高一数学试题答案及解析

合集下载

高一数学试题答案及解析

高一数学试题答案及解析

高一数学试题答案及解析1.若△ABC中,∠C=90°,A(1,2,﹣3k),B(﹣2,1,0),C(4,0,﹣2k),则k的值为()A.B.﹣C.2D.±【答案】D【解析】先根据向量的运算性质求出与,然后根据∠C=90°得•=0建立等式关系,解之即可.解:∵A(1,2,﹣3k),B(﹣2,1,0),C(4,0,﹣2k),∴=(3,﹣2,k),=(6,﹣1,﹣2k)∵△ABC中,∠C=90°∴•=(3,﹣2,k)•(6,﹣1,﹣2k)=18+2﹣2k2=0解得k=故选D.点评:本题主要考查了向量语言表述线线的垂直,解题的关键是空间向量的数量积,属于基础题.2.(2013•山东)已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A.B.C.D.【答案】B【解析】利用三棱柱ABC﹣A1B1C1的侧棱与底面垂直和线面角的定义可知,∠APA1为PA与平面A1B1C1所成角,即为∠APA1为PA与平面ABC所成角.利用三棱锥的体积计算公式可得AA1,再利用正三角形的性质可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.解:如图所示,∵AA1⊥底面A1B1C1,∴∠APA1为PA与平面A1B1C1所成角,∵平面ABC∥平面A1B1C1,∴∠APA1为PA与平面ABC所成角.∵==.∴V三棱柱ABC﹣A1B1C1==,解得.又P为底面正三角形A1B1C1的中心,∴==1,在Rt△AA1P中,,∴.故选B.点评:熟练掌握三棱柱的性质、体积计算公式、正三角形的性质、线面角的定义是解题的关键.3.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()A.=B.与同向C.∥D.与有相同的位置向量【答案】C【解析】根据直线的方向向量的定义直接判断即可.解:根据直线的方向向量定义,把直线上的非零向量以及与之共线的非零向量叫做直线的方向向量.因此,线Ax+By+C=0(AB≠0)的方向向量都应该是共线的故选C.点评:本题考查了直线的方向向量的定义,是基础题.4.若A(﹣1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3)B.(1,3,2)C.(2,1,3)D.(3,2,1)【答案】A【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案.解:由题意可得:直线l的一个方向向量=(2,4,6),又∵(1,2,3)=(2,4,6),∴(1,2,3)是直线l的一个方向向量.故选A.点评:本题主要考查直线的方向向量,以及平面向量共线(平行)的坐标表示,是基础题.5.直线l与x轴、y轴、z轴的正方向所成的夹角分别为α、β、γ,则直线l的方向向量为.【答案】(cosα,cosβ,cosγ).【解析】设过原点与直线l平行的直线为直线l′,直线l′取OP=1,P(x,y,z),求出=(cosα,cosβ,cosγ),即可求出直线l的方向向量.解:设过原点与直线l平行的直线为直线l′,直线l′取OP=1,P(x,y,z),则x=cosα,y=cosβ.z=cosγ,∴=(cosα,cosβ,cosγ),∴直线l的方向向量为(cosα,cosβ,cosγ),故答案为:(cosα,cosβ,cosγ).点评:本题考查直线l的方向向量,考查学生的计算能力,比较基础.6.已知一个正四面体的棱长为2,则它的体积为.【答案】【解析】求出正四面体的底面面积以及高,即可求解正四面体的体积.解:一个正四面体的棱长为2,∴正四面体的底面面积为:=.正四面体的高:=.一个正四面体的棱长为2,则它的体积为:=.故答案为:.点评:本题考查几何体的体积的求法,求解正四面体的高是解题的关键.7. 已知等差数列{a n }的前n 次和为s n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n+2,a n+2)(n ∈﹣N *)的直线方向向量的坐标可以是 . 【答案】(1,4)【解析】根据等差数列{a n },可求数列的通项公式,根据斜率公式可知求出直线PQ 的斜率,从而求出一个直线方向向量的坐标.