初一奥数有理数及三角形测试题汇总

合集下载

初中奥数题及答案

初中奥数题及答案

年初中奥数题及答案初中奥数题试题一一、选择题(每题分,共分).如果,都代表有理数,并且+,那么 ( ).,都是.,之一是.,互为相反数.,互为倒数答案:解析:令,-,满足(-),由此、互为相反数。

.下面的说法中正确的是 ( ).单项式与单项式的和是单项式.单项式与单项式的和是多项式.多项式与多项式的和是多项式.整式与整式的和是整式答案:解析:²,都是单项式.两个单项式,²之和为²是多项式,排除。

两个单项式²,之和为是单项式,排除。

两个多项式与-之和为是个单项式,排除,因此选。

.下面说法中不正确的是 ( ). 有最小的自然数.没有最小的正有理数.没有最大的负整数.没有最大的非负数答案:解析:最大的负整数是,故错误。

.如果,代表有理数,并且+的值大于-的值,那么 ( ).,同号.,异号.>.>答案:.大于-π并且不是自然数的整数有 ( ).个.个.个.无数个答案:解析:在数轴上容易看出:在-π右边的左边(包括在内)的整数只有-,-,-,共个.选。

.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( ).个.个.个.个答案:解析:负数的平方是正数,所以一定大于它本身,故错误。

.代表有理数,那么,和-的大小关系是 ( ).大于-.小于-.大于-或小于-.不一定大于-答案:解析:令,马上可以排除、、,应选。

.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) .乘以同一个数.乘以同一个整式.加上同一个代数式.都加上答案:解析:对方程同解变形,要求方程两边同乘不等于的数,所以排除。

我们考察方程-,易知其根为.若该方程两边同乘以一个整式-,得(-)(-),其根为及,不与原方程同解,排除。

同理应排除.事实上方程两边同时加上一个常数,新方程与原方程同解,对,这里所加常数为,因此选..杯子中有大半杯水,第二天较第一天减少了,第三天又较第二天增加了,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ).一样多.多了.少了.多少都可能答案:解析:设杯中原有水量为,依题意可得,第二天杯中水量为×(-);第三天杯中水量为()×()××;第三天杯中水量与第一天杯中水量之比为∶,所以第三天杯中水量比第一天杯中水量少了,选。

七年级奥数题集(带答案)

七年级奥数题集(带答案)

精心整理1、2002)1(-的值(B)A.2000B.1C.-1D.-2000 2、a 为有理数,则200011+a 的值不能是(C ) A.1B.-1C.0D.-20003、20074、)1(-5、)1(-6、计算78911练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 612、计算:)9897983981(656361()4341(21++++++++++ 结果为:5.612249122121=⨯++⨯+ 13、计算:.200720061431321211⨯++⨯+⨯+⨯ 应用:)111(1)1(+-=+n n d n n d练习:.1051011171311391951⨯++⨯+⨯+⨯ 13、计算:35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯.结果为52 14、求21-++x x 的最小值及取最小值时x 的取值范围.练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.练习:1、计算2、若m A.C.3、若n A.C.4143678…5、已知系是(C )A.2001+=b aB.2002+=b aC.b a =D.2002-=b a6、计算:.35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯52 7、计算:.561742163015201412136121++++++83288、计算:.100321132112111+++++++++++ 9、计算:.999999999999999999999+++++10、计算)100011)(99911)(99811()411)(311211(10201970198019992000-------++-+- .610 11、已知,911,999909999==Q p 比较Q P ,的大小. 12、设n13、又得到一个数,14理数3,(1)15.19981.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是 (A)A .a%.B .(1+a)%.C.1100a a + D.100a a+ 2.甲杯中盛有2m 毫升红墨水,乙杯中盛有m 毫升蓝墨水,从甲杯倒出a 毫升到乙杯里,0<a <m ,搅匀后,又从乙杯倒出a 毫升到甲杯里,则这时 (A)A .甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B .甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C .甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则(A)A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是(C)A.111ab b a c<<-;B.1b a-<1ab<1c;C.1c<1b a-<1ab;D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有()A.2123.4.当5121,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.初中数学竞赛辅导2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x1+a0,试求a0+a2+a4+a6的值.6.解方程2|x+1|+|x-3|=6.8.解不等式||x+3|-|x-1||>2.10.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.14.15.ACB.17与BE 交于F18KL于F1920.下23共有432425(1)(2)26.由?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.1630.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B35.20%,含锰501千克.(1)(2)(3)|=-a c-b≥0,a-c≤0原式=-b3.因为x+m≥0时,||x+m4a0+a210因为y,u=3x-2y+4z11.所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=从而由∠15所以所以所以∠16.在∠DBC∠A+∠17以,又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.+1)=75于是α所以故23即所以24令而t=1,把t25.(1)有8×7×(2)与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30解之得31由②有由①得解之得322×1.68即2×即所以若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边即乙用35.(1)(2)当(3)x?40y=250重量y而。

