,122CF CD xcm ==. 6 1.52 2.5EF AC AE CF x x x xcm ∴=--=--=.10EF cm =, 2.510x ∴=,解得4x =.12AB cm ∴=,16CD cm =.。

沪科版七年级上册数学期末考试试卷带答案

沪科版七年级上册数学期末考试试卷带答案

沪科版七年级上册数学期末考试试题一、单选题1.下列各数中最小的是()A.0.9 B.-3.6 C.-0.8 D.-(-2.5)2.下面计算正确的是()A.3x2-x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+14ba=03.已知下列方程:①22xx-=;①0.31x=;①512xx=+;①243x x-=;①6x=;①20.x y+=其中一元一次方程的个数是()A.2 B.3 C.4 D.54.如图,已知线段AB=4 cm,延长AB至点C,使AC=11 cm.点D是AB的中点,点E 是AC的中点,则DE的长为()A.3 cm B.3.5 cm C.4 cm D.4.5 cm5.若①1与①3互余,①2与①3互补,则①1与①2的关系是()A.①1=①2 B.①1与①2互余C.①1与①2互补D.①2-①1=90°6.已知|a|=3,|b|=4,且a>b,则ab的值为()A.±1 B.±12 C.1或-7 D.7或-17.一服装厂用某种布料生产玩偶A与玩偶B组合成一批盲盒,一个盲盒搭配1个玩偶A 和2个玩偶B,已知每米布料可做1个玩偶A或3个玩偶B,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x米布料做玩偶A,用y米布料做玩偶B,使得恰好配套,则下列方程组正确的是()A.1363x yx y+=⎧⎨=⎩B.13623x yx y+=⎧⎨=⨯⎩C.1363x yx y+=⎧⎨=⎩D.13623x yx y+=⎧⎨=⎩8.一个正方体的每个面上各写一个汉字,它的表面展开图如图所示,那么正方体中与“古”字相对的面的汉字是()A .芜B .湖C .鸠D .兹9.若方程组23133530a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x y x y +--=⎧⎨++-=⎩的解是( ) A .8.31.2x y =⎧⎨=⎩B .10.30.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩ 10.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m ,图2阴影部分周长为n ,要求m 与n 的差,只需知道一个图形的周长,这个图形是( )A .整个长方形B .图①正方形C .图①正方形D .图①正方形二、填空题11.将3200000用科学记数法表示为______.12.若33219k x y --与3773x y -是同类项,则k =______. 13.如图,已知63AOB ∠=︒,2316BOC '∠=︒,那么AOC ∠=______.(用度、分、秒表示)14.关于x ,y 的方程组2323350x y a x y a -+-=-⎧⎨-+=⎩的解的和为2,则a 的值为________. 15.已知有理数a≠1,我们把11a-称为a 的差倒数.例如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数……以此类推,那么12109a a a ⋯+++的值是________.16.按如图所示的程序计算:当输入的x 值为-3时,则输出的值为______三、解答题17.计算:223136()()(0.25)342-⨯---+÷-. 18.已知2|2|(1)0a b -++=,求()22225242ab a b ab a b ⎡⎤---⎣⎦的值.19.解方程(组):(1)2451x y x y +=⎧⎨+=⎩; (2)34325x y x y -+==--.20.如图,在灯塔O 处观测到轮船A 位于北偏西56°的方向,轮船B 位于南偏东17°的方向,求①AOB 的度数.21.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,购买4千克的甲食材比购买5千克的乙食材多花60元.(1)甲、乙两种食材每千克的进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完,那么该公司每日购进甲、乙两种食材各多少千克?22.如图,点A 在数轴上表示的数是-9,点D 在数轴上表示的数是12,AB =4,CD =2.(1)点B 在数轴上表示的数是______,点C 在数轴上表示的数是______,线段BC 的长为______;(2)若点Q 是数轴上的点,且QC =2QB ,则点Q 在数轴上表示的数是多少?23.如图,将一个正方形纸片剪成四个正方形纸片,然后将其中的一个正方形纸片再剪成四个正方形纸片,再将其中的一个正方形纸片剪成四个正方形纸片,如此继续下去…,请你根据以上操作方法得到的正方形的个数的规律完成下列各题.(1)将下表填写完整.(2)n a =________.(用含n 的代数式表示)(3)按照上述操作方法,能否得到2 022个正方形?如果能,请求出n ;如果不能,请简述理由.24.为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”“有害垃圾”“可回收物”和“其他垃圾”这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制了如下不完整的统计图.(1)本次调查的样本容量是__________;(2)补全条形统计图.25.如图所示,O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图①,若28AOC ∠=︒,求DOE ∠的度数;(2)在图①,若AOC α∠=,直接写出DOE ∠的度数_________(用含a 的代数式表示);(3)将图①中的COD∠绕顶点O顺时针旋转至图①的位置.①探究AOC∠的度数之间的关系,写出你的结论,并说明理由;∠和DOE∠①在AOC∠-∠=∠+∠,试确定AOFAOC AOF BOE AOF ∠的内部有一条射线OF,满足42∠的度数之间的关系,说明理由.与DOE参考答案1.B2.D3.B4.B5.D6.B7.D8.B9.C10.D11.3.2×10612.3︒13.3944'14.215.8-16.617.-1718.3419.