高中数学集合测试题(含答案和解析)汇编
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A ( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则MN =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()1,23.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤< B .{}|33x x -<≤ C .{}|32x x -<≤ D .{}|13x x -≤≤ 5.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(,C .{}0x x ≤D .{}32x x -≤<-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( ) A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{}|03A x x =<<,{}|14B x x =≤≤,则A B ⋃=( )A .{}|13≤<x xB .{}|04x x <≤C .{}|04x x <<D .{}3|1x x <<8.已知集合{}|21x A x =>,{}22B x y x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞9.已知集合{}28x A x =≤,{}16B x x =-≤≤,则A B ⋃=( ) A .(,6]-∞ B .[1,6]- C .[1,3]- D .(0,6]10.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 11.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-12.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 13.设全集2,1,0,1,2U,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( ) A .{}2,1- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1--14.设集合{}*21230,1A x N x x B x R x ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1 B .{}1 C .(]0,1 D .{}0,1 15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 18.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________19.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 20.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.21.若{}31,2a ∈,则实数=a ____________.22.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________23.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.24.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合2111x A x x +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()R A B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合{}{}222,|540A xa a B x x x x =-≤+=-+≤≥∣. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】 因为集合{}2230{|13}A x x x x x =--<=-<<, 所以U A {1x x ≤-∣或3}x ≥. 故选:C.2.C 【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥,所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由()()130x x +-≤,解得13x -≤≤,所以()(){}{}|130|13B x x x x x =+-≤=-≤≤,又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<.故选:A5.D【解析】【分析】根据韦恩图,写出相应集合即可【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是U A ,所以{}32U A x x =-≤<-;故选:D6.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.7.B【解析】【分析】 根据集合的并集运算即可.【详解】因为{}|03A x x =<<,{}|14B x x =≤≤,所以{}|04A B x x =<≤.故选:B.8.B【解析】【分析】先求出集合A ,B ,再根据交集定义即可求出.【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =.故选:B.9.A【解析】【分析】先解出集合A ,再计算A B 即可.【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞. 故选:A.10.B【解析】【分析】由Venn 图中阴影部分可知对应集合为N()U M ,然后根据集合的基本运算求解即可. 【详解】解:由Venn 图中阴影部分可知对应集合为N ()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},U M ={}3,4,5,N ()U M ={}3,4.故选:B .11.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-,所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.12.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D13.B【解析】【分析】先求U A ,再求()U A B ⋂即可.【详解】 U A ={0,1},()U A B ={0,1}. 故选:B.14.B【解析】【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果.【详解】 因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R 所以{}1A B =.故选:B.15.A【解析】【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案.【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭18.[)1,+∞ 【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞19.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】 将21y x =-代入2yx ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 20.(,3][6,)-∞-⋃+∞【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.21.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 22.5,66ππ⎛⎫ ⎪⎝⎭【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 23.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.24.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:525.