解:∵等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55, ∴a 1+a 2=10,a 3=11, ∴a 1=3,d=4, ∴a n =4n ﹣1 a n+2=4n+7,∴P (n ,4n ﹣1),Q (n+2,4n+7) ∴直线PQ 的斜率是=4,∴过点P (n ,a n )和Q (n+2,a n+2)(n ∈﹣N *)的直线方向向量的坐标可以是(1,4) 故答案为:(1,4)点评:本题主要考查了一条直线的方向向量,注意当方向向量横标是1时,纵标就是直线的斜率,属于基础题.8. 设异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1),则异面直线l 1,l 2所成角的大小为 . 【答案】【解析】根据已知中异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1),代入向量夹角公式,可得答案.解:设异面直线l 1,l 2所成角的大小为θ,∵异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1), ∴cosθ===,故θ=,故答案为:; 点评:本题考查的知识点是直线的方向向量,异面直线的夹角,其中将直线夹角问题转化为向量夹角是解答的关键.9. (2011•自贡三模)设x >y >0>z ,空间向量=(x ,,3z ),=(x ,+,3z ),且x 2+9z 2=4y (x ﹣y ),则•的最小值是( ) A .2 B .4C .2D .5【答案】B【解析】先利用空间向量的数量积运算出,的数量积,再将题中条件:“x 2+9z 2=4y (x ﹣y ),”代入运算,最后利用基本不等式即可求得最小值. 解:∵空间向量=(x ,,3z ),=(x ,+,3z ),∴•==4y (x ﹣y )+≥2=4. 则•的最小值是:4 故答案为:B .点评:本题主要考查了空间向量的数量积运算,以及基本不等式等知识,解答的关键是适当变形成可以利用基本不等式的形式.属于基础题.10.已知ABCD为矩形,P为平面ABCD外一点,且PA⊥平面ABCD,G为△PCD的重心,若=x+y+z,则()A.x=,y=,z=B.x=,y=,z=C.x=﹣,y=,z=D.x=,y=,z=【答案】B【解析】利用三角形的重心性质、向量的三角形法则、平行四边形法则即可得出.解:,,,,,,代入可得=++,∴,,.故选:B.点评:本题考查了三角形的重心性质、向量的三角形法则、平行四边形法则,属于基础题.11.(2004•广州一模)已知向量=(8,x,x),=(x,1,2),其中x>0.若∥,则x的值为()A.8B.4C.2D.0【答案】B【解析】根据两个向量平行,写出两个向量平行的充要条件,得到两个向量的坐标之间的关系,根据横标、纵标和竖标分别相等,得到λ和x的值.解:∵∥且x>0存在λ>0使=λ∴(8,,x)=(λx,λ,2λ)∴∴.故选B点评:本题考查共线向量的充要条件的应用,是一个基础题,这种题目可以作为选择和填空出现在高考题目中,是一个送分题目.12.已知=(2,﹣1,3),=(﹣4,2,x),=(1,﹣x,2),若(+)⊥,则x等于()A.4B.﹣4C.D.﹣6【答案】B【解析】利用已知条件求出+,然后(+)•=0,求出x即可.解:=(2,﹣1,3),=(﹣4,2,x),=(1,﹣x,2),+=(﹣2,1,x+3),∵(+)⊥,∴(+)•=0即﹣2﹣x+2(x+3)=0,解得x=﹣4.故选:B.点评:本题考查空间向量的数量积的应用,向量的坐标运算,考查计算能力.13.已知O是平面上一定点,A﹑B﹑C是平面上不共线的三个点,动点P满足=+λ(+)λ∈[0,+∞),则点P的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心【答案】C【解析】将=提取出来,转化成λt(+),而λt(+)表示与共线的向量,点D是BC的中点,故P的轨迹一定通过三角形的重心.解:∵=设它们等于∴=+λ(+)而+=2λ(+)表示与共线的向量而点D是BC的中点,所以即P的轨迹一定通过三角形的重心.故选C点评:本题主要考查了空间向量的加减法,以及三角形的三心等知识,属于基础题.14.设=(x,4,3),=(3,2,z),且∥,则xz的值为()A.9B.﹣9C.4D.【答案】A【解析】利用共线向量的条件,推出比例关系,求出x,z的值.解:∵=(x,4,3)与=(3,2,z),共线,故有.∴x=6,y=.则xz的值为:9故选A.点评:本题考查共线向量的知识,考查学生计算能力,是基础题.15.