(1)1232x y ⎧=-⎪⎪⎨⎪=⎪⎩(2)33x y =-⎧⎨=-⎩【分析】(1)由①-①×2消去未知数x 得到关于y 的一元一次方程,解出y 代入①求y ,从而得解;(2)由⨯①+②3消去未知数y 得到关于x 的一元一次方程,解出x 代入①求y ,从而得解. (1)解:2451x y x y +=⎧⎨+=⎩①②, ①-①×2,得2y =3,解得y =32, 把y =32代入①,得x +32=1, 解得x =12-, 所以方程组的解为1232x y ⎧=-⎪⎪⎨⎪=⎪⎩; (2) 原方程可化为332435x y x y -⎧=-⎪⎪-⎨+⎪=-⎪⎩①②, 整理,得36415x y x y -=⎧⎨+=-⎩①②, ⨯①+②3得:1339x =-,解得:3x =-,将3x =-代入②得:4(3)15y ⨯-+=-,解得3y =-,所以方程组的解为33x y =-⎧⎨=-⎩.【点睛】本题考查二元一次方程组的解法,掌握二元一次方程组的两种解法是解题的关键.20.①AOB=141°.【分析】先求出56°的余角为34°,然后再加上90°与17°的和即可解答.【详解】解:由题意得:AO与东西方向所夹锐角为:90°-56°=34°,①①AOB=34°+90°+17°=141°.【点睛】本题考查了方向角,根据题目的已知条件并结合图形分析是解题的关键.21.(1)甲食材每千克的进价为40元,乙食材每千克的进价为20元(2)该公司每日购进甲食材400千克,乙食材100千克【分析】(1)设乙食材每千克的进价为a元,则甲食材每千克的进价为2a元,由购买4千克的甲食材比购买5千克的乙食材多花60元建立方程求解即可(2)抓住两个等量关系列方程求解:一是甲、乙两种食材每日购买的进价和为18000;二是制成营养品的含铁量与甲、乙两种食材含铁量的和相等,列出方程组即可求解.(1)设乙食材每千克的进价为a元,则甲食材每千克的进价为2a元,由题意,得4×2a-5×a=60,解得a=20,则2a=40.答:甲、乙两种食材每千克的进价分别是40元、20元;(2)设该公司每日购进甲食材x千克,乙食材y千克,由题意,得402018000 501042() x yx y x y+=⎧⎨+=+⎩解得400100 xy=⎧⎨=⎩22.(1)-5;10;15(2)0或-20【分析】(1)根据数轴上的点的关系及两点的之间的距离求解即可;(2)设点Q在数轴上表示的数是a,根据题意分三种情况讨论求解即可.(1)解:①点A在数轴上表示的数是-9,AB=4,①点B表示的数为:-9+4=-5;①点D在数轴上表示的数是12,CD=2.①点C表示的数为:12-2=10;①线段BC的长度为:10-(-5)=15;故答案为:-5;10;15;(2)设点Q在数轴上表示的数是a.当点Q在点B的右侧且在点C的左侧时,①QC=2QB,①10-a=2[a-(-5)],解得a=0.当点Q在点B的左侧时,①QC=2QB,①10-a=2(-5-a),解得a=-20.当点Q在点C的右侧时,QC<QB,不符合题意.综上所述,点Q在数轴上表示的数是0或-20.23.(1)13,16(2)3n+1(3)不能,理由见解析【分析】(1)(2)分别数出图1、图2、图3中正方形的个数,可以发现第几个图形中正方形的个数等于3与几的乘积加1;按照这个规律即可求得正方形的个数n a和操作次数n之间的关系;(3)然后将2022代入,如果得数为整数,正方形的个数能为2022个;如果得数不是整数,正方形的个数不能为2022个.(1)解:操作1次时,正方形的个数为4=3×1+1;操作2次时,正方形的个数为7=3×2+1;操作3次时,正方形的个数为10=3×3+1;…可以发现:图几中正方形的个数等于3与操作次数的积加1.由此规律可得,操作4次时、操作5次时,正方形的个数分别为13、16.(2)解:n a=3n+1;故答案为:3n+1.(3)解:不能.假设能,则3n+1=2022,解得:n=20213=26733,n为分数不是正整数,所以不能得到2022个正方形.24.(1)100(2)见解析【分析】(1)根据较多了解的人数是55人,占总人数的55%,即可求得本次调查的样本容量;(2)求出完全了解、较少了解的人数,据此补全条形统计图.(1)解:本次调查的样本容量是:55÷55%=100;故答案为:100;(2)完全了解的人数为:100×30%=30(人),较少了解的人数为:100-30-55-5=10(人),补全条形统计图如下:25.(1)14°;(2)2α;(3)①①AOC =2①DOE ;(2)2①DOE−52①AOF =90° 【分析】(1)由①AOC 的度数可以求得①BOC 的度数,由OE 平分①BOC ,可以求得①COE 的度数,又由①DOC =90°可以求得①DOE 的度数;(2)由第(1)问的求法,可以直接写出①DOE 的度数;(3)①首先写出①AOC 和①DOE 的度数之间的关系,由①COD 是直角,OE 平分①BOC ,①BOC +①AOC =180°,可以建立各个角之间的关系,从而可以得到①AOC 和①DOE 的度数之间的关系;①首先得到①AOF 与①DOE 的度数之间的关系,由42AOC AOF BOE AOF ∠-∠=∠+∠,①COD 是直角,OE 平分①BOC ,①AOC 和①DOE 的关系,可以建立各个角之间的关系,从而可以得到①AOF 与①DOE 的度数之间的关系.【详解】解:(1)①①COD 是直角,OE 平分①BOC ,①AOC =28°,①①BOC =180°−①AOC =152°,①COE =12①BOC ,①COD =90°. ①①COE =76°,①DOE =①COD−①COE =90°−76°=14°.即①DOE =14°;(2)①①COD 是直角,OE 平分①BOC ,①AOC =a ,①①DOE =90°−1802α︒-=2α. 故答案是:2α; (3)①①AOC =2①DOE .理由:①OE 平分①BOC ,①①BOC =2①COE .①①COD 是直角,①AOC +①BOC =180°,①①DOE +①COE =90°,①AOC +2①COE =180°.①①AOC +2(90°−①DOE )=180°.化简,得①AOC =2①DOE ; ①2①DOE−52①AOF =90°.理由:①42AOC AOF BOE AOF ∠-∠=∠+∠,①2①AOF +①BOE =12(①AOC−①AOF ),①2①AOF +①BOE =12①AOC−12①AOF .又①①AOC =2①DOE , ①52①AOF =①DOE−①BOE , ①52①AOF =①DOB .①①DOB +①BOC =90°,①AOC +①BOC =180°,①AOC =2①DOE . ①52①AOF +180°−①AOC =90°. ①52①AOF +180°−2①DOE =90°.化简,得2①DOE−52①AOF =90°.。