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1)12x x ⎧≤-⎨⎩或}1x ≥ (2)(]2,4-【解析】【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案.(1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭, {}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭, 所以()12R A B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2) 解:(){}()(){}222210B x x m x m x x m x =<-+=+-<, 因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆且B ≠∅,故2m ≠-, 当12m ->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭, 因为{}21A x x =-<<,所以A B =∅,不符合题意; 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭, 则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤, 综上(]2,4m ∈-.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】 (1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明; ② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P 理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴= 又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴= 0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+= 故得证30.(1){|11A B x x ⋂=-≤≤或}45x ≤≤(2)01a <<【解析】【分析】(1)求出集合,A B ,进而可得A B ; (2)根据包含关系列不等式求解即可.(1)∵当3a =时,{}{|15,|1A x x B x x =-≤≤=≤戓}4x ≥, ∴{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{|1B x x =≤或}4x ≥,∴{}|14R B x x =<<, 由“x A ∈”是“R x B ∈的充分不必要条件得A 是B R 的真子集且A ≠∅又{}()|220x A x a a a =-≤+>≤,∴2124a a ->⎧⎨+<⎩∴01a <<.。
高中集合试题及答案解析

高中集合试题及答案解析一、选择题1. 集合A={1, 2, 3},集合B={3, 4, 5},求A∩B的值。
A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B解析:根据集合交集的定义,A∩B是指既属于集合A又属于集合B的所有元素组成的集合。
在本题中,只有3同时属于集合A和集合B,因此A∩B={3}。
2. 如果集合A={x|x<5},集合B={x|x>3},求A∪B的值。
A. {x|x<3}B. {x|x<5}C. {x|x>=3}D. {x|x>=5}答案:C解析:集合并集的定义是将两个集合中所有的元素合并在一起,不重复计算。
在本题中,集合A包含所有小于5的数,集合B包含所有大于3的数。
因此,A∪B包含所有大于等于3的数,即{x|x>=3}。
二、填空题3. 若集合M={x|x²-5x+6=0},请写出集合M的所有元素。
答案:{2, 3}解析:首先解方程x²-5x+6=0,通过因式分解得到(x-2)(x-3)=0,因此x=2或x=3。
所以集合M的元素为2和3。
4. 已知集合N={x|-2≤x≤2},求集合N的补集。
答案:{x|x<-2或x>2}解析:集合N的补集是指所有不属于N的元素组成的集合。
根据N的定义,它的补集是所有小于-2或大于2的实数。
三、解答题5. 集合P={x|0<x<10},集合Q={x|x是偶数},求P∩Q,并说明其性质。
答案:P∩Q={2, 4, 6, 8}解析:集合P包含所有0到10之间的实数,而集合Q包含所有偶数。
因此,P∩Q包含所有既是0到10之间又是偶数的实数,即{2, 4, 6, 8}。
这个集合是有限集,且每个元素都是正偶数。
6. 已知集合R={x|x²-4=0},求R的子集个数。
答案:4解析:集合R的元素可以通过解方程x²-4=0得到,即x=±2。
高中集合测试题及答案

高中集合测试题及答案一、选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},求A∩B。
A. {1}B. {2,3}C. {4}D. {1,2,3,4}2. 集合A={x|x<5},B={x|x>3},求A∪B。
A. {x|x<5}B. {x|x>3}C. {x|x≤3}D. R(实数集)3. 集合A={1,2,3},求A的补集(设全集为R)。
A. {4,5,6}B. {-1,0}C. ∅(空集)D. R-{1,2,3}4. 若A={x|0<x<10},B={x|x>5},判断A⊆B是否正确。
A. 正确B. 错误5. 集合A={x|x^2-5x+6=0},求A中的元素。
A. {2,3}B. {1,6}C. {-1,-6}D. {2}二、填空题(每题2分,共10分)6. 若A={1,2,3},B={2,3,4},则A∪B=______。
7. 集合A={x|-3≤x≤3},B={x|x>0},则A∩B=______。
8. 已知集合A={x|x^2-4=0},求A的补集(设全集为R)。
9. 若A={x|-1<x<2},B={x|x≥1},则A∪B=______。
10. 集合A={x|0<x<5},B={x|x>3},判断A⊆B是否正确,答案为______。
三、解答题(每题10分,共20分)11. 已知A={x|-2≤x≤5},B={x|x>a},若A∩B≠∅,求a的取值范围。
12. 已知集合A={x|x^2-4=0},B={x|x^2-4x+3=0},求A∪B,A∩B,以及A-B。
四、证明题(每题15分,共30分)13. 证明:若A⊆B且B⊆C,则A⊆C。
14. 证明:若A∩B=A,则A⊆B。
五、结束语本测试题涵盖了高中集合的基本概念、运算和证明,旨在帮助学生巩固集合的知识点,提高解题能力。
希望同学们通过练习,能够更好地理解和掌握集合的相关概念。
高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为( )A .2B .4C .8D .163.已知2{|1}A x x ==,1|B x x a ⎧⎫==⎨⎬⎩⎭,若B A ⊆,则a 的值为( )A .1或-1B .0或1或-1C .1-D .14.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( ) A .{}2,3,4 B .{}1,2,3,4 C .{}15x x ≤≤D .{}05x x <≤5.设集合{}220A x x x =--≤,124x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-6.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2} B .{1,2}xyC .(1,2)D .{(1,2)}7.已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭8.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( )A .()1,2B .()1,5C .()2,4D .()4,5 9.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( ) A .{23}x x -<<∣ B .{1,0,1,2}- C .{52}xx -<<∣ D .{2,1,0,1,2}--10.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( ) A .1B .2C .3D .411.