已知正方体ABCD﹣A′B′C′D′中,点F是侧面CDD′C′的中心,若=+x+y,则x﹣y 等于()A.0B.1C.D.﹣【答案】A【解析】由向量的运算法则可得=+,结合已知可得xy的值,进而可得答案.解:由向量的运算法则可得=+=+(+)=+(+)=+又=+x+y,故x=,y=,所以x﹣y=0故选A点评:本题考查空间向量基本定理即意义,属基础题.16.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.,+,﹣B.,+,﹣C.,+,﹣D.+,﹣,+2【答案】C【解析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A、B、D 三个选项中的向量均为共面向量,利用反证法可证明C中的向量不共面解:∵(+)+(﹣)=2,∴,+,﹣共面,不能构成基底,排除 A;∵(+)﹣(﹣)=2,∴,+,﹣共面,不能构成基底,排除 B;∵+2=(+)﹣(﹣),∴,+,﹣,+2共面,不能构成基底,排除 D;若、+、﹣共面,则=λ(+)+m(﹣)=(λ+m)+(λ﹣m),则、、为共面向量,此与{、、}为空间的一组基底矛盾,故,+,﹣可构成空间向量的一组基底.故选:C点评:本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属基础题17.(理)在长方体ABCD﹣A1B1C1D1中,以,,为基底表示,其结果是()A.=++B.=C.=﹣2+D.=【答案】C【解析】先可得=,然后逐步把其中的三个向量用所给的基底表示,化简可得结论.解:由向量的运算法则可得===﹣+()=﹣+()=故选C点评:本题考查空间向量基本定理和意义,属基础题.18.若向量是空间的一个基底,则一定可以与向量构成空间的另一个基底的向量是()A.B.C.D.【答案】C【解析】空间向量的一组基底,要满足不为零向量,且三个向量不共面,逐个判断即可.解:由已知及向量共面定理,结合=,可知向量,,共面,同理可得=2,故向量,,共面,故向量,都不可能与,构成基底,又可得==,故向量+也不可能与,构成基底,只有符合题意,故选C点评:本题考查空间向量的基底,涉及向量的共面的判定,属基础题.19.在正方形ABCD﹣A1B1C1D1A1C1中,点E为上底面A1C1的中点,若,则x,y,z的值分别是()A.B.C.D.【答案】B【解析】画出正方体,表示出向量,为的形式,可得x、y,z的值.解:如图,===.∴x=1,y=z=.故选B.点评:本题考查棱柱的结构特征,向量加减运算,是基础题.主要是用三角形法则把所求向量转化.20.(2014•南昌模拟)已知抛物线y2=2px(p>0)的焦点F与椭圆的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为()A.B.C.D.【答案】B【解析】由条件可得b2=2ac,再根据c2 +b2﹣a2=0,即c2+2ac﹣a2=0,两边同时除以a2,化为关于的一元二次方程,解方程求出椭圆的离心率的值.解:依题意抛物线y2=2px(p>0)的焦点F与椭圆的一个焦点重合,得:,由TF=及TF=p,得,∴b2=2ac,又c2 +b2﹣a2=0,∴c2+2ac﹣a2=0,∴e2+2e﹣1=0,解得.故选B.点评:本题考查了圆锥曲线的共同特征,主要考查了椭圆和抛物线的几何性质,属于基础题.。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.2.直线被圆截得的弦长为,则实数的值为()A.或B.或C.或D.或【答案】D【解析】由圆,则圆心为:,半径为:,圆心到直线的距离为:,又,即,解得或.故选D.【考点】直线和圆的位置关系;点到直线距离公式.3.等比数列的前项和为,若,,则()A.15B.30C.45D.60【答案】C【解析】可以将每三项看作一项,则也构成一个等比数列.所以,故选C.【考点】等比数列性质.4.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则()A.B.C.D.【答案】A【解析】由于,又,又在区间上是增函数,所以有。

【考点】函数的单调性及三角函数值大小的比较。

5.已知,且.若,则的值为A.B.C.D.或【答案】D【解析】由已知得,则,又,则的值为或。

【考点】(1)共线向量的坐标运算;(2)特殊角的三角函数值。

