BP神经网络理论
bp神经网络

bp神经网络BP神经网络(Backpropagation Network)是一种被广泛应用于分类、预测和优化问题中的人工神经网络模型。
BP神经网络具有简单易懂、易于理解和易于实现的特点,因此在工程实践中被广泛应用。
BP神经网络的基本思想是将信息通过一层层的神经元传递,然后反向调节神经元的权重和偏置,从而实现对模型参数的优化。
BP神经网络通常包含输入层、隐层和输出层三个层次。
其中输入层用于接收输入数据,隐层用于处理输入数据,输出层用于给出模型的预测结果。
BP神经网络通过不断反向传播误差信号来调整各层神经元之间的连接权重,从而实现对模型参数的逐步优化。
BP神经网络的训练过程通常分为前向传播和反向传播两个阶段。
在前向传播阶段,输入数据被输入到神经网络中,经过一系列计算后得到输出结果。
在反向传播阶段,将输出结果与真实值进行比较,计算误差信号,并通过反向传播算法将误差信号逐层传递回到输入层,从而实现对神经网络参数(权重和偏置)的不断调整。
通过多次迭代,直到神经网络的输出结果与真实值的误差达到一定的精度要求为止。
BP神经网络的优点在于可以处理非线性问题,并且可以自适应地调整模型参数。
然而,BP神经网络也存在一些缺点,例如容易陷入局部极小值,训练速度较慢,需要大量的训练数据等等。
在实际应用中,BP神经网络已经被广泛应用于分类、预测和优化等方面。
例如,BP神经网络可以用于识别手写数字、预测股票市场走势、自动驾驶和机器人控制等方面。
另外,BP 神经网络还可以与其他机器学习算法相结合,共同解决各种复杂问题。
总之,BP神经网络是一种简单实用的人工神经网络模型,具有广泛的应用前景。
在实际应用中,需要根据具体问题对模型进行适当的改进和优化,以提高其预测精度和鲁棒性。
bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。
它可以用于分类、回归和其他许多任务。
BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。
BP神经网络的基本结构包括输入层、隐藏层和输出层。
每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。
神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。
通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。
BP神经网络的训练包括两个关键步骤:前向传播和反向传播。
前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。
反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。
在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。
误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。
利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。
通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。
然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。
为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。
总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。
通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。
BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。
BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。
每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。
BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。
具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。
2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。
3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。
4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。
5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。
6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。
BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。
下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。
我们训练集中包含一些房屋信息和对应的价格。
1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。
2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。
3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。
4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。
BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。
(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。
(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。
