【优质部编】2019-2020学年高二数学9月月考试题 理 人教 目标版
2019-2020下学期高二阶段月考数学(理)试卷 Word版含答案

姓名,年级:时间:数学(理科)试题第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分) 1、iiz ++=13,则z =( ) A. 1+2i B 。
1−2i C. 2+iD. 2−i2、下列三句话按三段论的模式排列顺序正确的是( )① 2018能被2整除;②一切偶数都能被2整除;③ 2018是偶数; A. ①②③ B. ②①③ C. ②③①D. ③②① 3、不等式的解集是( ) A. 或B.C 。
或D.4、用反证法证明“已知x ,y ∈R ,x 2+y 2=0,求证:x =y =0.”时,应假设( )A. x ≠y ≠0B. x =y ≠0 C 。
x ≠0且y ≠0 D. x ≠0或 y ≠05、把红、黄、蓝3张卡片随机分给甲、乙、丙三人, 每人1张, 事件A:“甲得红卡”与事件B :“乙得红卡”是( ) A.不可能事件 B.必然事件C 。
对立事件 D.互斥且不对立事件 6、下列函数求导运算正确的个数为( )①,②,③(,且),④A 。
0个 B.1个 C 。
2个 D.3个 7、不等式的解集为( )A .B .C .D . 8、我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为'1(2)2x x x -=⋅'(sin 2)cos2x x ='(log )ln x a x a a =0a >1a ≠'1(ln 2)2=2112x x -++>2(,0)(,)3-∞+∞2(,)3+∞2(,1)(,)3-∞-+∞(,0)-∞两个素数(注:素数又叫质数)的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C.115D. 1189、若不等式对一切实数都成立,则实数的取值范围为( )A .B .C .D .10、若P =√a +√a +5,Q =√a +2+√a +3(a ≥0),则P ,Q 的大小关系是( )A 。
2019-2020年高二上学期9月月考数学试题含答案

2019-2020年高二上学期9月月考数学试题含答案考试范围:必修5第一、二章考试时间:120分钟 满分:150分一、选择题:(本大题共10小题,每小题5分,共50分) 1、数列1,-3,5,-7,9,…的一个通项公式为A 12-=n a nB )21()1(n a n n --=C )12()1(--=n a n n D)12()1(+-=n a n n2.已知{}n a 是等比数列,41252==a a ,,则公比q =A .21-B .2-C .2D .21 3.若∆ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =A. 14-B. 14C. 23-D. 234.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是A .1B .2C .2±D .45.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132l o g l o g b b ++……314log b +等于A. 5B. 6C. 7D.86.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A. b=10, A=450, C=600B. a=6, c=5, B=600C. a=7, b=5, A=600D. a=14, b=16, A=450 7.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 8.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为( ) Am 3400Bm 33400 Cm 33200 Dm 32009.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n nT S n n ,则55b a ( ) A32 B 149 C 3120 D 9710.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( ) A.(1)2n n + B.2(1)n n + C.21n n + D.2(1)n n +二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 12. 已知数列{a n }的前n 项和是21n S n n =++, 则数列的通项a n =__ 13.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = 14.△ABC 中,a 、b 、c 成等差数列,∠B=30°,ABC S ∆=23,那么b = 15.在钝角△ABC 中,已知a=1,b=2,则最大边c 的取值范围是____________ 。
实验中学高二数学上学期第三次月考试题理含解析

所以 ,
所以 ,故选A.
8。若实数x、y满足 ,则 的取值范围是 ( )
A。 B。 C. D。
【答案】A
【解析】
由 满足的约束条件画出可行域,如图:
目标函数 表示区域内的动点 与定点 连线的斜率
由图可知 是 最小值,故 的取值范围是
故答案选
点睛:线性规划转化为几何意义, 转化为可行域内的点到点 连线的斜率,先画出可行域,然后计算出斜率范围.
∴∠A=60°.
在△ABC中,由正弦定理得sin B= ,
∵b2=ac,∠A=60°,
∴ = =sin 60°= .
19。解关于x的不等式ax2-(a+1)x+1〈0。
【答案】见解析
【解析】
【分析】
将不等式化为(ax-1)(x-1)<0,再对 的取值范围讨论,分类解不等式.
【详解】原不等式可化为(ax-1)(x-1)<0
16。设 为正数, ,则 的最大值是___________
【答案】
【解析】
【分析】
根据柯西不等式直接求最值.
【详解】
当且仅当 时取等号
,即 的最大值是
故答案为:
【点睛】本题考查利用柯西不等式求最值,考查基本分析求解能力,属基础题.
三、解答题(本大题共6小题,共70分.)
17.已知等差数列{an}中,a1=1,a3=﹣3.
(II)由(I)可知an=3﹣2n,
所以Sn= =2n﹣n2,
进而由Sk=﹣35,可得2k﹣k2=﹣35,
即k2﹣2k﹣35=0,解得k=7或k=﹣5,
又k∈N+,故k=7为所求.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.