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B =( ) A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,212.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}315.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则MN =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,2二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.19.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.20.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______. 21.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =+++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..22.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.23.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________.24.已知函数()214f x x -A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.25.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.三、解答题26.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R . (1)当1a =时,求()U C A B ⋂;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由. 已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值; (2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).28.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果. 【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=. 故选:B. 3.A 【解析】 【分析】A ={-1,1},若B A ⊆,则1a=±1,据此即可求解﹒{}2{|1}1,1A x x ===-,11|B x x a a ⎧⎫⎧⎫===⎨⎬⎨⎬⎩⎭⎩⎭, 若B A ⊆,则1a=1或-1,故a =1或-1. 故选:A . 4.D 【解析】 【分析】理解集合的含义,由并集的概念运算 【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D 5.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>- 即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B6.D 【解析】 【分析】 联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 7.D 【解析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D . 8.B 【解析】 【分析】先求出集合,A B ,再求A B 即可. 【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B. 9.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 10.D 【解析】 【分析】根据真子集的定义进行求解即可. 【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c , 所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=, 故选:D 11.D 【解析】 【分析】解不等式求得集合A ,由此求得A B . 【详解】因为()30x x -<的解为03x <<, 所以{}03A x x =<<,所以{}1,2A B =. 故选:D 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 14.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 15.D 【解析】 【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可. 【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>, 又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<.故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.()3,0-【解析】 【分析】先求出{}3A x x =>-,进而求出交集. 【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n nf n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.19.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0. 20.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7. 21.16,310⎡⎤-+⎣⎦【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-,点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域,作出()2212x y x y ++=+对应的抛物线如图:将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅,将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =, 当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅,故答案为:16,310⎡⎤⎣⎦. 22.(,8]-∞【解析】【分析】根据集合交集的性质,结合子集的性质进行求解即可.【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞23.{}34x x ≤<【解析】【分析】 求出{}24A x x =<<与{}3B x x =≥,进而求出A B .【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤< 故答案为:{}34x x ≤<24.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】【分析】根据()f x =.【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =, {,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭. ()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 25.A B ⋂##B A ⋂【解析】 【分析】根据集合的运算法则求解.【详解】阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂.故答案为:A B ⋂.三、解答题26.(1){}()10U C A B x x ⋂=-≤<(2)4a 或102a ≤≤【解析】【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x B ∈”是“x A ∈”的必要条件等价于A B ⊆.讨论A 是否为空集,即可求出实数a 的取值范围.(1)当1a =时,集合{}|05A x x =≤≤,{|0U C A x x =<或}5x >,{}()|10U C A B x x ⋂=-≤<.(2)若“x B ∈”是“x A ∈”的必要条件,则A B ⊆,①当A =∅时,123,4a a a ->+<-∴;②A ≠∅,则4a ≥-且11,234a a -≥-+≤,102a ∴≤≤. 综上所述,4a 或102a ≤≤. 27.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b ab a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.28.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤,所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.。