6.若为圆的弦的中点,则直线的方程是()A.B.C.D.【答案】D【解析】圆的圆心为,点为弦AB的中点,PC的斜率为,直线AB的斜率为1,点斜式写出直线AB的方程即【考点】圆的方程,直线方程点斜式7.在中,,则()A.B.C.D.【答案】A【解析】由正弦定理可得即,在中,可得,也就是.那么,由余弦定理,代入可得,则.【考点】正余弦定理,向量的数量积运算.8.在中,,,,则的面积为()A.B.C.D.【答案】C【解析】由已知可得,同理,又,可得,所以,.【考点】向量的坐标运算,三角形的面积公式.9.已知一个水平放置的正方形用斜二测画法作出的直观图是一个平行四边形,平行四边形中有一条边长为4,则此正方形的面积是( )A.16B.64C.16或64D.以上都不对【答案】C【解析】因为我们默认坐标系的横轴与水平线是平行的,所以假设用斜二测画法作出的直观图是一个平行四边形的水平的边为4,则原正方形的边长为4,所以面积为16.若平行四边形的另一边为四则根据斜二测画法可知原正方形的边长为8,所以面积为64.所以选C.【考点】1.斜二测画法的法则.2.变化前与变化后的对应关系.10.若函数满足对任意的,当时,则实数的取值范围是()A.B.C.D.【答案】C【解析】当时,说明函数在上是减函数,根据复合函数的单调性的性质,有.【考点】复合函数的单调性.11.函数的零点所在的区间是A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)【答案】C.【解析】根据零点存在定理,由可得函数在区间上有零点,本题我们只要计算区间两端点处的函数值(如果存在的话),看看它们的正负即可.易知,.因此选C.【考点】函数的零点.12.已知,则角所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】根据题意,由于,则说明正弦值和余弦值都是正数,因此可知角所在的象限是第一象限,故选A.【考点】三角函数的定义点评:主要是考查了三角函数的定义的运用,属于基础题。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.下列说法中不正确的是()A.对于线性回归方程,直线必经过点B.茎叶图的优点在于它可以保存原始数据,并且可以随时记录C.将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变D.掷一枚均匀硬币出现正面向上的概率是,那么一枚硬币投掷2次一定出现正面【答案】D【解析】对于A由线性回归方程的推导可知直线必经过点,作为常规结论最好记住;对于B也正确;对于C可以对新的一组数据重新计算它的方差会发现方差与原来的方差一样,不会改变,也正确,作为常规结论最好记住;对于D,主要是对概率概念的理解不正确,概率说的是一种可能性,概率大的事件一次实验中也可能不发生,概率小的事件一次试验中也可能发生,所以一枚硬币投掷2次也可能不会出现正面,因此D不正确.【考点】统计与概率的基本概念.2.如图BC是单位圆A的一条直径, F是线段AB上的点,且,若DE是圆A中绕圆心A运动的一条直径,则的值是().A.B.C.D.【答案】C.【解析】根据题意有,则,又且圆的半径为1,所以则因此.【考点】向量的三角形法则,向量的数乘运算,数量积的定义,相反向量,.3.已知,则的值为()A.B.C.D.【答案】D【解析】根据诱导公式,故选D.【考点】诱导公式4.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到300度之间,频率分布直方图所示,则在这些用户中,用电量落在区间内的户数为()A.B.C.D.【答案】B【解析】所以用电户的频率之和等于,所以,所以,所以用电量落在区间内的频率等于,所以户数等于,故选B.【考点】频率分布直方图的应用5.数列满足,其中,设,则等于()A.B.C.D.【答案】C【解析】由题意可知该数列依次为1,1,3,1,5,3,7,1,9,5 ,可以计算出,, ,,推理可得.【考点】数列的表示法.6.下面四个判断中,正确的是()A.式子1+k+k2+…+k n(n∈N*)中,当n=1时式子值为1B.式子1+k+k2+…+k n-1(n∈N*)中,当n=1时式子值为1+kC.式子1++…+(n∈N*)中,当n=1时式子值为1+D.设f(x)=(n∈N*),则f(k+1)=f(k)+【答案】C【解析】对于A,f(1)恒为1,正确;对于B,f(1)恒为1,错误;对于C,f(1)恒为1,错误;对于D,f(k+1)=f(k)+++-,错误;故选A..