2019-2020年高二上学期9月月考数学(文)试卷 含解析

2019-2020年高二上学期9月月考数学(文)试卷含解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.若x∈R,则x=2”是“(x﹣2)(x﹣1)=0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件2.椭圆x2+my2=1的焦点在y轴上,焦距是短轴长的两倍,则m的值为()A. B. C. D. 43.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率是()A. B. C. D.4.若圆x2+y2=4上每个点的横坐标不变.纵坐标缩短为原来的,则所得曲线的方程是()A. B. C. D.5.以双曲线﹣=1的右顶点为焦点的抛物线的标准方程是()A. y2=4x B. y2=16x C. y2=8x D. y2=﹣8x6.方程mx+ny2=0与mx2+ny2=1(|m|>|n|>0)的曲线在同一坐标系中的示意图应是()A. B. C. D.7.已知命题p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若,下列为真命题的是()A. p∧q B. p∨q C.¬p D.(¬p)∧(¬q)8.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是()A. B. C. D.9.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是()A. x2﹣y2=1 B. y2﹣x2=1 C. x2﹣y2=2 D. y2﹣x2=210.已知命题p:存在实数m使m+1≤0,命题q:对任意x∈R都有x2+mx+1>0,若p且q 为假命题,则实数m的取值范围为()A.(﹣∞,﹣2] B. [2,+∞) C.(﹣∞,﹣2]∪(﹣1,+∞) D. [﹣2,2]11.正三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个正三角形的边长为()A. B. C. 8 D. 1612.如图所示,F为双曲线C:﹣=1的左焦点,双曲线C上的点P i与P7﹣i(i=1,2,3)关于y轴对称,则|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|的值是()A. 9 B. 16 C. 18 D. 27二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题纸的横线上,填在试卷上的答案无效.13.命题“存在x∈R,x2﹣2x+1≤0”的否定是.14.椭圆x2+ny2=1与直线y=1﹣x交于M,N两点,过原点与线段MN中点所在直线的斜率为,则n的值是.15.过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于.16.已知三个数2,m,8构成一个等比数列,则圆锥曲线+=1离心率为.三、解答题:共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知双曲线方程是9x2﹣y2=﹣81.求它的实轴和虚轴的长、焦点坐标、离心率和渐近线方程.18.求下列各曲线的标准方程.(1)已知椭圆的两个焦点分别是(﹣2,0),(2,0),并且经过点(,﹣).(2)已知抛物线焦点在x轴上,焦点到准线的距离为6.19.已知a>0,命题p:函数y=a x为减函数.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,如果p或q为真命题,p且q为假命题,求a的取值范围.20.已知p:x2﹣7x+10≤0,q:m≤x≤m+1,若q是p的充分条件,求m的取值范围.21.已知△ABC的顶点A,B的坐标分别为(﹣4,0),(4,0),C 为动点,且满足,求点C的轨迹方程,并说明它是什么曲线.22.已知圆C方程为(x﹣3)2+y2=12,定点A(﹣3,0),P是圆上任意一点,线段AP的垂直平分线l和直线CP相交于点Q.(Ⅰ)当点P在圆上运动时,求点Q的轨迹E的方程.(Ⅱ)过点C倾斜角为30°的直线交曲线E于A、B两点,求|AB|.2014-2015学年吉林省松原市扶余一中高二(上)9月月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.若x∈R,则x=2”是“(x﹣2)(x﹣1)=0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用.分析:根据充分必要条件的定义进行判断.解答:解:∵x=2⇒(x﹣2)(x﹣1)=0,(x﹣2)(x﹣1)=0推不出x=2,∴x=2是(x﹣2)(x﹣1)=0的充分不必要条件,故选:A.点评:本题考查了充分必要条件,是一道基础题.2.椭圆x2+my2=1的焦点在y轴上,焦距是短轴长的两倍,则m的值为()A. B. C. D. 4考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据椭圆的方程求解,a,b,c的值,即可得到答案.解答:解:∵椭圆x2+my2=1的焦点在y轴上,∴椭圆x2+=1的焦点在y轴上,>1,2a=2,2b=2,2c=2,∵焦距是短轴长的两倍,∴2=4,m=,故选:A点评:本题综合考查了椭圆的几何性质,计算较容易.3.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:由题意可得 cos60°==,从而得到椭圆的离心率的值.解答:解:由题意可得 cos60°==,∴椭圆的离心率是=,故选 B.点评:本题考查椭圆的标准方程,以及简单性质的应用,得到 cos60°=,是解题的关键.4.若圆x2+y2=4上每个点的横坐标不变.纵坐标缩短为原来的,则所得曲线的方程是()A. B. C. D.考点:伸缩变换;椭圆的标准方程.专题:计算题.分析:在曲线C上任取一个动点P(x,y),根据图象的变换可知点(x,3y)在圆x2+y2=4上.代入圆方程即可求得x和y的关系式,即曲线的方程.解答:解:在曲线C上任取一个动点P(x,y),根据图象的变换可知点(x,3y)在圆x2+y2=4上,∴x2+9y2=4,即则所得曲线为.故选C.点评:本题主要考查变换法求解曲线的方程,理解变换前后坐标的变化是关键考查了学生分析问题的能力及数学化归思想.5.以双曲线﹣=1的右顶点为焦点的抛物线的标准方程是()A. y2=4x B. y2=16x C. y2=8x D. y2=﹣8x考点:抛物线的标准方程;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据双曲线方程,算出它的右顶点为F(2,0),也是抛物线的焦点.由此设出抛物线方程为y2=2px,(p>0),结合抛物线焦点坐标的公式,可得p=4,从而得出该抛物线的标准方程.解答:解:∵双曲线的方程为﹣=1,∴a2=4,得a=2,∴抛物线的焦点为F(2,0),设抛物线方程为y2=2px,(p>0),则=2,得2p=8∴抛物线方程是y2=8x.故选:C.点评:本题给出抛物线焦点与已知双曲线的右焦点重合,求抛物线的标准方程,着重考查了双曲线、抛物线的标准方程与简单几何性质等知识,属于基础题.6.方程mx+ny2=0与mx2+ny2=1(|m|>|n|>0)的曲线在同一坐标系中的示意图应是()A. B. C. D.考点:曲线与方程.专题:作图题;分类讨论.分析:当 m和n同号时,抛物线开口向左,方程mx2+ny2=1(|m|>|n|>0)表示焦点在y 轴上的椭圆,当m和n异号时,抛物线 y2=﹣开口向右,方程mx2+ny2=1(|m|>|n|>0)表示双曲线.