沪科版初一数学上册期末测试卷及答案

沪科版初一数学上册期末测试卷及答案

七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(3分)﹣6的绝对值的相反数是()A.﹣6B.6C.D.2.(3分)某地一天的最高气温是12℃,最低气温是﹣2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃3.(3分)下列运算正确的是()A.3x+6y=9xy B.﹣a2﹣a2=0C.2(3x+2)=6x+2D.﹣(3x﹣2y)=﹣3x+2y4.(3分)下列调查中,适宜采用普查方式的是()A.了解一批灯泡的使用寿命B.了解外地游客对天柱山的印象C.了解本班同学早餐是否有喝牛奶的习惯D.了解我国初中学生的视力情况5.(3分)某超市进了一批商品,每件进价为a元,若要获利25%,则每件商品的零售价应定为()A.25%a元B.(1﹣25%)a元C.(1+25%)a元D.元6.(3分)已知a,b两数在数轴上对应的位置如图所示:下列结论正确的是()A.ab<0B.a>b C.b﹣a>0D.a+b>07.(3分)下列说法中,正确的是()A.﹣a的相反数是正数B.两点之间的线段叫两点之间的距离C.两条射线组成的图形叫做角D.两点确定一条直线8.(3分)如图是一个正方体的表面展开图,则原正方体中与“潜”字所在的面相对的面上标的字是()A.山B.市C.天D.柱9.(3分)能断定A,B,C三点共线的是()A.AB=6,AC=2,BC=5B.AB=6,AC=2,BC=4C.AB=6,AC=3,BC=4D.AB=6,AC=5,BC=410.(3分)x是数轴上任意一点表示的数,若|x﹣3|+|x+2|的值最小,则x的取值范围是()A.x≥3B.x≤﹣2C.﹣2≤x≤3D.﹣2<x<3二、填空题(本大题共5小题,每题4分,共20分)11.(4分)若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为L.12.(4分)如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=cm.13.(4分)若x2﹣3x的值为4,则﹣3x2+9x﹣5的值为.14.(4分)若5a|x|b2与﹣是同类项,则x2y的值为;若|x﹣1|+(y+3)2=0,则5x2﹣(x﹣3y)=.15.(4分)在长为a(m),宽为b(m)一块长方形的草坪上修了一条宽2(m)的笔直小路,则余下草坪的面积可表示为m2;先为了增加美感,把这条小路改为宽恒为2(m)的弯曲小路(如图),则此时余下草坪的面积为m2.三、解答题(本大题共7小题,共70分)16.(10分)(1)计算:;(2)化简:,并求当x=﹣2时原代数式的值.17.(8分)某检修小组乘一辆检修车沿一段东西方向铁路检修,规定向东走为正,向西走为负,小组的出发地记为M,某天检修完毕时,行走记录(单位:千米)如下:+12,﹣5,﹣9,+10,﹣4,+15,﹣9,+3,﹣6,﹣3,﹣7(1)问收工时,检修小组距出发地M有多远?在东侧还是西侧?(2)若检修车每千米耗油0.2升,求从出发到收工时检修车共耗油多少升?18.(10分)(1)解方程:=﹣1;(2)解方程组:19.(8分)小明对我校七年级(1)班喜欢什么球类运动的调查,下列图形中的左图是小明对所调查结果的条形统计图.(1)问七年级(1)班共有多少学生?(2)请你改用扇形统计图来表示我校七年级(1)班同学喜欢的球类运动.(3)从统计图中你可以获得哪些信息?20.(10分)某工厂第一季度生产甲、乙两种机器共550台,经市场调查决定调整两种机器的产量,计划第二季度生产这两种机器共536台,其中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?21.(12分)在平面内有∠AOB=60°,∠AOC=40°,OD是∠AOB的平分线,OE是∠AOC的平分线,求∠DOE的度数.(请作图解答)22.(12分)观察一列数:1,2,4,8,16,…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列3,﹣12,48,…的第4项是;(2)如果一列数a1,a2,a3,a4,…是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,则a5=_,a n=(用a1与q的式子表示);(3)一个等比数列的第2项是9,第4项是36,求它的公比.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.【解答】解:∵﹣6的绝对值为6,6的相反数为﹣6,∴﹣6的绝对值的相反数是﹣6.故选:A.2.【解答】解:12﹣(﹣2)=14(℃).故选:C.3.【解答】解:(A)原式=3x+6y,故A错误;(B)原式=﹣2a2,故B错误;(C)原式=6x+4,故C错误;故选:D.4.