三套初中奥数题及答案

三套初中奥数题及答案

初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。

从第四个数字开始,每个数字都是前三个数字的和。

请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。

然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。

答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。

将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。

所以,斜边的长度是5厘米。

试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。

问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。

我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。

这相当于在4个球之间插入2个隔板来形成3个部分。

我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。

但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。

因此,最终的放球方法有\[ 6 - 3 = 3 \]种。

试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。

求这个数列的第10项。

答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。

初中数学奥数竞赛试卷

初中数学奥数竞赛试卷

一、选择题(每题5分,共20分)1. 下列各数中,不是有理数的是()A. √4B. -2.5C. πD. 02. 如果a、b是实数,且a+b=0,那么下列说法正确的是()A. a=0,b=0B. a=0,b≠0C. a≠0,b=0D. a≠0,b≠03. 下列各数中,绝对值最小的是()A. -2.3B. -2.2C. 2.3D. 2.24. 下列方程中,解得x=-2的是()A. 2x+3=1B. 2x-3=1C. 2x+3=-1D. 2x-3=-15. 一个长方形的长是4厘米,宽是3厘米,那么它的周长是()A. 10厘米B. 11厘米C. 12厘米D. 13厘米二、填空题(每题5分,共20分)6. 如果一个数的平方等于16,那么这个数是______。

7. 下列数中,有理数是______。

8. 下列数中,无理数是______。

9. 已知一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是______厘米。

10. 已知一个梯形的上底长为6厘米,下底长为10厘米,高为4厘米,那么这个梯形的面积是______平方厘米。

三、解答题(每题10分,共30分)11. 已知a、b是实数,且a-b=5,求a²-b²的值。

12. 已知一个正方形的对角线长为10厘米,求这个正方形的面积。

13. 已知一个等腰三角形的底边长为6厘米,腰长为8厘米,求这个三角形的面积。

四、应用题(每题10分,共20分)14. 一辆汽车从A地出发,以每小时60千米的速度匀速行驶,经过2小时到达B 地。

如果汽车的速度提高20%,求汽车从A地到B地所需的时间。

15. 小明从家出发,先向东走了5千米,然后向北走了4千米,最后向西走了3千米。

请问小明家距离他的最终位置有多远?答案:一、选择题1. C2. C3. A4. C5. C二、填空题6. ±47. -2.5,08. π9. 48厘米 10. 32平方厘米三、解答题11. 2512. 50平方厘米13. 16平方厘米四、应用题14. 3小时15. 6千米。

初一奥数地的题目集(带答案详解)

初一奥数地的题目集(带答案详解)