解答:解:方程mx+ny2=0 即 y2=﹣,表示抛物线,方程mx2+ny2=1(|m|>|n|>0)表示椭圆或双曲线.当 m和n同号时,抛物线开口向左,方程mx2+ny2=1(|m|>|n|>0)表示焦点在y轴上的椭圆,无符合条件的选项.当m和n异号时,抛物线 y2=﹣开口向右,方程mx2+ny2=1(|m|>|n|>0)表示双曲线,故选 A.点评:本题考查根据曲线的方程判断曲线的形状,体现了分类头论的数学思想,分类讨论是解题的关键.7.已知命题p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若,下列为真命题的是()A. p∧q B. p∨q C.¬p D.(¬p)∧(¬q)考点:复合命题的真假.专题:规律型.分析:分别判断命题p,q的真假,利用复合命题与简单命题真假之间的关系进行判断即可.解答:解:若实数x,y满足x2+y2=0,则x,y全为0,∴p为真命题.当a=1,b=﹣1时,满足a>b,但不成立,∴q为假命题.∴p∧q为假命题,p∨q为真命题,¬p为假命题,(¬p)∧(¬q)为假命题,故选:B.点评:本题主要考查复合命题与简单命题真假之间的关系,先判断简单命题p,q的真假是解决本题的关键.8.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先求出点B的坐标,设出点P的坐标,利用=2,得到a与c的关系,从而求出离心率.解答:解:如图,由于BF⊥x轴,故x B=﹣c,y B =,设P(0,t),∵=2,∴(﹣a,t)=2(﹣c,﹣t).∴a=2c,∴e==,故选 D.点评:本题考查椭圆的简单性质以及向量坐标形式的运算法则的应用,体现了数形结合的数学思想.9.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是()A. x2﹣y2=1 B. y2﹣x2=1 C. x2﹣y2=2 D. y2﹣x2=2考点:椭圆的简单性质;双曲线的标准方程.专题:计算题.分析:根据椭圆方程求得其长轴的端点坐标和离心率,进而可得双曲线的顶点和离心率,求得双曲线的实半轴和虚半轴的长,进而可得双曲线的方程.解答:解:由题意设双曲线方程为,离心率为e椭圆长轴的端点是(0,),所以a=.∵椭圆的离心率为∴双曲线的离心率e=,⇒c=2,∴b=,则双曲线的方程是y2﹣x2=2.故选D.点评:本题主要考查了双曲线的性质和椭圆的标准方程.要记住双曲线和椭圆的定义和性质.10.已知命题p:存在实数m使m+1≤0,命题q:对任意x∈R都有x2+mx+1>0,若p且q 为假命题,则实数m的取值范围为()A.(﹣∞,﹣2] B. [2,+∞) C.(﹣∞,﹣2]∪(﹣1,+∞) D. [﹣2,2]考点:复合命题的真假.专题:规律型.分析:先求出命题p,q为真命题的等价条件,利用p且q为假命题,即可求实数m的取值范围.解答:解:若存在实数m使m+1≤0,则m≤﹣1,∴p:m≤﹣1.若对任意x∈R都有x2+mx+1>0,则对应的判别式△=m2﹣4<0,解得﹣2<m<2,即q:﹣2<m<2,∴p且q为真时,有,即﹣2<m≤﹣1.∴若p且q为假命题,则m>﹣1或m≤﹣2,即实数m的取值范围为(﹣∞,﹣2]∪(﹣1,+∞).故选:C.点评:本题主要考查复合命题与简单命题真假之间的关系,先求出p且q为真时的等价条件是解决本题的关键.11.正三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个正三角形的边长为()A. B. C. 8 D. 16考点:抛物线的简单性质.专题:计算题.分析:根据抛物线方程先设其中一个顶点是(x,2 ),根据正三角形的性质=tan30°=求得x,进而可得另两个顶点坐标,最后求得这个正三角形的边长.解答:解:设其中一个顶点是(x,2 )因为是正三角形所以=tan30°=即解得x=12所以另外两个顶点是(12,4 )与(12,﹣4 )则这个正三角形的边长为故选B.点评:本题主要考查抛物线的应用.利用抛物线性质解决解三角形问题的关键.12.如图所示,F为双曲线C:﹣=1的左焦点,双曲线C上的点P i与P7﹣i(i=1,2,3)关于y轴对称,则|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|的值是()A. 9 B. 16 C. 18 D. 27考点:双曲线的简单性质.专题:计算题.分析:首先设右焦点为F′,由点P i与P7﹣i(i=1,2,3)关于y轴对称以及双曲线的对称性得出|FP1|=|F′P6|,|FP2|=|F′P5|,|FP3|=|F′P4|,然后根据双曲线的定义得出|F′P6|﹣|P6F|=2a=6,|F′P5|﹣|P5F|=2a=6,|F′P4|﹣|P4F|=2a=6,进而求出结果.解答:解:设右焦点为F′,∵双曲线C上的点P i与P7﹣i(i=1,2,3)关于y轴对称∴P1和P6,P2和P5,P3和P4分别关于y轴对称∴|FP1|=|F′P6|,|FP2|=|F′P5|,|FP3|=|F′P4|,∵|F′P6|﹣|P6F|=2a=6,|F′P5|﹣|P5F|=2a=6,|F′P4|﹣|P4F|=2a=6,∴|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|=(|F′P6|﹣|P6F|)+(|F′P5|﹣|P5F|)+(|F′P4|﹣|P4F|)=18故选C.点评:本题考查了双曲线的性质,灵活运用双曲线的定义,正确运用对称性是解题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题纸的横线上,填在试卷上的答案无效.13.命题“存在x∈R,x2﹣2x+1≤0”的否定是∀x∈R,x2﹣2x+1>0 .考点:特称命题.专题:简易逻辑.分析:特称命题的否定是全称命题结果即可.解答:解:∵特称命题的否定是全称命题,∴命题“存在x∈R,x2﹣2x+1≤0”的否定是:∀x∈R,x2﹣2x+1>0.故答案为:∀x∈R,x2﹣2x+1>0.点评:本题考查特称命题与全称命题的否定关系,注意否定的形式.14.椭圆x2+ny2=1与直线y=1﹣x交于M,N两点,过原点与线段MN中点所在直线的斜率为,则n的值是.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:联立方程组,转化为二次方程,借助韦达定理,求出中点坐标,再利用斜率得到等式,即可求出答案.解答:解:设M(x1,y1),N(x2,y2),中点(x,y),椭圆x2+ny2=1与直线y=1﹣x交于M,N两点化简可得:(1+n)x2﹣2nx﹣n﹣1=0所以x1+x2=,x=,y=,因为过原点与线段MN中点所在直线的斜率为,所以=,即n=,故答案为:点评:本题综合考查了直线与圆锥曲线位置关系,二次方程的系数的运用.15.过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于8 .考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线方程得它的准线为l:x=﹣1,从而得到线段AB中点M到准线的距离等于4.过A、B分别作AC、BD与l垂直,垂足分别为C、D,根据梯形中位线定理算出|AC|+|BD|=2|MN|=8,结合抛物线的定义即可算出AB的长.解答:解:∵抛物线方程为y2=4x,∴抛物线的焦点为F(1,0),准线为l:x=﹣1设线段AB的中点为M(3,y0),则M到准线的距离为:|MN|=3﹣(﹣1)=4,过A、B分别作AC、BD与l垂直,垂足分别为C、D根据梯形中位线定理,可得|AC|+|BD|=2|MN|=8再由抛物线的定义知:|AF|=|AC|,|BF|=|BD|∴|AB|=|AF|+|BF||AC|+|BD|=8.故答案为:8点评:本题给出过抛物线y2=4x焦点的一条弦中点的横坐标,求该弦的长度.