【解答】解:A、了解一批灯泡的使用寿命,调查范围广适合抽样调查,故A不符合题意;B、了解外地游客对天柱山的印象,调查范围广适合抽样调查,故B不符合题意;C、了解本班同学早餐是否有喝牛奶的习惯,适合普查,故C符合题意;D、了解我国初中学生的视力情况,调查范围广适合抽样调查,故D不符合题意;故选:C.5.【解答】解:依题意得,售价=进价+利润=进价×(1+利润率),∴售价为(1+25%)a元.故选:C.6.【解答】解:由数轴可知,a<0,b<0,且a>b则A、ab<0,同号相乘得正,故选项错误;B、a>b是正确的;C、b﹣a=﹣(|b|﹣|a|)<0,故选项错误;D、两负数相加得负,即a+b<0,故选项错误.故选:B.7.【解答】解:A、﹣a的相反数不一定是正数,故错误;B、两点之间的线段的长度叫两点之间的距离,故错误;C、有公共顶点两条射线组成的图形叫做角,故错误;D、两点确定一条直线,正确,故选:D.8.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“市”与“柱”相对,“天”与“山”相对,“山”与“潜”相对.故选:A.9.【解答】解:解:A、∵2+5≠6,∴A、B、C三点不共线.则选项A错误;B、∵2+4=6,∴A、B、C三点共线.则选项B正确;C、∵3+4≠6,∴A、B、C三点共线.选项C错误;D、∵5+4≠6,∴A、B、C三点不共线.选项D错误.故选:B.10.【解答】解:设数轴上表示数x、3、﹣2的点分别为A、B、C,易知BC=5,当点A不在线段BC上时,AB+AC>BC,当点A在线段BC上时,AB+AC=BC,所以﹣2≤x≤3.故选:C.二、填空题(本大题共5小题,每题4分,共20分)11.【解答】解:0.32×100万=320 000=3.2×105.故答案为:3.2×105.12.【解答】解:∵M是线段AB的中点,AB=8cm,∴MB==4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC==3cm;∴MN=MB+BN=4+3=7cm.故答案为7.13.【解答】解:∵x2﹣3x=4,∴原式=﹣3(x2﹣3x)﹣5=﹣12﹣5=﹣17.故答案为:﹣17;14.【解答】解:∵5a|x|b2与﹣是同类项,∴|x|=1,y﹣2=2,解得:x=±1,y=4,则x2y=1×4=4,∵|x﹣1|+(y+3)2=0,∴x﹣1=0,y+3=0,解得:x=1,y=﹣3,则5x2﹣(x﹣3y)=5﹣(1+9)=﹣5.故答案为:4,﹣5.15.【解答】解:余下草坪的长方形长仍为a,宽为(b﹣2),则面积为a(b﹣2)=ab﹣2a;长方形的长为a,宽为b﹣2.余下草坪的面积为:a(b﹣2)=ab﹣2a,故答案为:(ab﹣2a),(ab﹣2a).三、解答题(本大题共7小题,共70分)16.【解答】解:(1)原式=(44﹣42)+(﹣16)=2﹣16=﹣14;(2)原式=5x3+3x2﹣6x3+2x2=﹣x3+5x2.当x=﹣2时,原式=﹣(﹣2)3+5×(﹣2)2=8+20=28.17.【解答】解:(1)12﹣5﹣9+10﹣4+15﹣9+3﹣6﹣3﹣7=﹣3;距离出发地M点3千米,在它西侧.(2)(12+5+9+10+4+15+9+3+6+3+7)×0.2=83×0.2=16.6(升).18.【解答】(1)解:去分母,得2(2x+1)﹣(5x﹣1)=﹣6,去括号,得4x+2﹣5x+1=﹣6,移项,合并,得﹣x=﹣9,两边同除以﹣1,得x=9.(2)由①得x=3y﹣1,③把③代入②,得6y﹣y=10.解得y=2.把y=2代入③,得x=6﹣1=5.∴.19.【解答】解:(1)∵15+6+11+4=36,∴该校七年级(2)班的人数共有36名学生;(2)∵15÷36×360°=150°,6÷36×360°=60°,11÷36×360°=110°,4÷36×360°=40°,∴篮球扇形的圆心角为150°,羽毛球所对应的圆心角为60°,乒乓球所对的圆心角为110°,其他球的圆心角为40°,(3)从统计图中获得得信息:七年级(1)班的学生喜欢篮球的人数最多有15人占41.7%(答案不唯一,合理即可).20.【解答】解:设某工厂第一季度生产甲种机器x台,乙种机器y台,由题意得:,解得:.答:该工厂第一季度生产甲种机器300台,乙种机器250台.21.【解答】解:如图1,∵∠AOB=60°,∠AOC=40°,OD是∠AOB的平分线,OE是∠AOC的平分线,∴∠AOE=∠AOC=20°,∠AOD=∠AOB=30°,∴∠DOE=∠AOE+∠AOD=50°,如图2,∵∠AOB=60°,∠AOC=40°,OD是∠AOB的平分线,OE是∠AOC的平分线,∴∠AOE=∠AOC=20°,∠AOD=∠AOB=30°,∴∠DOE=∠AOD﹣∠AOE=10°,综上所述,∠DOE=50°或10°.22.【解答】解:(1)∵﹣12÷3=﹣4,48÷(﹣12)=﹣4∴第4项=48×(﹣4)=﹣192故答案为192;(2)根据题意得a5=a1q4,a n=a1q n﹣1,故答案为a1q4;a1q n﹣1;(3)依题意有:∴36=9×q2∴q2=4∴q=±2所以其公比为2或﹣2.1、三人行,必有我师。