(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。
输出模型又分为:隐节点输出模型和输出节点输出模型。
下面将逐个介绍。
(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。
一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。
(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。
BP神经网络数学原理及推导过程

BP神经网络数学原理及推导过程BP神经网络(Backpropagation Neural Network),也称为反向传播神经网络,是一种常见的人工神经网络模型,主要用于解决回归和分类问题。
它在数学上涉及到多元微积分、线性代数和概率论等方面的知识。
本文将从数学原理和推导过程两个方面进行阐述。
一、数学原理:1. 激活函数(Activation Function):激活函数是神经网络中非线性变换的数学函数,用于引入非线性因素,增加神经网络的表达能力。
常见的激活函数有Sigmoid函数、ReLU函数等。
2. 前向传播(Forward Propagation):神经网络的前向传播是指将输入数据从输入层依次传递到输出层的过程。
在前向传播中,每个神经元接收上一层神经元传递过来的激活值和权重,计算出当前神经元的输出值,并将输出值传递给下一层神经元。
3. 反向传播(Backward Propagation):神经网络的反向传播是指根据损失函数的值,从输出层开始,沿着网络的反方向不断调整神经元的权重,以达到最小化损失函数的目的。
在反向传播中,通过链式法则计算每个神经元对损失函数的导数,进而利用梯度下降算法更新权重。
4. 误差函数(Error Function):误差函数用于衡量神经网络输出结果和真实值之间的差异,常见的误差函数有均方差(Mean Squared Error)函数和交叉熵(Cross Entropy)函数。
5.权重更新规则:反向传播算法中的核心部分就是权重的更新。
权重更新通常采用梯度下降算法,通过计算损失函数对权重的偏导数,按照负梯度方向更新权重值,使得损失函数逐渐减小。
二、推导过程:下面将以一个简单的多层感知机为例,推导BP神经网络的权重更新规则。
假设我们有一个三层的神经网络,第一层为输入层,第二层为隐藏层,第三层为输出层,隐藏层和输出层都使用Sigmoid激活函数。
1.前向传播:首先,我们根据输入层的输入值X和权重W1,计算隐藏层的输入值H1:H1=X*W1然后,将隐藏层的输入值H1带入到Sigmoid函数中,得到隐藏层的输出值A1:A1=σ(H1)接下来,根据隐藏层的输出值A1和权重W2,计算输出层的输入值H2:H2=A1*W2最后,将输出层的输入值H2带入到Sigmoid函数中,得到输出层的输出值A2:A2=σ(H2)2.反向传播:设输出层的输出值为Y,隐藏层的输出值为A1,损失函数为L。
bp神经网络原理

bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。
BP神经网络主要由输入层、隐藏层
和输出层构成。
在BP神经网络中,每个神经元都有自己的权重和偏置值。
数
据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。
神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。
然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。
这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。
具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。
首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。
最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。
这个过程反复进行,直到达到停止条件。
BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。
同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。
然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。
总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。
它
可以应用于分类、回归等任务,并具有较强的自适应能力。
但同时也有一些问题需要注意。
BP神经网络算法

1
目
录
一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方
= 1
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:
j = 2 ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络简介:
神经网络是大脑的一个组成部分。
James在1890年的《心理学》一书中这样描述神经网络的基本原理:大脑皮层每一点的活力是由其它点势能释放的综合效能产生的,这些势能与如下因素有关:(1)相关点的兴奋次数;(2)兴奋的强度;(3)与其不相连的其它点所接受的能量。
他的这一原理一直沿用至今。
到目前为止,神经网络的研究主要分为两个派别:一派主要包括生物学家、物理学家和心理学家等,他们研究的主要目的是给出大脑活动的描述和精细模型;另一派主要包括工程技术人员等,他们关心的是怎样利用神经网络的基本原理,来构造解决实际问题的算法,使得这些算法具有有效的计算能力,我们称之为神经网络的工程应用研究,或称为人工神经网络(artificial neural network, ANN),简称为神经网络。
人工神经网络可以分为前向型和反馈型两类:前向型神经网络的特点是信息传递由后层神经元向前层神经元传递,同一层内的神经元之间没有信息交流;反馈型神经网络中的神经元之间不但相互作用,而且自身也有信息内耗。