着重考查了抛物线的标准方程和简单几何性质等知识,属于基础题.16.已知三个数2,m,8构成一个等比数列,则圆锥曲线+=1离心率为或.考点:双曲线的简单性质;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由1,m,9构成一个等比数列,得到m=±3.当m=3时,圆锥曲线是椭圆;当m=﹣3时,圆锥曲线是双曲线,由此入手能求出离心率.解答:解:∵2,m,8构成一个等比数列,∴m=±4.当m=4时,圆锥曲线+=1是椭圆,它的离心率是;当m=﹣4时,圆锥曲线+=1是双曲线,它的离心率是.故答案为:或.点评:本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用,注意分类讨论思想的灵活运用.三、解答题:共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知双曲线方程是9x2﹣y2=﹣81.求它的实轴和虚轴的长、焦点坐标、离心率和渐近线方程.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:把方程化简为:,求出a,b,c 再根据几何性质写出答案.解答:解:∵双曲线方程是9x2﹣y2=﹣81,∴双曲线标准方程为:,实轴长:18,虚轴长为6,a=9,b=3,c=3,焦点坐标(0,±3),离心率:e=,渐近线方程为:y=±3x.点评:本题主要考察了双曲线的方程,几何性质,属于比较简单的计算题.18.求下列各曲线的标准方程.(1)已知椭圆的两个焦点分别是(﹣2,0),(2,0),并且经过点(,﹣).(2)已知抛物线焦点在x轴上,焦点到准线的距离为6.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由题意可设椭圆的标准方程为(a>b>0),设焦点为F1(﹣2,0),F2(2,0),因为椭圆经过点P(,﹣),利用椭圆的定义可得2a=|PF1|+|PF2|,再利用b2=a2﹣c2即可得出.(2)抛物线焦点在x轴上,可设标准方程为y2=±2px(p>0).根据焦点到准线的距离为6,可得p=6,即可得到抛物线的标准方程.解答:解:(1)由题意可设椭圆的标准方程为(a>b>0),∵椭圆经过点(,﹣).∴.∴.∵c=2,∴b2=a2﹣c2=10﹣4=6.所求椭圆的标准方程为.(2)∵抛物线焦点在x轴上,可设标准方程为y2=±2px(p>0).∵焦点到准线的距离为6,∴p=6.∴抛物线的标准方程为y2=±12x.点评:本题考查了圆锥曲线的定义、标准方程及其性质,属于基础题.19.已知a>0,命题p:函数y=a x为减函数.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,如果p或q为真命题,p且q为假命题,求a的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:由a>0,命题p:函数y=a x为减函数.可得0<a<1.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,可得,利用基本不等式即可得出.由p或q为真命题,p且q为假命题,可得p,q中必然一个真命题一个为假命题.解出即可.解答:解:由a>0,命题p:函数y=a x为减函数.∴0<a<1.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,∴,∵x∈[,2]时,函数f(x)=x+=2,当且仅当x=1时取等号.∴,又a>0,∴.∵p或q为真命题,p且q为假命题,∴p,q中必然一个真命题一个为假命题.①当p真q假时,,解得,a的取值范围是.②当q真p假时,,解得a≥1,a的取值范围是[1,+∞).点评:本题考查了指数函数的单调性、基本不等式、不等式组的解法、“或”“且”“非”命题的真假的判断等基础知识,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于难题.20.已知p:x2﹣7x+10≤0,q:m≤x≤m+1,若q是p的充分条件,求m的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:求出p的等价条件,利用q是p的充分条件,确定m的取值范围.解答:解:由x2﹣7x+10≤0,解得2≤x≤5,即p:2≤x≤5.,设A={x|2≤x≤5}∵命题q可知:m≤x≤m+1,设B={x|m≤x≤m+1},∵q是p的充分条件,∴B⊆A,,解得:2≤m≤4.∴m的取值范围是2≤m≤4.点评:本题主要考查充分条件和必要条件的应用,比较基础.21.已知△ABC的顶点A,B的坐标分别为(﹣4,0),(4,0),C 为动点,且满足,求点C的轨迹方程,并说明它是什么曲线.考点:椭圆的标准方程;正弦定理.专题:圆锥曲线的定义、性质与方程.分析:由,可知,即|AC|+|BC|=10>|AB|=8,根据椭圆的定义可知:点C的轨迹是椭圆(去掉左右顶点).解答:解:由,可知,即|AC|+|BC|=10>|AB|=8,满足椭圆的定义.设椭圆方程为,则a′=5,c′=4,∴=3,则轨迹方程为(x≠±5),图形为椭圆(不含左,右顶点).点评:本题考查了椭圆的定义,属于基础题.22.已知圆C方程为(x﹣3)2+y2=12,定点A(﹣3,0),P是圆上任意一点,线段AP的垂直平分线l和直线CP相交于点Q.(Ⅰ)当点P在圆上运动时,求点Q的轨迹E的方程.(Ⅱ)过点C倾斜角为30°的直线交曲线E于A、B两点,求|AB|.考点:轨迹方程;直线与圆锥曲线的关系.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意可得点Q满足双曲线的定义,且求得a,c的值,再由b2=c2﹣a2求得b,则点Q的轨迹E的方程可求;(Ⅱ)由题意得到直线AB的方程,和双曲线方程联立后利用弦长公式得答案.解答:解:(Ⅰ)由点Q是线段AP垂直平分线上的点,∴|AQ|=|PQ|,又∵,满足双曲线的定义.设E的方程为,则,,则轨迹E方程为;(Ⅱ)直线AB的倾斜角为30°,且直线过C(3,0),∴直线AB的方程为,由,消去y得5x2+6x﹣27=0,设A(x1,y1),B(x2,y2),∴有,.则|AB|=.点评:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,涉及直线与圆锥曲线的关系问题,常用根与系数的关系解决,是压轴题.参与本试卷答题和审题的老师有:1619495736;sdpyqzh;caoqz;minqi5;刘长柏;maths;ywg2058;qiss;孙佑中;sxs123(排名不分先后)菁优网2015年9月15日。
2019-2020年高二9月月考数学(理)试题 含答案

