因式分解公式法2

合集下载

公式法分解因式(二)课件

公式法分解因式(二)课件

例3 分解因式
1. 3ax2+6axy+3ay2 2. -x2-4y2+4xy 3. (x+y)x2+2xy(x+y)+y2(x+y)
例4 分解因式
1. a2+b2-2ab - 4(a-b)+4 2. 9(a+2b)2- 30a- 60b+25
3. x4+x2 +1
两人一组,合作编题。
编两道分解因式题,分别满足: 1. 要用到提公因式法和完全平
完全平方公式法分解因式
复习
1、因式分解定义 2、已学过的因式分解的方法
例1 判断下列多项式是不是完 全平方式,若是,请分解因式。
1. x2+12x+36 2. x2-4xy-4y2 3. (x+y)2-6(x+y)+9
例2 分解因式
1. 9a2b2+6ab+1 2. 4-12(x-y)+9(x-y)2 3. x6-10x3+25
方公式。 2. 要用到平方差公式和完全平
方公式。
看谁做得快
1. 20022-4×2002+4 2. 1.23452+0.76552 +
2.469 × 0.7655 3. 20062-4010×2006+20052
随堂测试:分解因式
(1)x2y2-6xy+9 (2)-a+2a2-a3 (3)a4-8a2b2+16b4 (4) (x2+5x)(x2+5_______ 2.我想进一步研究的问题是______
分解因式歌 首先提取公因式,然后想到用公式。 两项想到平方差,然后立方和与差。 三项考虑全平方,十字相乘不能忘。 添项拆项试一试,整体换元功能强。

因式分解2

因式分解2

因 式 分 解(2) 利用公式法一、利用公式分解因式:1、利用平方差公式因式分解:()()b a b a b a -+=-22 注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。

例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。

例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x 典型例题:1、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。

例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。

2、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。

例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。

3、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4.4、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4.5、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。

因式分解--公式法(2)完全平方公式

因式分解--公式法(2)完全平方公式

注意结 构特征
( 4x 3)2
(a + b )2
a2 ± 2 . a . b + b2 =( a ± b)²
例5 分解因式: 首 2 2 首 尾 尾 2 (首 尾 )2
(2)x24x y4y2. 分析:原式= (x24xy4y2 )
注意符号
[x 2 2 x (2 y ) (2 y )2 ]
黄金中学 程珊
问题:通过这个图形我们可以联想到哪个乘法公式?
(ab)2 a22ab b2
整式乘法
(a b)2 a22ab b2 (ab)2 a22ab b2
因式分解
这两个公式叫做(因式分解的)完全平方公式.
两个数的平方和加上(或减去)这两个数的 积的2倍,等于这两数的和(或差)的平方.
利用公式法因式分解的一般步骤:
1.一提:先观察要分解的多项式有无公因 式, 首先考虑:提公因式 2.二套:即套公式。提完公因式后或没有 公因式,就看项数.
若两项,考虑能否用 平方差公式 若三项,考虑能否用 完全平方公式 3.三查:检查。分解因式,必须进行到 每一个多项式因式都不能 再分解为止.
注意:公式中的字母既可以表示单项式,也可以表示
多项式 .
为更好方便交通管理,准备将原正方形区域位置扩大成 更大区域,位置扩大后仍为正方形,面积达到 (a2b)2,请 你画出扩大后图形并用因式分解的方法验证其面积大小.
解:验扩证大方后法的1区:域如图所示:
(ab)22(ab)bb2
a 2 2 a b b 2 2 a 2 b 2 b 2 a24a b4b2 a+b
因式分解 的方法
数学思 想方法
整体思想 逆向思维

因式分解 公式法(二)

因式分解 公式法(二)
(1)3ax2+6axy+3ay2
先提公因 式 3a
(2)-x2+2xy-y² 【解析】(1)3ax2+6axy+3ay2 解:原式=3a(x2+2xy+y2)
=3a(x+y)2 (2)-x2+2xy-y² 解:原式=-(x2-2xy+y²) = - ( x 2- 2 · x· y+y2)
=-(x-y)2
4
例题讲解
【例2】把下列完全平方式分解因式:
(1)x2+14x+49
(2)1002-2×100×99+99² (1)x2+14x+49
解:原式=x2+2〓x×7+72 =(x+7)2 (2)100²-2 〓 100 〓 99+99²
解:原式=(100-99)²
=1
4
例题讲解
【例3】把下列各式分解因式:
1
2 2 y 2 y 1 x 3、分解因式:
2 2 ( y 1 ) x 解:原式 ( y 1 x)( y 1 x)
通过本课时的学习,需要我们掌握: 完全平方公式的两个特点: (1)要求多项式有三项.
(2)其中两项同号,且都可以写成某数或 式的平方,另一项则是这两数或式的乘积的2倍, 符号可正可负.
1、 x² +4x+4= (x )²+2· ( x)· ( 2)+( 2 )²=( x + 2 )² 2、m² -6m+9=(m )²- 2·( m ) · ( 3 )+( 3)²=( m - 3)² 3、 a² +4ab+4b² =(a )² +2·( a ) · ( 2b)+( 2b)² =( a + 2b)²

15.4.2公式法因式分解(二)