高中数学 集合专项训练含答案

高中数学 集合专项训练含答案一、单选题1.已知集合U =R ,{}2230A x x x =--<,则UA( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤B .{|1}x x ≥-C .{}|3x x >D .{}|0x x >3.集合{}240xA x =->,{}lg 10B x x =-<,则A B =( )A .()2,eB .()e,10C .()2,10D .()0,104.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,3,55.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( )A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<6.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .57.设{|1},{|12}P x x Q x x ==-<≤≤,那么P Q =( )A .{|11}x x -<<B .{|12}x x -≤<C .{|12}x x ≤<D .{|11}x x -≤≤8.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .79.设集合{}220A x x x =--≤,124xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-10.已知集合{|10}M x x =->,集合{|(4)0}N x x x =-<,则集合M N =( )A .{|0}x x >B .{|14}x x <<C .{|0x x <或1}x >D .{|0x x <或4}x >11.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)-B .(2,)-+∞C .(2,1)--D .(,2)-∞-12.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .213.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .814.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x << 15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3-二、填空题16.已知平面上两个点集(){},112,,M x y x y x y x R y R =++++->∈∈,(){},11,,N x y x a y x R y R =-+-≤∈∈,若M N ⋂=∅,则实数a 的取值集合是___________.17.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.18.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 20.已知a ∈R ,不等式1ax≥的解集为P ,且-1∈P ,则a 的取值范围是____________. 21.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.22.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.若集合(){,|M x y y =,(){},|1N x y x ==,则MN =______.25.设集合{}|2A x x =>,{}|B x x a =≤,若A B =R ,则实数a 的取值范围是______.三、解答题26.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.27.已知{|S x x =是小于9的正整数},{}4,5,6,7A =,{}3,5,7,8B =,求 (1)A B (2)A B (3)()S C A B28.设集合{}53A x x =-≤≤,{2B x x =<-或}4x >. (1)求A B ; (2)求R R ()()A B ⋃.29.如图所示阴影部分角的集合.30.已知全集{}N 05U x x =∈<<,集合{}21,2,A m =,{}2540B x x x =-+=.(1)求UB ;(2)若21Ua B +∈且a U ∈,求实数a 的值;(3)设集合()U C A B =⋂,若C 的真子集共有3个,求实数m 的值.【参考答案】一、单选题 1.C 【解析】 【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可. 【详解】因为集合{}2230{|13}A x x x x x =--<=-<<,所以UA{1x x ≤-∣或3}x ≥.故选:C. 2.B【解析】 【分析】由分式不等式求得集合A ,再根据并集的原则求解即可. 【详解】对于集合A ,满足1033xx x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩,解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-, 故选:B 3.C 【解析】 【分析】根据指数函数、对数函数的性质求出集合A 、B ,再根据交集的定义计算可得; 【详解】解:由240x ->,即2242x >=,所以2x >,所以{}{}2402xA x x x =->=;由lg 10x -<,即lg 1x <,解得010x <<,所以{}{}lg 10|010B x x x x =-<=<<; 所以{}|210A B x x =<< 故选:C 4.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤,所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=; 故选:A 5.D 【解析】 【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可. 【详解】因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=,所以A B ={}01x x <<, 故选:D 6.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 7.D 【解析】 【分析】直接根据集合交集运算求解即可. 【详解】解:因为{|1},{|12}P x x Q x x ==-<≤≤, 所以{|11}Q x x P -≤≤=. 故选:D 8.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 9.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>- 即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B 10.B 【解析】 【分析】根据题意分别求出集合M 和N 的解集,求交集运算即可. 【详解】根据题意得,{|1}M x x =>,{|04}N x x =<<,所以{|14}M N x x =<<.故选:B. 11.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B.12.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B . 13.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解. 