2019-2020年高二9月月考数学(理)试题 含答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知向量a ,b ,则“a ∥b ”是“a +b =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.若p 是真命题,q 是假命题,则( ) A .p ∧q 是真命题 B .p ∨q 是假命题 C .¬p 是真命题D .¬q 是真命题4.命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( )A .∃x 0∈(0,+∞),ln x 0≠x 0-1B .∃x 0∉(0,+∞),ln x 0=x 0-1C .∀x ∈(0,+∞),ln x ≠x -1D .∀x ∉(0,+∞),ln x =x -15.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0 6.“x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.给出下列命题,其中真命题为( ) A .对任意x ∈R ,x 是无理数B .对任意x ,y ∈R ,若xy ≠0,则x ,y 至少有一个不为0C .存在实数既能被3整除又能被19整除D .x >1是1x<1的充要条件8.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c 则“a ≤b ”是 “sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 9.已知p :1x +1>0;q :lg(x +1+1-x 2)有意义,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知命题p :若x >y ,则-x <-y :命题q :若x >y ,则x 2>y 2,在命题①p ∧q ;②p ∨q ;③p ∧(¬q );④(¬p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④11.已知命题p :∀x >0,总有(x +1)e x >1,则¬p 为 ( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤112.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2D .p 1,p 3二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是____________.14.设命题p :∀x ∈R ,x 2+1>0,则¬p 是____________.15.若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是________. 16.已知命题p :|x 2-x |≠6,q :x ∈N ,且“p ∧q ”与“¬q ”都是假命题,则x 的值为________.三、解答题(本大题共6小题,共74分.解答题应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(1)写出命题:“若x 2-3x +2=0,则x =1或x =2”的逆命题、否命题和逆否命题,并判断它们的真假.(2)已知集合P ={x |-1<x <3},S ={x |x 2+(a +1)x +a <0},且x ∈P 的充要条件是x ∈S ,求实数a 的值.18.判断下列命题是全称命题还是特称命题,并判断其真假. (1)至少有一个整数,它既能被11整除,又能被9整除. (2) ∀x ∈{x |x >0},x +1x ≥2.(3)∃ x 0∈{x |x ∈Z },log 2x 0>2.19.设p:关于x的不等式a x>1(a>0且a≠1)的解集为{x|x<0},q:函数y=lg(ax2-x +a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围.20.已知命题p:x2-8x-20>0,q:x2-2x+1-m2>0(m>0),若p是q的充分不必要条件,求实数m的取值范围.21.已知命题p:方程x2-2mx+m=0没有实数根;命题q:∀x∈R,x2+mx+1≥0.(1)写出命题q的否定“¬q”.(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.22.已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).(1)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)与h(x)的解析式.(2)命题p:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题q:函数g(x)是减函数.如果命题p,q有且只有一个是真命题,求a的取值范围.参考答案: 一、选择题1.B2.B3.D4.C5.D6.B7.C8.A9.A10.C11.B12.C 二、填空题13.圆的切线到圆心的距离等于半径 14.∃x 0∈R ,x 20+1≤0 15.(-2,2] 16.3 三、解答题17.逆命题:若x =1或x =2,则x 2-3x +2=0,是真命题; 否命题:若x 2-3x +2≠0,则x ≠1且x ≠2,是真命题; 逆否命题:若x ≠1且x ≠2,则x 2-3x +2≠0,是真命题.(2)因为S ={x |x 2+(a +1)x +a <0}={x |(x +1)(x +a )<0},P ={x |-1<x <3}={x |(x +1)(x -3)<0},因为x ∈P 的充要条件是x ∈S ,所以a =-3.18.(1)命题中含有存在量词“至少有一个”,因此是特称命题,真命题. (2)命题中含有全称量词“∀”,是全称命题,真命题. (3)命题中含有存在量词“∃”,是特称命题,真命题. 19.a ∈⎝⎛⎦⎤0,12∪(1,+∞). 20.m 的取值范围是(0,3]. 21.(1)¬q :∃x 0∈R ,x 20+mx 0+1<0. (2)-2≤m ≤0或1≤m ≤2.22.p ,q 有且只有一个是真命题时,实数a 的取值范围是⎝⎛⎭⎫-32,+∞.。
哈尔滨市延寿县第二中学2020_2021学年高二数学9月月考试题

黑龙江省哈尔滨市延寿县第二中学2020-2021学年高二数学9月月考试题一、选择题(本题共12小题,每小题5分,共60分)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一个问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.图示程序的功能是()错误!A.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n3.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.144.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6当x =-4时的值时,v2的值为()A.-4 B.1C.17 D.225.(2018·全国卷Ⅱ)为计算S=1-错误!+错误!-错误!+…+错误!-错误!,设计了下面的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2C.i=i+3 D.i=i+46.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民,对其该天的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本7.2012年6月16日“神舟”九号载人飞船顺利发射升空,某校开展了“观‘神九’飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”九号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多()A.5 B.4C.3 D.28.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,…,800,利用随机数表法抽取样本,从第7行第1个数8开始,依次向右,再到下一行,继续从左到右.请问选出的第七袋牛奶的标号是()(为了便于说明,下面摘取了随机数表的第6行至第10行)1622779439495443548217379323788735209643 84263491648442175331572455068877047447672176335025 8392120676630163783916955567199810507175128673580744395238793321123429786456078252420744381551001342 99660279545760863244094727965449174609629052847727 0802734328A.425 B.506C.704 D.7449。