初一奥数题及答案1、2002)1(-的值 ( B )A. 2000B.1C.-1D.-2000 2、a 为有理数,则200011+a 的值不能是 ( C ) A.1 B.-1 C .0 D.-20003、()[]}{20072006200720062007----的值等于 ( B )A.-2007B.2009C.-2009D.20074、)1()1()1()1()1(-÷-⨯---+-的结果是 ( A ) A.-1 B.1 C.0 D.25、2008200720061)1()1(-÷-+-的结果是 ( A ) A.0 B.1 C.-1 D.26、计算)2()21(22-+-÷-的结果是 ( D ) A.2 B.1 C.-1 D.07、计算:.21825.3825.325.0825.141825.3⨯+⨯+-⨯8、计算:.311212311999212000212001212002-++-+- 9、计算:).138(113)521()75.0(5.2117-⨯÷-÷-⨯÷-11、计算:.363531998199992000⨯+⨯-练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 612、计算: )9897983981()656361()4341(21++++++++++ 结果为:5.612249122121=⨯++⨯+13、计算:.200720061431321211⨯++⨯+⨯+⨯ 应用:)111(1)1(+-=+n n d n n d练习:.1051011171311391951⨯++⨯+⨯+⨯13、计算:35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯. 结果为5214、求21-++x x 的最小值及取最小值时x 的取值范围.练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.练习:1、计算2007200619991998)1()1()1()1(-+-++-+- 的值为 ( C )A.1B.-1C.0D.102、若m 为正整数,那么()[])1(11412---m m 的值 ( B ) A.一定是零 B.一定是偶数C.是整数但不一定是偶数D.不能确定3、若n 是大于1的整数,则2)(12)1(n n n p ---+=的值是 ( B )A.一定是偶数B.一定是奇数C.是偶数但不是2D.可以是奇数或偶数4、观察以下数表,第10行的各数之和为 ( C )14 36 7 813 12 11 1015 16 17 18 1926 25 24 23 22 21…A.980B.1190C.595D.4905、已知,200220012002200120022001200220012⨯++⨯+⨯+= a 20022002=b ,则a 与b 满足的关系是 ( C )A.2001+=b aB.2002+=b aC.b a =D.2002-=b a6、计算:.35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯527、计算:.561742163015201412136121++++++83288、计算:.100321132112111+++++++++++9、计算: .999999999999999999999+++++10、计算)100011)(99911)(99811()411)(311)(211(10201970198019992000-------++-+- .610 11、已知,911,999909999==Q p 比较Q P ,的大小. Q p ==⨯⨯=⨯⨯=9099909999099119991199)911(12、设n 为正整数,计算:43424131323332312122211+++++++++++ .1112141424344nn n n n n n n n ++-++-+++++++++ 2)1(21+=+++n n n13、2007加上它的21得到一个数,再加上所得的数的31又得到一个数,再加上这次得到的41又得到一个数,… ,依次类推,一直加到上一次得数的20071,最后得到的数是多少? 2005003)200211()311()211(2002=+⨯⨯+⨯+⨯14、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式:(1)_______________________;(2)________________________;15.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。

最新初一奥数题——有理数运算技巧同步练习题

最新初一奥数题——有理数运算技巧同步练习题

同步练习题有理数的巧算 计算下列各式:1. 953821164153136.(|...|)----+-2. |()|()|()|-++-+--73841218146123. {||[||(||||)]}----++--637236 4. 1625233434231213141612075.().+⨯÷⨯--+⨯- 5. ()()914725212112318432015485253112-⨯-+--÷6. 计算2005112123134120032004120042005⨯⨯+⨯+⨯++⨯+⨯()7. 计算()()345678131415161718⨯⨯⨯⨯⨯+++++ 8. 计算:12132314243412006220062004200620052006+++++++++++()()()9. 计算().(.)(.)795636275361436-⨯+⨯-+⨯-10. 计算:()()()()112131412131415112131415121314++++++-++++++ 绝对值1.x 是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|; ( 2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a +b <0,化简|a+b-1|-|3-a-b |.4.已知y=|x+3|+|x-2|-|3x-9|,求y 的最大值.5.设T=|x-p |+|x-15|+|x-p-15|,其中0<p <15,对于满足p ≤x ≤15的x 来说,求T 的最小值6.已知a <b ,求|x-a |+|x-b |的最小值.7.不相等的有理数a ,b ,c 在数轴上的对应点分别为A ,B ,C ,如果|a-b |+|b-c |=|a-c |,那么B 点应为( ).(1)在A ,C 点的右边; (2)在A ,C 点的左边; (3)在A ,C 点之间; (4)以上三种情况都有可能同义句转换 方法一1)用同义词或同义短语替换。

