bp神经网络

合集下载

BP神经网络PPT全文

BP神经网络PPT全文
常要求激活函数是连续可微的
输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度

BP神经网络概述

BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。

输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。

网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。

BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。

前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。

反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。

BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。

学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。

此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。

BP神经网络在各个领域都有广泛的应用。

在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。

在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。

在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。

综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。

尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。

5.第6章 BP神经网络汇总

5.第6章  BP神经网络汇总

x1 x0 F x0
当步长足够小时
F x1 F x0
求得函数最小值
反复迭代 F xn1 F xn L F x1 F x0
2.BP网络的学习算法
最速下降法 实例:求函数的最小值
z x 2 y / 2 1.2
5.BP网络相关函数详解
newff——创建一个BP网络: 新版语法net=newff(P,T,S) P:R*Q1矩阵,表示创建的神经网络中,输入层有R个神经元。每行对应一个神经 元输入数据的典型值,实际应用中常取其最大最小值。 T:SN*Q2矩阵,表示创建的网络有SN个输出层节点,每行是输出值的典型值
BP神经网络来说,由于传递函数都是可微的,因此能满足最速 下降法的使用条件。
2.BP网络的学习算法
最速下降BP法
X1 X2
. . . . . .

mi
K1

ij
1.工作信号正向传播
Y1 YJ
1 J 2 en ej n 2 j 1
K2
2.误差信号反向传播
XM
输入层
ij n Jj vIi n
S:标量或向量,用于指定隐含层神经元个数,若隐含层多于一层,则写成行向量 的形式。
旧版语法格式net=newff(P,N,TF,BTF) : P表示输入向量的典型值, N为各层神经元的个数, TF为表示传输函数的细胞数组,
BTF为训练函数
Tan-Sigmoid Function
Log-Sigmoid Function 1.5
1.5
1 f x 1 e x
1
1
0.5
0.5
0
y
0

bp网络

bp网络
20310192
一、简介
BP(Back propagation)神经网络又称为 BP( propagation) 多层前馈神经网络, 多层前馈神经网络,为三层前馈神经网 络的拓扑结构。它是当前最为广泛的一 络的拓扑结构。它是当前最为广泛的一 种人工神经网络,可用于语言综合、识 别和自适应控制等系统。这种神经网络 别和自适应控制等系统。这种神经网络 模型的特点是:结构简单,工作状态稳 模型的特点是:结构简单,工作状态稳 定,易于硬件实现;各层神经元仅与相 定,易于硬件实现;各层神经元仅与相 邻层神经元之间有连接;各层内神经元 之间无任何连接;各层神经元之间无反 馈连接。输入信号先向前传播到隐结点,
经过变换函数之后,把隐结点的输 出信息传播到输出结点,再给出输 出结果。结点的变换函数通常选取 Sigmoid型函数。 Sigmoid型函数。
图1 BP网络 BP网络
BP算法的原理 BP算法的原理
BP算法是用于前馈多层网络的学习算法, BP算法是用于前馈多层网络的学习算法, 前馈多层网络的结构如图1 前馈多层网络的结构如图1所示。它包含 有输入层、输出层以及处于输入输出层 之间的中间层。中间层有单层或多层, 由于它们和外界没有直接的联系,故也 称隐层。在隐层中的神经元也称隐单元; 隐层虽然与外界不连接,但它们的状态 影响输入输出之间的关系。也就是说, 改变隐层的权系数,可以改变整个多层 神经网络的性能。
BP算法的数学描述 BP算法的数学描述
BP算法实质是求取误差函数的最小值问 BP算法实质是求取误差函数的最小值问 题,这种算法采用最速下降法,按误差 函数的负梯度方向修改权系数。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

bp神经网络原理

bp神经网络原理

bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。

BP神经网络主要由输入层、隐藏层
和输出层构成。

在BP神经网络中,每个神经元都有自己的权重和偏置值。


据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。

神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。

然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。

这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。

具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。

首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。

最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。

这个过程反复进行,直到达到停止条件。

BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。

同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。

然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。

总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。


可以应用于分类、回归等任务,并具有较强的自适应能力。

但同时也有一些问题需要注意。

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bp神经网络
BP神经网络(Backpropagation Network)是一种被广泛应用于分类、预测和优化问题中的人工神经网络模型。

BP神
经网络具有简单易懂、易于理解和易于实现的特点,因此在工程实践中被广泛应用。

BP神经网络的基本思想是将信息通过一层层的神经元传递,然后反向调节神经元的权重和偏置,从而实现对模型参数的优化。

BP神经网络通常包含输入层、隐层和输出层三个层次。

其中输入层用于接收输入数据,隐层用于处理输入数据,输出层用于给出模型的预测结果。

BP神经网络通过不断反向
传播误差信号来调整各层神经元之间的连接权重,从而实现对模型参数的逐步优化。

BP神经网络的训练过程通常分为前向传播和反向传播两
个阶段。

在前向传播阶段,输入数据被输入到神经网络中,经过一系列计算后得到输出结果。

在反向传播阶段,将输出结果与真实值进行比较,计算误差信号,并通过反向传播算法将误差信号逐层传递回到输入层,从而实现对神经网络参数(权重和偏置)的不断调整。

通过多次迭代,直到神经网络的输出结果与真实值的误差达到一定的精度要求为止。

BP神经网络的优点在于可以处理非线性问题,并且可以
自适应地调整模型参数。

然而,BP神经网络也存在一些缺点,例如容易陷入局部极小值,训练速度较慢,需要大量的训练数据等等。

在实际应用中,BP神经网络已经被广泛应用于分类、预
测和优化等方面。

例如,BP神经网络可以用于识别手写数字、预测股票市场走势、自动驾驶和机器人控制等方面。

另外,BP 神经网络还可以与其他机器学习算法相结合,共同解决各种复杂问题。

总之,BP神经网络是一种简单实用的人工神经网络模型,具有广泛的应用前景。

在实际应用中,需要根据具体问题对模型进行适当的改进和优化,以提高其预测精度和鲁棒性。

相关文档
最新文档