【优质部编】2019-2020学年高二数学下学期第三次月考试题 理(含解析)人教版

2019学年高二(下)第三次月考数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. “”是“复数为纯虚数”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:由于复数为纯虚数,则其实部为零,虚部不为零,故可得关于x的条件,再与“”比较范围大小即可求得结果.详解:由于复数为纯虚数,则,解得,故“”是“复数为纯虚数”的充要条件,故选C.点睛:该题考查的是有关复数是纯虚数的条件,根据题意列出相应的式子,从而求得结果,属于简单题目.2. 圆的圆心的直角坐标为()A. B. C. D.【答案】A【解析】分析:先把圆的极坐标方程化为直角坐标方程,得出圆心坐标.详解:ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,配方为x2+(y-4)2=16,圆心坐标为(0,4),故选A.点睛:本题考查了圆的极坐标方程与直角坐标方程互化,属于基础题.3. 已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素集合,则可以组成这样的新集合的个数为()A. B. C. D.【答案】C【解析】分析:根据解元素的特征可将其分类为:集合中有5和没有5两类进行分析即可.详解:第一类:当集合中无元素5:种,第二类:当集合中有元素5:种,故一共有14种,选C 点睛:本题考查了分类分步计数原理,要做到分类不遗漏,分步不重叠是解题关键.4. 的展开式的中间项为()A. B. C. D.【答案】D【解析】分析:原式张开一共有5项,故只需求出第三项即可.详解:由题可得展开式的中中间项为第3项,故:,选D.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.5. 某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试的成绩中抽取个样本,则成绩小于分的样本个数大约为()A. B. C. D.【答案】A【解析】分析:根据正态分布的意义可得即可得出结论.详解:由题可得:又对称轴为85,故,故成绩小于分的样本个数大约为100x0.04=4故选A.点睛:本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题关键是要知道.6. 已知复数,若,则在复平面内对应的点位于()A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限【答案】C【解析】分析:首先根据复数模的计算公式,结合题中的条件,得出实数所满足的等量关系式,从而求得的值,进一步求得复数,根据其在复平面内对应的点的坐标,从而确定其所在的象限,得到结果.详解:根据题意可知,化简得,解得或,当时,,当时,,所以对应的点的坐标为或,所以对应的点在第一象限或第三象限,故选C.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数模的计算公式,复数在复平面内对应的点,属于简单题目.7. 参数方程(为参数)所表示的曲线是()A. B. C. D.【答案】B【解析】分析:消去参数t,得所求曲线方程为:x2+y2=1,x≠0,由此能求出曲线图形.详解:因为参数方程(为参数)所以消去参数得x2+y2=1,x≠0,且,故所表示的图像为B.点睛:本题考查曲线图形的判断,涉及到参数方程与普通方程的互化、圆等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.8. 在极坐标系中,为极点,曲线与射线的交点为,则()A. B. C. D.【答案】B【解析】分析:将两方程联立求出,再根据的几何意义即可得到OA的值.详解:由题可得:,由的几何意义可得,故选B.点睛:考查极坐标的定义和的几何意义:表示原点到A的距离,属于基础题.9. 设是复数的共轭复数,若,则()A. B. C. 或 D. 或【答案】C【解析】分析:先求出z的表达式,在代入问题计算即可.详解:由题可设,则,所以,故,则或,选C.点睛:考查复数和共轭复数的关系,复数的除法运算,属于基础题.10. 已知函数的图象在处的切线方程为,若关于的方程有四个不同的实数解,则的取值范围为()A. B. C. D.【答案】A【解析】分析:先求导,然后将x=0代入得斜率为2可求出a值,再由切点既在曲线上也在切线上看的b值,再令t=,则,要使有四个不同的实数解,即要使由两个不同的正根即可.详解:,,所以切点为(0,-b)代入切线方程可得b=2,所以,令可得f(x)在(-2,1)单调递增,在递减,故令t=,则,要使有四个不同的实数解,即要使由两个不同的正根即可,故,f(0)=-2,f(1)=,故答案为选A.点睛:考查导函数对零点的分析,其中认识到为符合方程,令t=,则,要使有四个不同的实数解,即要使由两个不同的正根的转化思维为此题关键,属于中档题.11. 随机变量的概率分布为,其中是常数,则()A. B. C. D.【答案】B【解析】分析:由已知得可得a值,在求出期望算方差即可.详解:因为随机变量的概率分布为,故得,故E(X)=,又,而,故= ,选B点睛:考查分布列的性质和期望、方差的计算,熟悉公式即可,属于基础题.12. 已知定义在上的奇函数满足,则()A. B.C. D.【答案】D【解析】分析:构造函数,利用导数以及已知条件判断函数的单调性,然后转化求解即可.详解:设g(x)=,定义在R上的奇函数f(x),所以g(x)是奇函数,x>0时,g′(x)=,,因为函数f(x)满足2f(x)-xf'(x)>0(x>0),所以g′(x)>0,所以g(x)是增函数,可得:故选:D.点睛:本题考查函数的导数的应用,构造法的应用,考查转化思想以及计算能力.第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中的横线上.13. 在直角坐标系中,若直线:(为参数)过椭圆:(为参数)的左顶点,则__________.【答案】【解析】分析:直接化参数方程为普通方程,得到直线和椭圆的普通方程,求出椭圆的左顶点,代入直线的方程,即可求得的值.详解:由已知可得圆(为参数)化为普通方程,可得,故左顶点为,直线(为参数)化为普通方程,可得,又点在直线上,故,解得,故答案是.点睛:该题考查的是有关直线的参数方程与椭圆的参数方程的问题,在解题的过程中,需要将参数方程化为普通方程,所以就需要掌握参数方程向普通方程的转化-----消参,之后要明确椭圆的左顶点的坐标,以及点在直线上的条件,从而求得参数的值.14. 设复数满足,则的虚部为__________.【答案】【解析】分析:把题中给出的式子,两边同时乘以,之后利用复数的除法运算法则,求得结果,从而确定出其虚部的值.详解:由得,所以的虚部为2,故答案是2.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的除法运算,复数的虚部,这就要求对运算法则要掌握并能熟练的应用,再者就是对有关概念要明确.15. 某商品的售价和销售量之间的一组数据如下表所示:(元)(件)销售量与价格之间有较好的线性相关关系,且回归直线方程是,则__________.【答案】【解析】分析:根据回归直线过样本中心点,求出平均数,代入回归直线方程,求出,从而得到答案.