沪科版七年级上册数学期末考试试题及答案

沪科版七年级上册数学期末考试试题及答案

沪科版七年级上册数学期末考试试卷一、单选题1.12的倒数是( ) A .2 B .﹣2 C .12 D .﹣12 2.下面计算正确的是( )A .224336x x x +=B .33a a -=C .32x x x -= D .2xy xy xy -=- 3.将141178万用科学记数法表示应为( )A .100.14117810⨯B .91.4117810⨯C .814.117810⨯D .7141.17810⨯4.若点P 是线段AB 上的点,则其中不能说明点P 是线段AB 中点的是( ). A .AP BP AB += B .2AB AP = C .AP BP = D .12BP AB = 5.下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;①植树时,只要定出两棵树的位置就能确定同一行树所在直线;①从A 地到B 地架设电线,总是尽可能沿着直线架设;①把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )A .①①B .①①C .①①D .①① 6.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是 A .先打九五折,再打九五折 B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%7.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为A .120°B .60°C .90°D .150°8.七年级某班共有学生x 人,其中男生占48%,那么女生人数是( )A .48%xB .(1﹣48%)xC .248x x D .145x x - 9.已知点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,BC =2,OA =OB ,若点C 所表示的数为m ,则点A 所表示的数为( )A .m ﹣2B .﹣m ﹣2C .﹣m+2D .m+210.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 2二、填空题11.合并同类项:2235a b a b -=______.12.如图是一个数值运算程序,当输入的数是﹣3时,输出的数是 _____.13.如果60AOB ∠=︒,=20AOC ∠︒,那么BOC ∠的度数是_______.14.若x =2是关于x 的一元一次方程mx ﹣n =3的解,则2﹣4m+2n 的值是_____. 15.某运动品牌店把一件T 恤衫按标价的八折出售,仍可获利20%,若该恤衫的进价为46元,则标价为_____元.16.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么原来的正方形的面积是_____cm 2.三、解答题17.计算:43116(2)31-+÷-⨯--.18.先化简,再求值221523243x xy xy x ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2x =-,12y =19.解下列方程(组): (1)5147169x x ---=(2)33814x y x y -=⎧⎨-=⎩20.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.21.已知:A =3x 2y ﹣xy 2,B =﹣xy 2+3x 2y .(1)求2A ﹣B (结果要求化为最简);(2)若 |2﹣x|+(y+1)2=0,2A ﹣B 的值是多少?22.如图,直线AB ,CD 相交于点O ,且①AOC :①AOD=1:2,OE 平分①BOD(1)求图中①BOD 的补角度数;(2)若90EOF ∠=︒,求①COF 的度数.23.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人,其中甲班超过46人,但不到90人,下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”“B.了解”“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n ______;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.25.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?26.如图,以直线AB上一点O为端点作射线OC,使①BOC=70°,将一个直角三角板的直角顶点放在点O处.(注:①DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则①COE=°;(2)如图①,将直角三角板DOE绕点O转动,如果OD在①BOC的内部,且①BOD=50°,求①COE的度数;(3)将直角三角板DOE绕点O转动,如果OD在①BOC的外部,且①BOD=80°,请在备用图中画出三角板DOE的位置,并求出①COE的度数.参考答案1.A2.D3.B4.A5.D6.B8.B9.B10.A11.22a b -12.﹣8113.80︒或40︒14.-415.6916.40017.-918. x 2-xy+6, 11【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=5x 2-(2xy -xy -6+4x 2)=5x 2-xy+6-4x 2=x 2-xy+6 当12,2x y =-=时,原式=()212(2)62---⨯+=4+1+6=11【点睛】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.19.(1)x=1(2)21x y =⎧⎨=-⎩【分析】(1)去分母,去括号,移项、合并同类项即可;(2)用加减法解方程组即可.(1)解:去分母,得()()35118247x x --=-,去括号,得15x -3-18=8x -14,移项,得15x -8x=-14+3+18,合并同类项,得7x=7,两边同时除以7,得x=1;解:33814x yx y-=⎧⎨-=⎩①②,解:①×3-①得:5y=-5解得y=-1,把y=-1代入①得x=2,所以21xy=⎧⎨=-⎩.【点睛】本题考查了二元二次方程组和一元一次方程的解法;熟练掌握代入法和加减法解方程组是解决问题的关键.20.(1)52;(2)172【分析】(1)根据图示知AM=12AC,AC=AB﹣BC;(2)根据已知条件求得CN=6,然后根据图示知MN=MC+NC.【详解】解:(1)线段AB=20,BC=15,①AC=AB﹣BC=20﹣15=5.又①点M是AC的中点.①AM=12AC=12×5=52,即线段AM的长度是52.(2)①BC=15,CN:NB=2:3,①CN=25BC=25×15=6.又①点M是AC的中点,AC=5,①MC=12AC=52,①MN=MC+NC=172,即MN的长度是172.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的定义,熟练掌握线段中点的定义是解答本题的关键.21.(1)2A﹣B=3x2y﹣xy2;(2)2A﹣B=﹣14.