【详解】 由x31,得03x <≤, 所以}{N ,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 14.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<,又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题 16.{}1-【解析】 【分析】结合点到直线距离公式可知M 表示到直线10x y ++=与10x y +-=的距离之和大于2的所有点的集合,又两平行线间距离为2,可得可行域;N 是以(),1a 为中心,2为边长的正方形及其内部的点集,采用数形结合的方式可确定a 的取值. 【详解】由112x y x y ++++->得:11222x y x y +++-+>,则M 表示到直线10x y ++=与10x y +-=的距离之和大于2的所有点的集合; 直线10x y ++=与10x y +-=之间的距离2d =,则集合()10,10x y M x y x y ⎧⎫+->⎧=⎨⎨⎬++<⎩⎩⎭,则其表示区域如阴影部分所示(不包含10x y ++=与10x y +-=上的点); 集合N 是以(),1a 为中心,2为边长的正方形及其内部的点集, 若M N ⋂=∅,则,M N 位置关系需如图所示,由图形可知:当且仅当1a =-时,M N ⋂=∅, ∴实数a 的取值集合为{}1-.【点睛】思路点睛:本题考查集合与不等式的综合应用问题,解题基本思路是能够确定集合所表示的点构成的区域图形,进而采用数形结合的方式来进行分析求解.17.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,118.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R 12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:820.(]1-∞-【解析】 【分析】把1x =-代入不等式即可求解. 【详解】 因为1P -∈,故11a≥-,解得:1a ≤-,所以a 的取值范围是(]1-∞-. 故答案为:(]1-∞- 21.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:522.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂23.16【解析】 【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果. 【详解】由题可知,A 的长度为23,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端, 即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭,故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:1624.(){}1,0【解析】【分析】根据交运算的含义,求解方程组,即可求得结果.【详解】根据题意M N ⋂中的元素是方程组1y x ⎧=⎪⎨=⎪⎩求解方程组可得:1,0x y ==,故MN =(){}1,0.故答案为:(){}1,0. 25.[)2,+∞【解析】【分析】根据并集求解参数的范围即可.【详解】根据题意,{|2}R A x x =≤R A B ⋃=R A B ∴⊆2a ∴≥.故答案为[)2,+∞.三、解答题26.(1){11A B xx =-≤≤∣或}45x ≤≤ (2)()0,1【解析】【分析】(1)借助数轴即可确定集合A 与集合B 的交集(2)由于A R B ,根据集合之间的包含关系即可求解(1)当3a =时,集合{}|22A x a x a =-≤≤+{}15xx =-≤≤∣, {|1B x x =≤或}4x ≥ ,{11A B x x ∴=-≤≤∣或}45x ≤≤(2)若0a >,且 “x A ∈”是“R x B ∈”充分不必要条件,{}{}22(0),14R A x a x a a B x x =-≤≤+>=<<∣∣因为A R B ,则21240a a a ->⎧⎪+<⎨⎪>⎩解得01a <<.故a 的取值范围是:()0,127.(1){}5,7A B =(2){}3,4,5,6,7,8A B =(3)(){}1,2,3,5,7,8S C A B =【解析】【分析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.(1){}4,5,6,7A =,{}3,5,7,8B =,{}5,7A B =.(2){}4,5,6,7A =,{}3,5,7,8B =,{}3,4,5,6,7,8A B =.(3){}1,2,3,4,5,6,7,8S =,{}1,2,3,8S C A =,{}3,5,7,8B =,(){}1,2,3,5,7,8S C A B =.28.(1){}52x x -≤<-; (2){5x x <-或}2x ≥-.【解析】【分析】(1)根据给定条件利用交集的定义直接计算作答.(2)利用补集的定义求出R A ,R B ,再利用并集的定义求解作答. (1) 因集合{}53A x x =-≤≤,{2B x x =<-或}4x >,所以{|52}A B x x ⋂=-≤<-.(2) 依题意,R {5A x x =<-或3}x >,{}R 24B x x =-≤≤,所以{R R ()()5A B x x ⋃=<-或}2x ≥-.29.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】【分析】观察图形, 按图索骥即可.【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈,}{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+ ()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ ,故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.30.(1){}2,3U B =(2)1a =(3)m =【解析】【分析】(1)解出集合U 、B ,利用补集的定义可求得U B ;(2)由已知可得出关于a 的等式,结合a U ∈可求得实数a 的值; (3)分23m ≠、23m =两种情况讨论,求出集合C ,根据集合C 的真子集个数可求得实数m 的值.(1) 解:因为{}{}N 051,2,3,4U x x =∈<<=,{}{}25401,4B x x x =-+==, 因此,{}2,3U B =.(2)解:若21Ua B +∈,则212a +=或213a +=,解得1a =±或 又a U ∈,所以1a =.(3)解:{}21,2,A m =,{}2,3U B =,当23m ≠时,{}2C =,此时集合C 共有1个真子集,不符合题意, 当23m =时,{}2,3C =,此时集合C 共有3个真子集,符合题意,综上所述,m =。
高中数学集合试题及答案

高中数学集合试题及答案一、选择题(每题4分,共40分)1. 集合A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=()A. {1,2}B. {3,4,5}C. {6,7}D. {1,2,3,4,5,6,7}2. 已知集合C={x|x^2-4x+3=0},则C中元素的个数是()A. 1B. 2C. 3D. 43. 集合D={x|x是奇数},E={x|x是偶数},则D∪E=()A. {x|x是整数}B. {x|x是奇数}C. {x|x是偶数}D. 空集4. 集合F={x|x^2-x-6=0},G={x|x^2+x-6=0},则F∩G=()A. {2,3}B. {-2,3}C. {-3,2}D. 空集5. 集合H={x|x^2-4=0},I={x|x^2+4=0},则H∪I=()A. {-2,2}B. {-2,2,-i,i}C. 空集D. {-2,2,-i}6. 集合J={x|x是小于10的正整数},K={x|x是大于10的整数},则J∩K=()A. {1,2,3,4,5,6,7,8,9}B. 空集C. {10}D.{11,12,13,...}7. 集合M={x|x^2-x-6=0},N={x|x^2+x-6=0},则M∪N=()A. {-2,3}B. {-3,2}C. {-2,-3,2,3}D. 空集8. 集合P={x|x是无理数},Q={x|x是有理数},则P∩Q=()A. {x|x是无理数}B. {x|x是有理数}C. 空集D. {x|x是实数}9. 