【考点】数学归纳法.7.若直线的倾斜角为,则直线的斜率为()A.B.C.D.【答案】【解析】【考点】利用倾斜角求斜率.8.的值是A.B.C.D.【答案】C【解析】根据三角函数的诱导公式可知,故C为正确答案.【考点】三角函数的诱导公式、三角函数值的计算.9.在△ABC中,已知++ab=,则∠C=()A.30°B.60°C.120°D.150°【答案】C【解析】因为,△ABC中,已知++ab=,所以,,∠C=120°,选C。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.垂直于同一条直线的两条直线一定 ( )A.平行B.相交C.异面D.以上都有可能【答案】D【解析】如图所示,故选D.【考点】空间直线的位置关系.2.在四边形中,,,则该四边形的面积为().A.B.C.5D.15【答案】D【解析】,因此四边形的对角线互相垂直,.【考点】四边形的面积.3.已知,向量与垂直,则实数的值为( )A.B.C.D.【答案】C【解析】因为,所以即,解得.【考点】向量垂直.4.设函数,则是()A.最小正周期为p的奇函数B.最小正周期为p的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【答案】B【解析】∵,∴最小正周期T=,为偶函数.【考点】三角函数的奇偶性与最小正周期.5.在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为()A.B.C.D.【答案】C【解析】以这个正方体的中心为中心且边长为1的正方体内.这个小正方体的体积为1,大正方体的体积为27,故概率为p=.【考点】几何概型.6.已知x与y之间的几组数据如下表:则y与x的线性回归方程=x+必过点()A.(1,2) B.(2,6) C. D.(3,7)【答案】C【解析】回归直线必过样本中心点,由表格可求得.【考点】回归分析.7.锐角中,角所对的边长分别为.若A.B.C.D.【答案】C【解析】根据正弦定理,由题意,得,∴.又为锐角三角形,∴,故选C.【考点】正弦定理.8.如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,错误的为()A.是正三棱锥B.直线平面C.直线与所成的角是D.二面角为【答案】B【解析】由正四面体的性质知是等边三角形,且两两垂直,所以A正确;借助正方体思考,把正四面体放入正方体,很显然直线与平面不平行,B错误.【考点】正四面体的性质、转化思想的运用.9.与直线l : y=2x+3平行,且与圆x2+y2-2x-4y+4=0相切的直线方程是( ).A.x-y±=0B.2x-y+=0C.2x-y-=0D.2x-y±=0【答案】D【解析】解:∵直线l:y=2x+3∴kl=2若圆x2+y2-2x-4y+4=0的切线与l平行所以切线的斜率k=2观察四个答案; A中直线的斜率为1,不符合条件,故A错误; B中直线的斜率为,不符合条件,故B错误; C中直线的斜率为-2,不符合条件,故C错误; D中直线的斜率为2,符合条件,故D正确;故选D【考点】直线平行点评:两条直线平行,则两直线的斜率相等,截距不等,即:l1∥l2⇔k1=k2, b1≠b210.已知,则的值是()A.B.-C.D.-【答案】C【解析】因为,那么可知,故可知的值是,选C.【考点】二倍角的余弦公式点评:解决的关键是利用二倍角的余弦公式来求解,属于基础题。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点【答案】C【解析】不共线的三点确定一个平面,两条平行线确定一个平面,得到A,B,C两个选项的正误,根据两个平面如果相交一定有一条交线,确定D选项是错误的,得到结果.解:不共线的三点确定一个平面,故A不正确,四边形有时是指空间四边形,故B不正确,梯形的上底和下底平行,可以确定一个平面,故C正确,两个平面如果相交一定有一条交线,所有的两个平面的公共点都在这条交线上,故D不正确,故选C.点评:本题考查平面的基本性质即推论,考查确定平面的条件,考查两个平面相交的性质,是一个基础题,越是简单的题目,越是不容易说明白,同学们要注意这个题目.2.已知全集I={x|x 是小于9的正整数},集合M={1,2,3},集合N={3,4,5, 6},M)∩N等于则(IA.{3}B.{7,8}C.{4,5, 6}D.