初中数学奥林匹克试卷

初中数学奥林匹克试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 已知 a + b = 0,且 a > 0,则下列结论正确的是()A. a > bB. a < bC. a = bD. 无法确定3. 在△ABC中,若∠A = 45°,∠B = 30°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°4. 若等差数列{an}中,a1 = 3,d = 2,则第10项an等于()A. 19B. 20C. 21D. 225. 下列函数中,有最大值的是()A. y = x^2B. y = -x^2C. y = 2xD. y = x + 16. 若一个正方形的对角线长为10cm,则其面积是()A. 25cm²B. 50cm²C. 100cm²D. 200cm²7. 在平面直角坐标系中,点P的坐标为(2,-3),则点P关于x轴的对称点坐标是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)8. 下列各式中,能表示反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = √x9. 在等腰三角形ABC中,若底边BC的长度为8cm,腰AB的长度为10cm,则高AD 的长度是()A. 6cmB. 8cmC. 10cmD. 12cm10. 若一个正三角形的边长为a,则其面积S是()A. (√3/4)a²B. (√3/2)a²C. (√3/3)a²D. (√3/6)a²二、填空题(每题5分,共50分)11. 若等比数列{an}中,a1 = 2,q = 3,则第5项an等于______。

12. 在△ABC中,若∠A = 40°,∠B = 50°,则∠C的度数是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一奥数有理数及三角形测试题汇总
奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。

奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。

国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。

奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。

下面是无忧考网为大家带来的初一奥数有理数及三角形测试题汇总,欢迎大家阅读。

有理数测试题
一、选择题(共30分)
1.下列说法中正确的是( )
A.一个数的相反数是负数
B.一个数的绝对值一定不是负数
C.一个数的绝对值一定是正数
D.一个数的绝对值的相反数一定是负数
2.数轴上在原点以及原点右侧的点所表示的数是( )
A.正数B.负数C.非负数D.非正数
3.绝对值大于一2且小于5的所有的整数的和是( )
A.7 B.一7 C.0 D.5
4.下列算式中正确的是( )
A.(一14)一5=一9 B.0一(一3)=3
C.(一3)一(一3)= 一6 D.=一(5—3)
5.下列说法中错误的是( )
A.一a的绝对值为a B.一a的相反数为a
C.的倒数是a D.一a的平方等于a的平方
6.比较一2.4,一0.5,一(一2),一3的大小,下列正确的是( )
A.一3 一2.4 一(一2) 一0.5 B.一(一2) 一3 一2.4 一0.5
C.一(一2) 一0.5 一2.4 一3 D.一3 一(一2) 一2.4 一0.5
7.一个数的平方是81,则这个数是( )
A.B.9 C.一9 D.92
8.一(一4)3等于( )
A.一12 B.12 C.一64 D.64
9.有理数a、b在数轴上的位置如图所示,则a+b的值( )
A.大于0 B.小于0 C.等于0 D.大于6
10.若ab 0,且a一b 0,则下列选项中,正确的是( )
A.a 0,b 0 B.a 0.b 0
C.a 0,b 0 D.a 0.b 0
二、填空题(共24分)
11.如果收入1 000元记作+1 000元,那么一600元表示_______________.
12.的相反数是_________,倒数是__________,绝对值是__________.
13.比一3大的负整数是_________,比3小的非负整数是_________ .
14.在数轴上,与原点距离为5个单位的点有_________个,它们是_________
15.比较大小:一4.8_________一3.8;_________ (一2)3.16.,则a+6=_________.
17.—24=_________ (一2)4=_________,=_________.
18.太阳直径为1 390 000 km,用科学记数法表示为_________.
三、解答题(共46分)
19.把下列各数分别填人相应的集合里.
—5,,0,—3.14,,—12,+1.99,—(—6)
(1)正数集合:{ …}
(2)负数集合:{ …}
(3)整数集合:{ …}
(4)分数集合:{ …}
20.在数轴上表示下列各数,并把它们按照从小到大的顺序排列.
2,一l,一1.5,0,,.
21.计算:
(1)24+(一14)+(一16)+8:
22.若,求m+n的值
23.根据某地实验测得的数据表明,高度每增加1 km,气温大约下降6℃,已知该地地面温度为21℃.
(1)高空某处高度是8 km,求此处的温度是多少;
(2)高空某处温度为一24 ℃,求此处的高度.
24.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶纪录如下(单位:km).
+10,一9,+7,一15,+6,一14,+4,一2
(1)A在岗亭何方?距岗亭多远?
(2)若摩托车行驶1 km耗油0.05 L,这一天共耗油多少升?
25.如果a 0,b 0, 且,试比较a,b,—a, —b的大小.
三角形测试题
一、细心选一选
1、下列各组长度的线段为边,能构成三角形的是( )
A、7cm 、5cm、12cm
B、6cm、8 cm、15cm
C、8 cm、4 cm、3cm
D、4cm、6 cm、5cm
2、如图1,⊿AOB≌⊿COD,A和C,B和D是对应顶点,若BO=8,AO=10,AB=5,则CD的长为( )
A、10
B、8
C、5
D、不能确定
3、如图2,已知∠1=∠2,要说明⊿ABD≌⊿ACD,还需从下列条件中选一个,错误的选法是( )
A、∠ADB=∠ADC
B、∠B=∠C
C、DB=DC
D、AB=AC
4、生活中,我们经常会看到如图3所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )
A、稳定性
B、全等性
C、灵活性
D、对称性
5、如图4所示,已知AB∥CD,AD∥BC,那么图中共有全等三角形( )
A、8对
B、4对
C、2对
D、1对
6、下列语句:①面积相等的两个三角形全等; ②两个等边三角
形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。

其中错误的说法有( )A、4个B、3个C、2个D、1个
7、如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是( )
A、锐角三角形
B、直角三角形
C、钝角三角形
D、任意三角形
8、根据下列条件作三角形,不能确定三角形的是( )
A、已知三个角
B、已知三条边
C、已知两角和夹边
D、已知两边和夹角
二、仔细补一补
9、在△ABC中,若∠A:∠B:∠C=1:3:5,这个三角形为三角形。

(按角的分类)
10、一木工师傅有两根长分别为5cm、8cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有
3cm、10cm、20cm四根木条,他可以选择长为cm的木条。

11、如图7,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= ;
12、如图8,已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是是(填一个即可)。

13、若一个等腰三角形的两边长分别是3 cm和5 cm,则它的周长是_____ cm。

三、解答题
14、尺规作图:小明作业本上画的三角形被墨迹污染,他想画出一个与原来完全一样的三角形,请帮助小明想办法用尺规作图法画一个出来,并说明你的理由。

BAC是钝角,完成下列画图,并用适当的符号在图中表示。

(1)AC 边上的高;(2) BC边上的高.(在上图中直接画) 15、如图6,在△ABC 中,
16、如图,在△ABC中,∠B=440,∠C=720,AD是△ABC的角平分线,(1)求∠BAC的度数;(2)求∠ADC的度数。

17、如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得,其余都是空地,你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?
18、已知:如图,AE=CF,AD∥BC,AD=CB。

问:△ADF与△CBE全等吗?请说明理由。

19、已知:AE=CF,AD∥BC,AD=CB。

问:△ADF与△CBE 全等吗?
20、如图,在△ABC中,AB=AC,点E在高AD上,找出图中所有全等的三角形,并说明它们为什么全等?
21、如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足, 求证: ①AC=AD; ②CF=DF。

相关文档
最新文档