15.4.2公式法因式分解(二)

a 2ab b
2
2
我们把” 平方, “首” “尾” 两倍中间放.
2 2 首 2首尾 尾
判别下列各式是不是完全平方式
1x 2 xy y 是 2 2 2A 2 AB B 是 2 2 是 3甲 2 甲乙 乙 2 2 4 2 是
小结: (1)掌握常用公式
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2 a2-b2=(a+b)(a-b)
(2)灵活运用完全平方公式分解因式 (3) 因式分解的步骤: “一提” :有公因式,先提公因式; “二套”:提公因式后,括号内(套)用 公式法分解; “三查”:检查每个括号能否继续分解。
A.
2 2
2
D.
x y 6 xy 9 (3 xy )
2 2
2
例1 分解因式: (1) 16x2+24x+9;
(2) –x2+4xy–4y2.
分析:在(1)中,16x2=(4x)2,9=32, 24x=2· 4x · 3,所以16x2+24x+9是一个完全 平方式,即 16x2+24x+9=(4x)2+2· 4x· 3+32 a· a2 +2 · b + b2
小结:
完全平方式的特点:
分解有怎样的过程?
(1) “一提” :有公因式,先提公因式;
(2) “二套”:提公因式后,括号内(套) 用公式法分解。
(3) “三查”:检查每个括号能否继续分 解。
3 4 3 4 1. 计算(107 )2+(92 )2+(107 )×(92 )×2 7 7 7 7

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

因式分解的七种常见方法

因式分解的七种常见方法

因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。

在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。

1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。

公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。

它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。

例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。

它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。

例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。

它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。

例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。

这样我们就把原始式子分解成了两个因子的乘积。

3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。

该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。

例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。

因式分解——公式法(2) 优秀教学设计

因式分解——公式法(2)  优秀教学设计

公式法2
【课题】:公式法2
【教学目标】:
(一)教学知识点
用完全平方公式分解因式
(二)能力训练要求
1.理解完全平方公式的特点.
2.能较熟悉地运用完全平方公式分解因式.
3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.
(三)情感与价值观要求
通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.
【教学重点】:用完全平方公式分解因式.
【教学难点】:根据多项式的特点选用适当的方法进行因式分解。

【教学突破点】:观察理解分解因式与整式乘法的关系,让学生了解事物间的因果联系.
【教法、学法设计】:探究式分层次教学,讲授、练习相结合。

【课前准备】:课件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
练习:562+68x56+342
答案:8100
课堂巩固练习

(1)、x2-4x+4 (2)、25x2+10x+1 (3)、(a+b)2-10(a+b)+25
第四关:总结概括
(1)形如________________形式的多项式可以用完全 a 2 2ab b2 平方公式分解因式。 (2)运用完全平方公式分解因式,要记住“首” 平方, “尾” 平方,“首” “尾”两倍放中央. 整体 换元 (3)注意_____数学思想和_____数学思想。
巩固练习:(m+n)2-4m(m+n)+4m2 答案:(n-m)2
综合应用
例3.用简便方计算:(拓展训练) (1 2008 16 2008 64 ) 2 2 解:原式 2008 2 2008 8 8 2 2 2008 8) 2000 4000000 (
2.有两项是两个数或者两个式子的平方, 另一项是这两数或者这两个式子乘积的2倍或-2倍。
2 2首尾 尾2 首
“首” 平方, “尾” 平方,
“首” “尾”两倍放中央.
用完全平方公式因式分解
对照a2±2ab+b2=(a±b)2,你会吗?
1、x2+6x+9= ( x )2+2( x )( 3 )+( 3 )2 =( x + 3 )2 2、4m2-4m+1=(2m)2- 2(2m)( 1 )+( 1 )2 =( 2m -1)2
例2、分解因式 (1)、 3ax2+6axy+3ay2


3ax2+6axy+3ay2 =3a(x2+2xy+y2 ) =3a( x+y )2
巩固练习:ax2+2a2x+a3 答案:a(x#43;b)2-12(a+b)+36
解 (a+b)2-12(a+b)+36 =(a+b)2-2 ·(a+b ) ·6 + 62 =(a+b-6)2
2 2 2
左边是多项式
第二关:探究新知
形如
a 2ab b
2
2

a 2ab b 的多项式
2 2
,叫做完全平方式。
用完全平方公式分解因式的关键是:
判断一个多项式是不是一个完全平方式。
第二关:深入研究
a 2ab b 2 2 a 2ab b
2
2
问题3:请每个小组交流讨论完全平方式的特点。 1.必须是三项式。
教科书 第119页 习题14.3 第3(4)(6)、5题
运用完全平方公式
第一关:复习引入
问题1:整式乘法中的完全平方公式是怎样的?
( a b ) a 2ab b
2
2
2
( a b ) a 2ab b
2
2
2 右边是整式的积
因式分解中的完全平方公式:
a 2ab b (a b) (a b)(a b) 2 2 2 a 2ab b (a b) (a b)(a b)
( x 1)
2
b表示什么
2ab表示什么
表示为(a b) 2 或 (a b) 2的形式
抢答

用完全平方公式分解以下各式
1、a 4a 4 ?
2
答案:(a 2)
2
2、x 2x 1 ?
2
答案:(x 1 )
2
2
3、x 4x 1 ? 4
2
答案:(2x 1 ) 答案:(a 7)
2
4、a 14a 49 ?
2
第三关:知识应用
例1.用完全平方公式分解因式。
1)、16x2+24x+9 解:原式=(4x)2+2∙4x ∙ 3+32 =(4x+3)2
2)、-x2+4xy-4y2 解:原式=-(x2-4xy+4y2) =-[x2-2∙x∙2y+(2y)2] =-(x-2y)2
第二关:探究新知 a 2 2ab b 2 (a b) 2
问题2:填写下表:
多项式
是否是完全平方式
4a 2 1
不是
a 2 2ab b2
x2 2x 1
a 2 2ab 4b 2
不是

不是
a表示什么
不是三项多项式! 完全平方公式中的两平方项应该是和而不是差!
x
1
2 x 1
相关文档
最新文档