分式复习ppt课件

合集下载

分式-复习课件-(共34张PPT)

分式-复习课件-(共34张PPT)

x2
1 x2
2
9
变: 已知 x2 – 3x+1=0 ,求 x2+
x
x
的1x2值. 的1x2 值.
变:已知 x+ 1=3 ,求
x
x2 /x2 的值. x4+x2+1 /x2
1
x2
1 x2
1
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达: a c ac b d bd
27xy2
-2(a-b)2 -8(b-a)3
关键找出分子和 分母的公因式
m2+4m+4
(3)
m2 - 4
关键找出分母的
2.通分
最简公分母
(1) x 与 y (2)
6a2b
9ab2c
a-1
6
a2+2a+1 与 a2-1
约分与通分的依据都是: 分式的基本性质
整体代入法化简思想:
【【例例11】】已已知知::1x
a0 1
an
1
an
(a 0)
(1)(3)3 1 (3)3
1 27
(2)(3a)2 b2 (a2b2 )3 解:原式= 32 a2b2 a6b6
6、用科学记数法表示:
例: 0.00065 6.5104
(1) 0.000030
3.0 105
7、约分
:
例(1)
6x2y 12 xy 2
(2) x 1 2x 1 3x 2 x 1 1 x x 1
复习回顾一:
1.解分式方程的思路是:
分式 方程
去分母
整式 方程
2.解分式方程的一般步骤

七年级数学下册第五章分式复习课课件新版浙教版ppt

七年级数学下册第五章分式复习课课件新版浙教版ppt
【解析】 设 A4 薄型纸每页的质量为 x(g),则 A4 厚型纸每页的质 量为(x+0.8)g. 由题意,得x+4000.8=16x0·2, 解得 x=3.2. 经检验,x=3.2 是原方程的根,且符合题意. 答:A4 薄型纸每页的质量为 3.2 g.
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
【例 1】 若分式xx2+-11的值为零,则 x 的值为
()
A. 0
B. 1
C. -1
D. ±1
【解析】 根据分式的值为 0 的条件列出关于 x 的不等式
组,求出 x 的值即可.
∵分式xx2+-11的值为零, x2-1=0,
∴x+1≠0, 解得 x=让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
的基本性质.
【正解】
原式=2131xx+-yy××66=32xx+-66yy.
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
易错点2 颠倒运算顺序
【典例 2】 计算:1-1 a÷(3-a)·13--aa. 【错解】 原式=1-1 a÷(1-a)=(1-1a)2. 【析错】 乘除是同一级运算,除在前应先做除,上述错 解颠倒了运算顺序,致使结果出现错误. 【正解】 原式=1-1 a·3-1 a·13--aa=(3-1a)2.
m+3-m+3 (m+3)(m-3)

-2 (m-3)
·
(m+3)(m-3) 6

-m+3 3.
当 m=0 时,原式=-m+3 3=-0+3 3=-1. 【答案】 原式=-m+3 3=-1

第十五章+分式 复习课件 2024—2025学年人教版八年级数学上册

第十五章+分式 复习课件 2024—2025学年人教版八年级数学上册
[答案] ,
5.计算 的结果是( ) .
B
A. B. C. D.
6.化简 的结果是( ) .
A
A. B. C. D.
7.已知 , , ,则 , , 的大小关系是( ) .
B
A. B. C. D.
8.若把分式 中 和 的值都扩大为原来的2倍,则分式的值( ) .
2.下列关于 的方程是分式方程的是( ) .
C
A. B. C. D.
3.计算: ( ) .
D
A. B. C.5 D.
4.石墨烯是目前世界上最薄的纳米材料,其理论厚度仅有 .这个数用科学记数法表示正确的是( ) .
C
A. B. C. D.
18.先化简,再求值: ,其中 .
解:原式 ,当 时,原式
19.刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
刘峰:我查好地图了,你看看._
李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天8:30的车.
刘峰:从地图上看,我家到科技馆的距离比你家近 ,我就骑自行车去了.
考点2 变式
(2022·贺州)解方程: .
解:方程两边乘 ,得 ,解得 .检验:当 时, , 不是原方程的解,原方程无解.
考点3 分式方程的实际应用
例3 (2021·山西)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太榆路全程是 ,但交通比较拥堵;路线二:走太原环城高速全程是 ,平均速度是路线一的 倍,因此到达太原机场的时间比走路线一少用 .求走路线一到达太原机场需要多长时间.