BP神经网络是一种多层前向神经网络,名字源于网络权值的调整规则采用的是后向传播学习算法(也称为反推学习规则),即BP学习算法(back-propagation,
BP)。
BP学习算法是Rumelhart等在1986年提出的。
至此以后,BP神经网络得到了广泛的实际应用,据统计,80%~90%的神经网络模型都采用了BP网络或者它的变形。
BP神经网络理论
BP神经网络是一种单向传播的多层前向型网络,其结构如图所示。
由图可见,BP网络是一种具有三层或三层以上的神经网络,包括输入层、中间层(隐层)和输出层。
上下层之间实现全连接,而每层神经元之间无连接。
当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,
1
2
在输出层的各神经元获得网络的输入响应。
接下来,按照减少目标输出与误差的方向,从输出层经过各中间层逐步修正各连接权值,最后回到输入层,这种算法称为“误差逆传播算法”,即BP 算法,随着这种误差逆的传播修正不断进行,网络对输入模式响应的正确率也不断上升。
BP 网络的传递函数要求必须是可微的,常用的有Sigmoid 型的对数、正切函数或线性函数,即
x
e
x sig -+=
11)(log
x
x
x x e
e e e x sig --+-=
)(tan
x x purelin =)(
BP 网络学习规则
下面以一个三层BP 网络为例,介绍BP 网络的学习过程及步骤。
首先对符号的形式及意义说明如下: 网络输入向量),...,,(21n k a a a P =; 网络目标向量),...,,(21q k y y y T =;
x 2x
3
中间层单元输入向量),..,(2,1p k s s s S =,输出向量),..,,(21p k b b b B =; 输出层单元输入向量),...,,(21lq l l L k =;输出向量),...,,(21cq c c C k =; 输入层至中间层的连接权ij w ,n i ,...2,1=,p j ,..2,1=; 中间层至输出层的连接权jt v p j ,..2,1=,q t ,...,2,1=; 中间层各单元的输出阈值j θ,p j ,..2,1=; 输出层各单元的输出阈值t γ,q t ,...,2,1=; 参数m k ,...,2,1=,为训练样本序号。
BP 网络学习过程及步骤如下:
(1)初始化。
给每个连接权值ij w 、jt v 、阈值j θ、t γ赋予区间)1,1(-内的随机值。
(2)随机选取一组输入和目标样本),...,,(2
1
k k k k n
a a a P =、
),...,,(2
1
k k k k q
y y y T =
提供给网络。
(3)用输入样本),...,,(2
1
k k k k n
a a a P =、连接权ij w 和阈值j θ计算中间层各
单元的输入j s ,然后用j s 通过传递函数计算中间层各单元的输出j b 。
∑=-=
n
i j k i ij j a w s 1
θ,p j ,..2,1=
)(j j s f b =,p j ,..2,1=
(4)利用中间层的输出j b 、连接权jt v 和阈值t γ计算输出层各单元的输出
4
t L ,然后通过传递函数计算输出层各单元的响应t C 。
t p
j j jt t b v L γ-=
∑=1
,q t ,...,2,1=
)(t t L f C =,q t ,...,2,1=
(5)利用网络目标向量),...,,(2
1
k k k k q
y y y T =,网络实际输出t C ,计算输出
层的各单元一般化误差k t d 。
)1()(t t t k t k t C C C y d -⋅⋅-=,q t ,...,2,1=
(6)利用连接权jt v 、输出层的一般化误差k t d 和中间层的输出j b 计算中间层各单元的一般化误差k j e 。
)1(][
1
j j q
t jt k t k j b b v d e -⋅=∑=
(7)利用输出层各单元的一般化误差k t d 与中间层各单元的输出j b 来修正连接权jt v 和阈值t γ。
j k t jt jt b d N v N v ⋅⋅+=+α)()1(
k t t t d N N ⋅+=+αγγ)()1(
q t ,...,2,1=,p j ,..2,1=,10<<α
(8)利用中间层各单元的一般化误差k j e ,输入层各单元的输入
),...,,(2
1
k k k k n
a a a P =来修正连接权ij w 和阈值j θ。
k i k j ij ij a e N w N w ⋅⋅+=+β)()1(
5
k j j j e N N ⋅+=+βθθ)()1(
n i ,...2,1=,p j ,..2,1=,10<<β
(9)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m 个训练样本训练完毕。
(10)重新从m 各学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网络全局误差E 小于预先设定的一个极小值,即网络收敛。
如果学习次数大于预先设定的值,网络就无法收敛。
(11)学习结束
可以看出,在以上的学习步骤中,(7)~(8)步为网络误差的“逆传播过程”,(9)~(10)步则用于完成训练和收敛过程。
用BP 神经网络预测本实验中的过滤效应与透气量。
对于BP 网络,有一个非常重要的定理,即对于任何在闭区间内连续的函数都可以用单隐层BP 网络逼近,因而一个三层BP 网络就可以完成任意的
n 维到m 维的映射,因此,本实验使用三层BP 网络进行预测,学习函数:输入层到隐层使用tansig 函数,隐层到输出层使用logsig 函数。
在原数据表中选取同一条件下的每一组数据中的第一个数据作为测试数据,剩余数据为训练数据样本。
训练数据如下表。
表3-4 聚乳酸熔喷非织造布在不同工艺下的过滤效率
表3-5 聚乳酸熔喷非织造布在不同工艺条件下的透气量6
测试数据如下表
7
8
过滤效率预测误差如图 三层BP 网络的设计
本实验中输入向量是3维向量,因此输入层为3个单元,输出向量是2维向量,因此输出层维2个单元,隐层单元数按经验公式a m n n ++=1,
1n 为隐层单元数,n 为输入单元数,m 为输出单元数,]10,1[∈a 为常数。
实
验结果如下表:
因此,隐层数取7个单元较为合适,网络训练如图
预测结果如下表
9
由以上结果10
11
透气量平均值的预测结果如下表
12
14。