【分析】(1)把A与B代入2A﹣B中,去括号合并即可得到结果;(2)利用非负数的性质求出x与y的值,代入计算即可求出结论.【详解】(1)①A=3x2y﹣xy2,B=﹣xy2+3x2y,①2A﹣B=2(3x2y﹣xy2)﹣(﹣xy2+3x2y)=6x2y﹣2xy2+xy2﹣3x2y=3x2y﹣xy2;(2)①|2﹣x|+(y+1)2=0,①x=2,y=﹣1,则2A ﹣B=2232(1)2(1)⨯⨯--⨯-=﹣12﹣2=﹣14.【点睛】本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.22.(1)①BOD 的补角是120°(2)120COF ∠=︒【分析】(1)根据:1:2AOC AOD =∠∠,180AOC AOD ∠+∠=︒可计算①AOC 、①AOD 的值,又因为180BOD AOD ∠+∠=︒,所以①AOD 即为①BOD 的补角,即①BOD 的补角是120°; (2)先根据180BOD AOD ∠=︒-∠计算①BOD 的度数,再借助OE 平分①BOD 求①DOE 的度数,然后按照DOF EOF DOE =-∠∠∠、180COF DOF =︒-∠∠逐一求解即可. (1)解:因为:1:2AOC AOD =∠∠,且180AOC AOD ∠+∠=︒, 所以1180603AOC ∠=⨯︒=︒,21801203AOD ∠=⨯︒=︒, 因为180BOD AOD ∠+∠=︒,所以①BOD 的补角是120°;(2)因为180********BOD AOD ∠=︒-∠=︒-︒=︒ ,又因为OE 平分①BOD ,所以11603022DOE BOD ∠=∠=⨯︒=︒, 因为90EOF ∠=︒,所以903060DOF EOF DOE =-=︒-︒=︒∠∠∠,所以180********COF DOF =︒-=︒-︒=︒∠∠.【点睛】本题主要考查了邻补角、角平分线的概念和性质,解题关键是熟练掌握与角有关的概念及计算.23.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元(2)甲班有50名同学,乙班有42名同学【分析】(1)若甲、乙两班联合起来购买服装,则每套是40元,计算出总价,即可求得比各自购买服装共可以节省多少钱;(2)设甲班有x 名学生准备参加演出,根据题意,显然各自购买时,甲班每套服装是50元,乙班每套服装是60元,根据等量关系:①两班共92人;①两班分别单独购买服装,一共应付5020元,列方程即可求解.(1)解:5020-92×40=5020-3680=1340(元).所以甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元;(2)解:设甲班有x 名学生,根据题意可知,甲班人数超过46,低于90,所以甲班每套50元,乙班低于45人,所以乙班每套60元,根据题意得()5060925020x x +-=,解得x=50,90-x=92-50=42.答:甲班有50名同学,乙班有42名同学.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.24.(1)1000,35;(2)图见解析,100.8°;(3)约有153万人;建议:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.【分析】(1)从两个统计图中可以得到“C 组”有200人,占调查总人数的20%,可求出调查人数;计算出“A 组”所占的百分比,进而可求“B 组”所占的百分比,确定n 的值; (2)计算出“B 组”的人数,即可补全条形统计图;“A .非常了解”所占整体的28%,其所对应的圆心角就占360°的20%,求出360°×28%即可;(3)样本中“D 不太了解”的占17%,估计全市900万人中,也有17%的人“D 不太了解”,建议合理就可以.【详解】(1)这次调查的市民人数=20020%1000÷=(人),“A 组”所占的百分比=280100028%÷=,“B 组”所占的百分比=128%20%17%35%---=,故答案为:1000,35;(2)100035%350⨯=(人),补全条形统计图如图所示,36028%100.8︒⨯=︒,则“A .非常了解”所在扇形的圆心角度数为100.8°;(3)90017%153⨯=万人,则知晓程度为“D.不太了解”的市民约有153万人;建议:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.【点睛】本题考查了条形统计图、扇形统计图,理清两个统计图中的数量关系是正确解答的关键,样本估计总体是统计中常用的方法.25.(1)年降水量为200万m3,每人年平均用水量为50m3;(2)该镇居民人均每年需节约16 m3水才能实现目标.【分析】(1)设年降水量为x万m3,每人年平均用水量为ym3,根据题意等量关系可得出方程组,解出即可.(2)设该镇居民人均每年用水量为z m3水才能实现目标,由等量关系得出方程,解出即可.【详解】解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,1200020x1620y{1200015x2015y+=⋅+=⋅,解得:x200{y50==.答:年降水量为200万m3,每人年平均用水量为50m3.(2)设该镇居民人均每年用水量为z m3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34.50﹣34=16m3.答:该镇居民人均每年需节约16 m3水才能实现目标.26.(1)20°;(2)①COE的度数为70°;(3)画图见解析,①COE的度数为100°或60°.【分析】(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则①COE=20°;(2)如图①,将直角三角板DOE绕点O转动,如果OD在①BOC的内部,且①BOD=50°,可知①COD=20进而可求①COE的度数;(3)将直角三角板DOE绕点O转动,如果OD在①BOC的外部,且①BOD=80°,在备用图中画出三角板DOE的两个位置,即可求出①COE的度数.【详解】(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则①COE=①DOE﹣①BOC=90°﹣70°=20°.故答案为:20°;(2)如图①,将直角三角板DOE绕点O转动,如果OD在①BOC的内部.①①BOD=50°,①①COD=①BOC﹣①BOD=70°﹣50°=20°,①①COE=①DOE﹣①COD=90°﹣20°=70°,答:①COE的度数为70°;(3)将直角三角板DOE绕点O转动,如果OD在①BOC的外部,且①BOD=80°,分两种情况讨论:①图3中,①①BOD=80°,①BOC=70°,①①DOC=①BOD﹣①BOC=10°,①①COE=①COD+①DOE=10°+90°=100°.①图4中,①①BOE=①DOE﹣①BOD=90°﹣80°=10°,①①COE=①BOC﹣①BOE=70°﹣10°=60°.综上所述:①COE的度数为100°或60°.答:①COE的度数为100°或60°.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥百汇教育培训学校
1
七年级数学(上)期末自测题 姓名_______
一.选择题(每小题4分,共40分。