第三章整理《分式》(复习)ppt课件

第三章整理《分式》(复习)ppt课件

顺水速=静水速+水流速 逆水速=静水速-水流速
设是水流速为xkm/ h
则 水 为 20 + x)km/ h 顺 速 (
逆 速 (20 - x)km/ h 水 为
72 48 = 20 + x 20 − x
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变 扩大3 扩大9 扩大4
3、 填空: x ( x − y ) = ( x − 2
y)
x + xy
x+y
例1:化简求值 :
a−2 a −1 a−4 ( 2 − 2 )÷ a + 2a a + 4a + 4 a + 2 2 其中a满足:a + 2a − 1 = 0
1. 若分式
A、 A、x≠-1 C、x≠2 、
若有意义, 应满足( 若有意义,则x应满足( B ) 应满足
B、 ≠-1且 B、x ≠-1且x ≠2 D、x ≠-1或x ≠2 、 或
x −4 ( x + 1)( x − 2)
若值为0, 应满足( 若值为 ,则x应满足( B ) 应满足
A、x=2 、 C、 、
1km
中点 18km }
xkm / h
甲 A
乙 B
甲走了总共20km 甲走了总共
设 乙的速度 xkm / h 则 甲的速度( x + 0.5)km / h
20 18 = x + 0.5 x
1、一项工程,若甲队单独做,恰好在规定的日期 、一项工程,若甲队单独做, 完成,若乙队单独做要超过规定日期3天完成 天完成; 完成,若乙队单独做要超过规定日期 天完成;现 在先由甲、乙合做2天 在先由甲、乙合做 天,剩下的工程再由乙队单独 也刚好在规定日期完成, 做,也刚好在规定日期完成,问规定的日期是多 少天? 少天? 1 甲每天的工作量 x 设 天 甲x

分式复习1

分式复习1

其中A叫做分子,B叫做分母.
分式及其相关概念 强化训练:
1.下列各式中,哪些是分式?
m m 1 2 5 a b xy (1) , , x , , , 8 a 3 x6 2 A 5x 2y
2 2
注意:分式
中,分母 B 中一定要有字
5 a 1 ( 2) , ,a a b
2
母。 温馨提示:
B
分式
A
x 1 无意义的条件
{ B≠0
.
(2)
若分式
3x 6 2x 1 B.
的值为 0,则() X 1 2 C. X 1 2 D. X 2
c
A. X -2
本章知识网络
分 2、分式的基本性质 式
3、分式的运算 4、分式方程

1、分式概念 ⑴分式有意义的条件 ⑵分式的值的情况讨论
(2)若值为0,则x应满足( B )
A、x=2 C、 x
2
B、x =-2 D、x =-1或x =2
2
a b ab A 计算 的结果是() a b a A. a -b b B. ab b C. a -b a D. ab a
x+3 2-x 3 10.学完分式运算后,老师出了一道题“化简: + ”. x+2 x2-4 x+3x-2 x-2 x2+x-6-x-2 x2-8 小明的做法是:原式= - 2 = = 2 ; 2 2 x -4 x -4 x -4 x -4 小亮的做法是:原式=(x+3)(x-2)+(2-x)=x2+x-6+2-x=x2-4; x+3 x-2 x+3 1 x+3-1 小芳的做法是:原式= - = - = =1. x+2 x+2x-2 x+2 x+2 x+2 其中正确的是( ) A.小明 B.小亮 C.小芳 D.没有正确的

八年级数学上册第二章分式与分式方程复习课件(30张PPT)

八年级数学上册第二章分式与分式方程复习课件(30张PPT)
解这个方程得:x=30
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.

第15章分式小结与复习课件(共34张PPT)

第15章分式小结与复习课件(共34张PPT)
解:最简公分母为(x+2)(x﹣2),去分母得(x﹣2)2﹣(x+2)(x﹣2)=16,整理得﹣4x+8=16,解得x=﹣2,经检验x=﹣2是增根,故原分式方程无解.
【例5】 从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;
解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可;
解:(1)根据题意得400×1.3=520(千米).答:普通列车的行驶路程是520千米;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
3.分式的加减法则:
(1)同分母分式的加减法则:
(2)异分母分式的加减法则:
4.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号的先算括号里面的.
计算结果要化为最简分式或整式.
3.分式方程的应用
列分式方程解应用题的一般步骤
(1)审清题意;(2)设未知数; (3)找相等关系;(4)列出方程;(5)解这个分式方程;(6)验根(包括两方面 :是否是分式方程的根; 是否符合题意);(7)答.
解析:设普通列车的平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.
解:设普通列车的平均速度是x千米/时,则高铁的平均速度是2.5x千米/时,根据题意得
解得x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).
分式方程的应用
步骤
一审二设三找四列五解六检七答,尤其不要忘了验根

第3节分式-中考数学一轮知识复习PPT课件

第3节分式-中考数学一轮知识复习PPT课件

3.通分:
(1)定义:把几个异分母的分式化为同___分__母__分式的过程叫做 分式的通分.通分的关键是确定各分母的_最__简__公___分__母__.
(2)确定最简公分母的方法: ①取各分母系数的最小公倍数,作为最简公分母的系数;取 各分母所有因式的最高次幂的积,作为最简公分母的因式. ②若分母是多项式,则应先把各个分母分解因式,再确定最 简公分母. 温馨提示
2.分式有、无意义和值为 0 的条件: 条件
分式AB 有意义
__B__≠_0__
分式AB 无意义
__B_=__0__
分式AB 的值为 0
__A_=__0__且 B≠0
3.最简分式:分子与分母没有_公__因__式__的分式.
分式的基本性质
1.基本性质:分式的分子与分母都_乘__或___除__以___同一个不等
B.缩小 10 倍
C.是原来的23
D.不变
☞命题点3 分式的运算 A
1 x+1
8.(2020·随州)x2-2 4
1 ÷x2-2x
的计
算结果为( B )
A.x+x 2
B.x+2x2
C.x-2x2
2 Dx(x+2)
☞命题点4 分式的化简及求值(8年7考)
9.(2018·广东 18 题 6 分)先化简,再求值:
6.(2020·花都区一模)计算:x+x 1 +x+1 1 =___1__.
7.(12020·黄冈)计算:x2-y y2 ÷1-x+x y 的结果 是_____x_-__y____.
8.(2020·东莞一模)先化简:1+a2-1 1
a ÷a-1