集合R={x|x^2-2x-3=0},S={x|x^2+2x-3=0},则R∪S=()A. {-1,3}B. {-3,1}C. {-1,1,3}D. 空集10. 集合T={x|x^2-5x+6=0},U={x|x^2-6x+9=0},则T∩U=()A. {2,3}B. {3,-3}C. {2,-3}D. 空集二、填空题(每题4分,共20分)1. 集合A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .2.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3- 3.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( ) A .2 B .1 C .0 D .-14.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题:①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ).A .0个;B .1个;C .2个;D .3个. 5.已知集合{}35A x x =-≤<,{}42B x y x ==+,则()R A B ⋂=( ) A .13,2⎡⎫--⎪⎢⎣⎭ B .1,52⎛⎫- ⎪⎝⎭ C .[)3,2-- D .()2,5-6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤ 7.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 8.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞ 9.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,5 10.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R (M ∪N )D .R (M ∩N )11.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( )A .1B .2C .3D .412.已知集合*1|2cos ,,|2232x n A x x n B x π⎧⎫⎧==∈=≤≤⎨⎬⎨⎩⎭⎩N ,则A B =( ) A .{}1,1- B .{}0,1,2 C .{}1,1,2- D .1,0,1,213.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <-B .{}12x x -<<C .{}8x x >-D .{}28x x <≤14.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( ) A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,115.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( ) A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤二、填空题16.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.19.设函数()1ln12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.20.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________21.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.22.已知(1,2)A =-,(1,3)B =,则A B =________23.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______24.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.已知函数()f x =的定义域为集合A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.28.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.29.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.30.已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ; (2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项.【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误.故选:A.2.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .3.D【解析】【分析】由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】 由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-,故选:D.4.D【解析】【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案.【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确.故选:D .5.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A6.D【解析】【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得;【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D7.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.8.C【解析】【分析】求出集合A 、B ,利用交集的定义可求得结果.【详解】对于函数2x y =,0x ≥,则0221x y =≥=,故[)1,B =+∞, (){}{}()2log 220,2A x y x x x ∞==-=->=-,因此,[)1,2A B =.故选:C.9.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=.故选:D.10.B【解析】【分析】根据韦恩图直接分析即可【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂,故选:B.【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题11.D【解析】【分析】根据真子集的定义进行求解即可.【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c ,所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=,故选:D12.C【解析】【分析】首先根据余弦函数的性质求出集合A ,再根据指数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n π⎧⎫==∈=--⎨⎬⎩⎭N ,由122x ≤≤512222x -≤≤,所以512x -≤≤,所以15|2|122x B x x x ⎧⎧⎫=≤≤=-≤≤⎨⎨⎬⎩⎩⎭,所以{}1,1,2A B =-; 故选:C13.B【解析】【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解.【详解】 由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B.14.C【解析】【分析】求出集合M ,N ,然后进行并集的运算即可.∵{}02M x x =<<,{}11N x x =-≤≤,∴[1,2)M N ⋃=-.故选:C .15.B【解析】【分析】先求出集合A 的解集,然后进行交集运算即可.【详解】 因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤.故选:B.二、填空题16.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,317.