每小题给出的四个选项中,只有一项是符合题目要求的, 将正确结论的代号填入题后的括号内)
1.下列各数:|3|--,π,3.14,2)3(-中,有理数有( ) (A )1个 (B )2个 (C )3个 (D )4个 2.下列四舍五入法得到的近似数,说法不.正确的是( ) (A )2.40万精确到百分位 (B )0.03086精确到十万分位 (C )48.3精确到十分位
(D )6.5×104精确到千位
3.若3
22y x -与3
2n y x m -是同类项,则n m -等于( )
(A )-5 (B )1 (C )5 (D )-1 4.下列式子正确的是( )
(A )z y x z y x --=--)( (B )z y x z y x ---=+--)( (C ))(222y z x z y x +-=-+ (D ))()(d c b a d c b a -----=+++- 5.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )
(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==2
1
y x
6.下列图形中,不是正方体表面展开图的是( )
(A ) (B ) (C ) (D )
7.小明在新亚百货大楼以8折(即标价的80% )的优惠价买了一双沃特牌运动鞋,节省了45元,那么小明买鞋子时应付给营业员( )
(A )150元 (B )180元 (C )200元 (D )225元
8.有理数c b a ,,在数轴上对应的点如图所示,那么( ) (A )0>++c b a (B )0<++c b a
(C )ac ab < (D )bc ac >
9.已知t x -=2,t y 23+=,用只含x 的代数式表示y 正确的是( )
(A )72+-=x y (B )52+-=x y (C )7--=x y (D )12-=x y
10. 在一次数学竞赛中,竞赛题共有25道,每道题都给出4个答案,其中只有一个答案是正确的,选对得4分,不选或选错扣2分。