请在-1,0,1,2,3 当中选一个合适的数代入求值.
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)(xyx2)x22xyy2·xy
xy CHENLI
x2 10
(1) x1 2x1 x1 1x
(2) x1 2x1 x1 x2
(3) xx2112xx11
CHENLI
11
例1:化简求值
(aa2 22aa2
a1 )a4 4a4 a2
其中a满足:a2 2a10
CHENLI
12
解分式方程的思路是:
32x2kx 1 x3 x3
CHENLI
18
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
例:解方程 xx 1 1x2411
解:方程两边都乘以 (x+1) ( x – 1 ) , 约去分母,得
( x + 1 )2-4 = x2-1 解这个整式方程,得
x=1 经检验得:分母 x -1 =O
∴原方程无解.
CHENLI
14
解下列方程:
1、 5 7 x x2
2、
x2411
x1 x1
23 6
人生能有几回搏, 今日不搏待何时
CHENLI
1
本章知识网络
1、分式概念 ⑴分式有意义的条件
⑵分式的值的情况讨论
分 2、分式的基本性质 分式的约分

分式的通分
3、分式的运算 分式的乘除法运算
分式的加减法运算
4、分式方程 分式方程的解法步骤
分CHE式NLI 方程的应用
2
1、形如
A B
的式子叫做分式,其中A、B是整式,B中必须
1.若把分式 2 x 的y x 和y 都扩大两倍,则分式的值( ) B 3x y
A.扩大2倍 B不变 C缩小2倍 D.缩小2倍
2.若 把 分 式xy 中 的 x和 y的 值 都 扩 大 3倍 , xy
则 分 式 的 值
(A)
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变
3、
填空:
x(xy) x2 xy
含有字母。对于任意一个分式,分母都不能为零。
2、分式的加减法则:
1 a b a b
cc c
3、分式的乘除法则:
2 a c ad bc
b d bd
1 b d bd
a c ac
2 b d b c bc
a c a d ad
CHENLI
3
试一试
分式的定义
例1、下列各有理式中,哪些是分式?哪些是整式?
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
4、写出原方程的根. CHENLI 一化二解三检验 13
1 m 3x 1
12x24
3x,2,2y,3(ab)6 ,,, x2
整式 m 2有 ,1 3(a: b),1 6,2
分式1有 ,: 3x ,x24 3x 2y x2
CHENLIຫໍສະໝຸດ 4例2:当 m 取何值时,分式 m 2 9有意义?
值为零?
m 3
解:由 m – 3 ≠0,得 m≠3。所以当 m≠3 时, 分式有意义;
(x y )
xy
CHENLI
8
分式的加减
例3、计算:
xxyxxyx2y2xy
xy x
y2
解: x xyx2xy
(xy)x (y) x2 y2 x(xy) x(xy) x(xy)
x2 y2 x2 y2 x2 xy
0
CHENLI
9
(1)2m2n 5p2q5mnp 3pq2 4mn2 3q
(2) 16a2 a4a2 a28a16 2a8a2
CHENLI
19
1、一项工程,若甲队单独做,恰好在规定的 日期完成,若乙队单独做要超过规定日期3天 完成;现在先由甲、乙合做2天,剩下的工程 再由乙队单独做,也刚好在规定日期完成, 问规定的日期是多少天?
2、一游艇在静水中每小时航行20千米,顺 水航行72千米的时间恰好等于逆水航行48千 米的时间,求水流的速度。
由 m2 – 9 =0,得 m=±3。而当 m=3 时,分母 m – 3 =0,分式没有意义,故应舍去, 所以当 m= - 3时,分式的值为零。
分式有无意义与什么有关?
分式有无意义只与分母有关
CHENLI
5
一、练习:
x2 4
1. 若分式
( x 1)( x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
CHENLI
20
CHENLI
21
3、
x1 x1 CHENLI x21
15
例2.如果整数A、B满足等式
求A与B的值。
CHENLI
16
例3、如果下列关于x的方程 有增根,求a的值。
a 112x x4 4x
CHENLI
17
1、如果下列关于x的方程有正数解,
x4 3 m 求m的取值范围; x5 x5
2、如果关于x的方程无解,求k的值,
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2 C、x=-1
B、x =-2 D、x =-1或x =2
CHENLI
6
2.当x <-2 时,分式 X2+1 的值是负数. X+2
3.当x ≥7
时,分式
X-7 X2+1
的值是非负数.
CHENLI
7
二、分式的基本性质
相关文档
最新文档