详解:根据题意得,,因为回归直线过样本中心点,所以有,解得,所以答案是.点睛:该题考查的就是回归直线的特征:回归直线过样本中心点,即均值点,所以在求解的过程中,需要分别算出样本点的横纵坐标,代入回归直线方程中,求得对应的参数的值.16. 若函数在上单调递增,则的取值范围是__________.【答案】.【解析】分析:(I)先求出函数的导数,f(x)在R上单调等价于x2+(-a+2)x-a+2≥0恒成立,下面只要二次函数的根的判别式△≤0即可求得a的取值范围;详解:f′(x)=e x[x2+(-a+2)x-a+2],考虑到e x>0恒成立且x2系数为正,∴f(x)在R上单调等价于x2+(-a+2)x-a+2≥0恒成立.∴(-a+2)2-4(-a+2)≤0,∴-2≤a≤2,即a的取值范围是[-2,2] .点睛:本小题主要考查利用导数研究函数的单调性,考查运算求解能力.属于基础题.17. 在如图所示的坐标系中,阴影部分由曲线与矩形围成.从图中的矩形区域内随机依次选取两点,则这两点中至少有一点落在阴影部分的概率为__________(取).【答案】【解析】分析:先用定积分求出阴影部分的面积,再根据几何概率计算公式即可得.详解:由题得阴影部分的面积:,矩形面积为:2,所以这两点中都不落在阴影部分的概率为:,故这两点中至少有一点落在阴影部分的概率为1-0.09=0.91,故答案为:0.91点睛:本题考查几何概型,明确测度比为面积比的关键,是基础题18. 现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答)【答案】【解析】分析:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起,第二类小孩都不相邻.分别计算求和即可得出结论。
2019-2020学年高二数学9月月考试题(含解析)_1

2019-2020学年高二数学9月月考试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题(本题共12小题,每小题5分,共60分)1.已知集合,则下列结论正确的是()A. B. C. D.【答案】C【解析】集合,所以错误错误,,所以正确,错误故答案选2.已知向量,,,,如果,那么实数()A. 4B. 3C. 2D. 1【答案】A【解析】,,故答案选3.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A. 29B. 17C. 12D. 5【答案】B【解析】【分析】根据程序框图依次计算得到答案.【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人数为()A. 12B. 11C. 14D. 13【答案】A【解析】分析】由抽取的样本人数,确定每组样本的容量,计算出编号落入区间与各自的人数再相减.【详解】由于抽取的样本为42人,所以840人要分成42组,每组的样本容量为20人,所以在区间共抽24人,在共抽36人,所以编号落入区间的人数为人.【点睛】本题考查系统抽样抽取样本的基础知识,考查基本数据处理能力.5.如图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为()A. B.C. D.【答案】A【解析】【分析】由三视图还原原几何体,可知原几何体为球的组合体,是半径为2的球的与半径为的球的,再由球的体积公式计算即可.【详解】由三视图还原原几何体,如图所示,可知原几何体为组合体,是半径为2的球的与半径为的球的,其球的组合体的体积 .故选:A.【点睛】本题考查了三视图还原原几何体的图形,求球的组合体的体积,属于中档题.6.已知,,,则的大小关系为A. B.C. D.【答案】A【解析】【分析】利用利用等中间值区分各个数值的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年高二数学9月月考试题理第I卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1.从装有黑球和白球各2个的口袋内任取2个球,那么互斥而不对立的两个事件()A.至少有1个黑球,至少有1个白球 B.恰有一个黑球,恰有2个白球C.至少有一个黑球,都是黑球 D.至少有1个黑球,都是白球2.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的标报名方法共有()A.4种 B.16种 C.64种 D.256种3.若正整数N除以正整数m后的余数为n,则记为N=n(mod m),例如10=2(mod 4),下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i等于()A.4 B.8 C.16 D.324.已知f(x)=5x5+4x4+3x3+2x2+x+1,若用秦九韶算法求f(5)的值,下面说法正确()A.至多4乘法运算和5次加法运算B.15次乘法运算和5次加法运算C.10次乘法运算和5次加法运算D.至多5次乘法运算和5次加法运算5.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C 实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种6.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:由表中数据,求得线性回归方程为, =x+,若某儿童的记忆能力为11时,则他的识图能力约为()A.8.5 B.8.7 C.8.9 D.97.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,3,…,840随机编号,则抽取的42个人中,编号落入区间[481,720]的人数为A.11 B.12 C.13 D.148.由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有()A.72 B.60 C.48 D.529.某教师一天上3个班级的课,每班开1节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有排法有()A.474种B.77种 C.462种 D.79种10.对任意实数x,有,则a2=()A.3 B.6 C.9 D.2111.已知b为如图所示的程序框图输出的结果,则二项式(﹣)6的展开式中的常数项是()A.﹣20 B.20C.﹣540 D.54012.甲乙二人玩游戏,甲想一数字记为a,乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b∈{1,2,3},若|a﹣b|≤1,则称甲乙“心有灵犀”,则他们“心有灵犀”的概率为()A. B. C. D.二、填空题(本题共4道小题,每小题5分,共20分)13.在[﹣2,3]上随机取一个数x,则(x+1)(x﹣3)≤0的概率为.14.十进制1039(10)转化为8进制为(8).15.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i﹣1(i=1,2,…,2017),则 y1,y2,…y2017的方差为.16.将(2x2﹣x+1)8展开且合并同类项之后的式子中x5的系数是.三、解答题(本题共6道小题,第1题10分,其它题12分)17.某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程=x+(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额(参考公式:==,=﹣).18.某统计部门就“A市汽车价格区间的购买意愿”对100人进行了问卷调查,并将结果制作成频率分布直方图,如图,已知样本中数据在区间[10,15)上的人数与数据在区间[25,30)的人数之比为3:4.(Ⅰ)求a,b的值.(Ⅱ)估计A市汽车价格区间购买意愿的中位数;(Ⅲ)按分层抽样的方法在数据区间[10,15)和[20,25)上接受调查的市民中选取6人参加座谈,再从这6人中随机选取2人作为主要发言人,求在[10,15)的市民中至少有一人被选中的概率.19.已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c=bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2,求△ABC的周长和面积.20.已知n x x x f )3()(232+=展开式中各项的系数和比各项的二项式系数和大992。