规定得分不低于60分得奖,那么得奖者至少应选对( ) (A )18道题 (B )19道题 (C )20道题 (D )21道题 二.填空题(本大题共8小题,每小题5分,共40分。

请将答案直接填入题后的横线上)
11.=+-21
23 .
12.计算:32)3()2(---= .
13.用激光技术测得地球和月球之间的距离为377 985 654.32m,用科学记数法表为 m .(保留三位有效数字)
14.化简=--)12(2x x .
15.若1=x 是方程02=+a x 的根,则=a .
16.已知线段AB=5cm ,点C 在直线AB 上,且BC=3cm ,则线段AC= . 17.一个锐角的补角比这个角的余角大 __ _度.
18.古希腊数学家将数:1,3,6,10,15,21,28,…,叫做三角形数,它有一定的规律性,第24个三角形数与第22个三角形数的差为 . 三、解答题(共70分)
19.(6分)计算:])3(2[6
1
124--⨯-- 20. (6分)化简:)(2)5(3a b b a --+
21.(8分)解方程:162323-+=-x x 22.. (8分)解方程组:⎪⎩⎪⎨⎧=+=+-
23131
2y x y x
23.(10分)作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来。

比如给定一个ABC ∆,可以这样来画:先作一条与AB 相等的线段A ’B ’,然后作∠B ’A ’C ’=∠B AC ,再作线段A ’C ’=AC ,最后连结B ’C ’,这样△A ’B ’C ’就和已知的△ABC 一模一样了。

请你根据上面的作法画一个与给定的三角形一模一样的三角形来。

(请保留作图痕迹)
-3 -2 -1 1 2 a b c A B C 给定的三角形
你画的三角形
合肥百汇教育培训学校
2
5 5.56
123456七年级八年级九年级人均捐款
年级 图1 24.(10分)我市某校开展 “献爱心” 捐款活动,其中初中部学生共捐款5550元。

图1是初中部捐款情况制成的条形图,图2是该校初中部学生人数比例分布图。

(1)该校学生平均每人捐款多少元? (2)七年级学生共捐款多少元? 解:
25.(10)某班同学去距学校18千米处的北山郊游。

只有一辆汽车,需分两组。

甲组先乘车,乙组步行。

车行至A 处,甲组下车步行,汽车返回接乙组,最后两组同学同时到达北山站。

已知汽车速度是 60千米/时,步行速度是4千米/时,求A 处距北山站的距离。

26.(12分)某酒店客房部有三人间、双人间客房,收费标准如下表:
普通(元/间·天) 豪华(元/间·天)
三人间
150 300 双人间
140 400
为吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些普通三人间和普通双人间客房。

若每间客房正好住满,且住一晚的费用为1510元,则该旅游团住了普通三人间和普通双人间客房各多少间?
解:
八年级
40%九年级30%七年级
图2。

相关文档
最新文档