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.{}10x x -<<【解析】【分析】由交集运算求解即可.A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<< 故答案为:{}10x x -<<19.10,2⎛⎤ ⎥⎝⎦【解析】【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解.【详解】 解:因为函数1()ln 12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>, 所以()()f x f x -=-,即1112lnln ln 12121mx mx x x x mx -+-=-=+-+, 所以112121mx x x mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln12x f x x +=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦. 故答案为:10,2⎛⎤ ⎥⎝⎦. 20.5,66ππ⎛⎫ ⎪⎝⎭【解析】【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭.21.2a ≥【解析】【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解.【详解】由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立;当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥∴实数a 的取值范围是2a ≥.故答案为:2a ≥.22.(1,2)##{}12,x x x R <<∈【解析】【分析】根据集合交集的定义可得解.【详解】由(1,2)A =-,(1,3)B =根据集合交集的定义,()1,2A B ⋂=.故答案为:(1,2)23.1078【解析】【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果.【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个.故答案为:1078.24.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-,当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b=+=+=, 所以用列举法可表示为2,0,2. 故答案为:2,0,2.25.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)A ={x |-2<x ≤3};(2)3a >.【解析】【分析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.28.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明;② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴=又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴=0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+=故得证29.(1)2,13⎡⎤⎢⎥⎣⎦ (2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<,因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<,21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.30.(1)1(,][3,)2-∞-⋃+∞; (2)(,2]-∞-.【解析】【分析】(1)求对数复合函数定义域、解一元二次不等式求出集合A 和B ,利用集合的并补运算求()A B R .(2)解含参一元二次不等式求集合B ,根据充分条件有A ⊆B ,列不等式求m 的范围即可.(1)由题设40210x x ->⎧⎨+>⎩得:142x -<<,即函数的定义域A =1(,4)2-,则R 1(,][4,)2A =-∞-⋃+∞, 当m =2时,不等式(4)(3)0x x --≤得:34x ≤≤,即B =[3,4],所以()A B R =1(,][3,)2-∞-⋃+∞. (2)由2()(21)0x m x m --+=得: x =m 2或x =21m -,又2221(1)0m m m -+=-≥,即221m m ≥-,综上,2()(21)0x m x m --+≤的解集为B =2[21,]m m -, 若x ∈A 是x ∈B 的充分条件,则A ⊆B ,即241212m m ⎧≥⎪⎨-≤-⎪⎩,得:2m ≤-, 所以实数m 的取值范围是(,2]-∞-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合测试题
请认真审题,仔细作答,发挥出自己的真实水平!
一、单项选择题 :
1.
设集合,则( ) A .{75}x x -<<-∣ B .{35}x
x <<∣ C .{53}x
x -<<∣ D .{|75}x x -<< 【答案】
C
【解析】
考点:其他不等式的解法;交集及其运算.
分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.
解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}S
T x x =-<<, 故选C
2.
已知集合,则集合等于( )
A .{-1,1}
B .{-1,0,1}
C .{0,1}
D .{-1,0}
【答案】 A
3.若集合,且,则实数m 的可取值组成的集合是( )
A .
B .
C .
D . {}()(){}
5,730S x x T x x x =<=+-<S T ⋂={}}{Z n n x x N x x M ∈+==<-=,12,042N M ⋂{}{}260,10P x x x T x mx =+-==+=T P ⊆1
1,32⎧⎫-⎨⎬⎩⎭13⎧⎫⎨⎬⎩⎭
1
1,,032⎧⎫-⎨⎬⎩⎭12⎧⎫-⎨⎬⎩⎭
C
4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是( )
A .6
B .7
C .8
D .9
【答案】
C
5.设P={x|x ≤8},
,则下列关系式中正确的是( ).
A .a P
B .a P
C .{a}P
D .{a}P
【答案】
D
6.
已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==
∈∈-∈,则B 中所含元素的个数为( )
A .3
B .6
C . 8
D .10 【答案】 D
【解析】
考点:元素与集合关系的判断.
专题:计算题.
分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项
解答:解:由题意,x=5时,y=1,2,3,4,
x=4时,y=1,2,3,
x=3时,y=1,2,
⊆⊆⊆∉∈⊂
综上知,B中的元素个数为10个
故选D
点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数
7.
已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()
A.A B B.B A C.A=B D.A∩B=
【答案】
B
【解析】
考点:集合的包含关系判断及应用.
专题:计算题.
分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}
在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B A
故选B
点评:本题主要考查了集合之间关系的判断,属于基础试题
8.
不等式﹣x2﹣5x+6≤0的解集为()
【答案】
D
【解析】
考点:一元二次不等式的解法。
专题:计算题;分类讨论。
分析:根据不等式的基本性质在不等式两边都除以﹣1,不等号方向改变,因式分解后转化为x﹣1与x+6同号,即可求出原不等式的解集.
解答:解:原不等式可化为:x2+5x﹣6≥0,
因式分解得:(x ﹣1)(x+6)≥0,
即或,
解得:x ≥1或x ≤﹣6,
所以原不等式的解集为:{x|x ≤﹣6或x ≥1}.