(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项。
21.已知关于x 的一元二次方程x 2﹣2(a ﹣2)x ﹣b 2+16=0.(1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有实根的概率; (2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.22.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明PA ∥平面EDB ; (2)证明PB ⊥平面EFD ; (3)求二面角C ﹣PB ﹣D 的大小.9月月考试卷答案一.选择题 1.B 2.B 3.C 4.D 5.C 6.B 7.B 8.B 9.A 10.B 11.C 12.D二.填空题 13. 14.2017 15.16 16.﹣128817.【解答】解:(I)由散点图知:y与x之间是负相关;…因为n=5, =7, =9,(﹣5)=275﹣5×72=30;(x i y i﹣5)=294﹣5×7×9=﹣21.所以b=﹣0.7,…=﹣=9﹣(﹣0.7)×7=13.9.…故回归方程为y=﹣0.7x+13.9…(Ⅱ)当x=6时,y=﹣0.7×6+13.9=9.7.故预测该店当日的营业额约为970元…18.解:(Ⅰ)设样本中数据在区间[10,15)上的人数与数据在区间[25,30)的人数分别为3k,4k,则,解得k=5,∴a=0.03k÷5=0.03,b=0.04k÷5=0.04.(Ⅱ)由频率分布直方图得数据区间[5,20)内的频率为:(0.01+0.03+0.04)×5=0.4,数据区间[20,25)内的频率为:0.06×5=0.3,∴A市汽车价格区间购买意愿的中位数为:20+=.(Ⅲ)按分层抽样的方法在数据区间[10,15)和[20,25)上接受调查的市民中选取6人参加座谈,则在数据区间[10,15)上选取:6×=2人,[20,25)上选取:6×=4人,从这6人中随机选取2人作为主要发言人,基本事件总数n=,在[10,15)的市民中至少有一人被选中的对立事件是选中的2人都在[20,25)内,∴在[10,15)的市民中至少有一人被选中的概率p=1﹣=.19.解:(Ⅰ)根据题意,若c=bsinC﹣ccosB,由正弦定理可得sinC=sinBsinC﹣sinCcosB,又由sinC≠0,则有1=sinC﹣cosB,即1=2sin(B﹣),则有B﹣=或B﹣=,即B=或π(舍)故B=;(Ⅱ)已知b=2,则b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=12,又由a、b、c成等比数列,即b2=ac,则有12=(a+c )2﹣36,解可得a+c=4, 所以△ABC 的周长l=a+b+c=2+4=6,面积S △ABC=acsinB=b 2sinB=3.20.(1)令x=1,得二项展开式各项系数和为f(1)=(1+3)n =4n,由题意得:4n -2n =992 (2n )2-2n -992=0 ∴(2n +31)(2n -32)=05=⇒n (3分) ∴展开式中二项式系数最大项为中间两项,它们是:62233225390)3()(x x x C T ==32232232354270)3()(x x x C T ==(6分)(2)展开式通项公式为)25(32513r r r r xC T++⋅=r=0, 1 (5)假设T r+1项系数最大,则有: ⎩⎨⎧≥≥++--115511553333r r r r r r r r C C C C (9分)解得:2927≤≤r ∵r ∈N ∴r=4 ∴展开式中系数最大项为3264232455405)3(x x x C T =⋅=21.【解答】解:(1)由题意知本题是一个古典概型 用(a ,b )表示一枚骰子投掷两次所得到的点数的事件 依题意知,基本事件(a ,b )的总数有36个 二次方程x 2﹣2(a ﹣2)x ﹣b 2+16=0有实根,等价于△=4(a ﹣2)2+4(b 2﹣16)≥0,即(a ﹣2)2+b 2≥16,“方程有两个根”的事件为A ,则事件A 包含的基本事件为(1,6),(1,5).(1,4),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,1)、(6,2)、(6,3)、(6,4),(6,5),(6,6),共22个 ∴所求的概率为P (A )=;(2)由题意知本题是一个几何概型,;试验的全部结果构成区域Ω={(a ,b )|2≤a ≤6,0≤b ≤4},其面积为S (Ω)=16 满足条件的事件为:B={(a ,b )|2≤a ≤6,0≤b ≤4,(a ﹣2)2+b 2<16} 其面积为S (B )=×π×42=4π22.解:方法一:(1)证明:连接AC ,AC 交BD 于O ,连接EO . ∵底面ABCD 是正方形,∴点O 是AC 的中点在△PAC 中,EO 是中位线, ∴PA ∥EO 而EO ⊂平面EDB 且PA ⊄平面EDB ,所以,PA ∥平面EDB (2)证明:∵PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC∵PD=DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 的中线,∴DE ⊥PC .①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB 又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD.(3)解:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角.由(2)知,DE⊥EF,PD⊥DB.设正方形ABCD的边长为a,则,.在Rt△PDB中,.在Rt△EFD中,,∴.所以,二面角C﹣PB﹣D的大小为.方法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a.(1)证明:连接AC,AC交BD于G,连接EG.依题意得.∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为且.∴,这表明PA∥EG.而EG⊂平面EDB且PA⊄平面EDB,∴PA∥平面EDB.(2)证明;依题意得B(a,a,0),.又,故.∴PB⊥DE.由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD.(3)解:设点F的坐标为(x0,y0,z0),,则(x0,y0,z0﹣a)=λ(a,a,﹣a).从而x0=λa,y0=λa,z0=(1﹣λ)a.所以.由条件EF⊥PB知,,即,解得∴点F的坐标为,且,※精品试卷※∴即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角.∵,且,,∴.∴.所以,二面角C﹣PB﹣D的大小为.。