故选D
点评:一元二次不等式的解法
9.
A a x a x x A ∉⎭
⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( )
A .),1[)1,(+∞⋃--∞
B .[-1,1]
C .),1[]1,(+∞⋃--∞
D .(-1,1]
【答案】 B
10.
设集合则实数a 的取值范围( )
A .{}06a a ≤≤
B .
C .
D . 【答案】
C
【解析】
考点:本题考查含绝对值不等式的解法、空集的概念及交集的运算,考查学生的运算和推理能力. 解析:11111x a x a a x a -<⇔-<-<⇔-<<+,又{}15B x x =<<,,11A B a φ=∴+≤或15a -≥,即得0a ≤或6a ≥.
{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,{}|2,a a ≤≥或a 4{}|0,6a a ≤≥或a {}
|24a a ≤≤
二、填空题 :
11.
若集合(){}21320A x a x x =-+-=有且仅有两个子集,则a =_________。
【答案】 0或
12.
若{3,4,m 2﹣3m ﹣1}∩{2m ,﹣3}={﹣3},则m= .
【答案】
1
【解析】
考点: 集合关系中的参数取值问题。
专题: 计算题。
分析: 由题意可得 m 2﹣3m ﹣1=﹣3,解得 m=1,或 m=2,经检验 m=1满足条件.
解答: 解:∵{3,4,m 2﹣3m ﹣1}∩{2m ,﹣3}={﹣3},∴m 2﹣3m ﹣1=﹣3,解得 m=1,或 m=2.
当m=2 时,2m=4,{3,4,m 2﹣3m ﹣1}∩{2m ,﹣3}={﹣3,4},故不满足条件,舍去. 当 m=1,{3,4,m 2﹣3m ﹣1}={3,4,﹣3},{2m ,﹣3}={2,﹣3},满足条件. 故答案为 1.
点评: 本题主要考查集合关系中参数的取值范围问题,注意检验 m 的值是否满足条件,这是解题的易错点,属于中档题.
13. 不等式2121x x --+≥的解集 .
【答案】
[)2,4,3⎛⎤-∞-⋃+∞ ⎥⎝
⎦
14.
不等式的解集是 .
【答案】
1
8-01|1|2<--x
三、解答题 :
15.
已知M={x|﹣2<x<5},N={x|a+1≤x ≤2a ﹣1}.
(Ⅰ)是否存在实数a 使得M ∩N=M ,若不存在求说明理由,若存在,求出a ; (Ⅱ)是否存在实数a 使得M ∪N=M ,若不存在求说明理由,若存在,求出a .
【答案】
解:(Ⅰ)∵M ∩N=M
∴M ⊆N ,
∴,解得a ∈∅.
(Ⅱ)∵M ∪N=M
∴N ⊆M
①当N=∅时,即a+1>2a ﹣1,有a<2;
②当N ≠∅,则,解得2≤a<3,)
综合①②得a 的取值范围为a<3.
【解析】
考点: 集合关系中的参数取值问题。
专题: 综合题。
分析: (Ⅰ)根据M ∩N=M ,可得M ⊆N ,从而可建立不等式组,解之即可;
(Ⅱ)根据M ∪N=M ,可得N ⊆M ,分类讨论:①当N=∅时,即a+1>2a ﹣1,有a<2;②当)2
3,21(
N ≠∅,则,解得2≤a<3,从而可得a 的取值范围.
解答: 解:(Ⅰ)∵M ∩N=M
∴M ⊆N ,
∴,解得a ∈∅.
(Ⅱ)∵M ∪N=M
∴N ⊆M
①当N=∅时,即a+1>2a ﹣1,有a<2;
②当N ≠∅,则,解得2≤a<3,)
综合①②得a 的取值范围为a<3.
点评: 本题以集合为载体,考查集合的运算,考查参数取值范围的求解,将集合运算转化为集合之间的关系是解题的关键.
16.
已知{|24},{|}A x x B x x a =-≤≤=<.
(1)若A
B =∅,求a 的取值范围; (2)若A
B A ≠,求a 的取值范围; (3) 若A
B ≠∅且A B A ≠,求a 的取值范围. 【答案】
(1)若A B =∅,则2a ≤-;
(2)若A
B A ≠, 4a ≤; (3) 若A B ≠∅且A B A ≠,则24a -<≤.。