{4, 5,6, 7,8}【答案】CM=【解析】I={x|x 是小于9的正整数}=,所以IM)∩N={4,5, 6},所以(I【考点】集合的补集与交集的运算3.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,一共有多少种选法?()A.5B.4C.9D.20【答案】C【解析】完成一项用方法一有5种,用方法二有4种,因此共有4+5=9种.【考点】分类加法计数原理.4.某路段的雷达测速区检测点,对过往汽车的车速进行检测所得结果进行抽样分析,并绘制如图所示的时速(单位km/h)频率分布直方图,若在某一时间内有200辆汽车通过该检测点,请你根据直方图的数据估计在这200辆汽车中时速超过65km/h的约有()A.辆B.辆C.辆D.辆【答案】D.【解析】由频率分布直方图知速超过65km/h的频率为:,因此200辆汽车中时速超过65km/h的约有:(辆).【考点】统计中的频率分布直方图.5.已知,则()A.B.C.D.【答案】C【解析】由,得,∴,所以选择C.正、余弦齐次式的处理,经常转化为用正切来表示.【考点】三角函数求值和“1”的巧代换.6.化简sin600°的值是( ).A.0.5B.-C.D.-0.5【答案】B【解析】.【考点】诱导公式.7.在区间[-1,2]上随机取一个数x,则的概率为A B C D【答案】C【解析】由解得,-1≤x≤1,故的概率为=,故选C.先解出的解为-1≤x≤1,本题为长度概型,故的概率为=.【考点】含绝对值不等式解法;几何概型8.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A C D.A=B=C【答案】B【解析】A∩C中包括第一象限的负角,如,不属于锐角,故A错;第一象限角中包括大于的角,如是第一象限角,但不小于,故C错;易知D错;故选B.【考点】象限角,集合间的关系.9.若角满足,则的取值范围是 ( )A.B.C.D.【答案】A【解析】本题考查不等式的性质,先根据得,再利用不等式的性质得【考点】不等式的性质10.已知两点A(4,1),B(7,-3),则与向量同向的单位向量是()A.(,-)B.(-,)C.(-,)D.(,-)【答案】A【解析】,,与向量同向的单位向量是.【考点】向量的坐标表示、单位向量.11.在△ABC中,若lg sin A-lg cos B-lg sin C=lg 2,则△ABC是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】A【解析】因为lg sin A-lg cos B-lg sin C=lg 2,所以lg sin A=lg 2 cos B sin C,即sin A=2 cos B sin C,又由于sin A=sin ( B + C)=sinBcosC+cosBsinC,故sinBcosC+cosBsinC ="2" cos B sin C,所以sinBcosC-cos B sin C=0,所以sin(B-C)=0,由于B、C为三角形的内角,所以B=C,即三角形ABC为等腰三角形.【考点】1.正弦定理;2.两角和差公式.12.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是 ( ) A.1<x<3B.x<1或x>3C.1<x<2D.x<1或x>2【答案】B【解析】原问题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,只需,∴故选B.【考点】二次函数的性质..13.一个多面体的直观图、主视图、左视图、俯视图如下,、分别为、的中点.下列结论中正确的个数有( )①直线与相交.②.③//平面.④三棱锥的体积为.A.4个B.3个C.2个D.1【答案】B【解析】由图可知,此几何体为直棱柱,底面是以为直角顶点的等腰直角三角形,连接,连,由是中点,得,与相交,所以与异面,故①错;面,,,面,故②③正确;,故④正确.故选B.【考点】1.三视图;2.椎体体积;3.线面垂直的判定及性质.14.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键15.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1="0"B.2x+y-5=0C.x+2y-5="0"D.x-2y+7=0【答案】A【解析】设所求直线为,2x+y+d=0,将(-1,3)代人得,d=-1,故所求直线方程为2x+y-1=0,选A。

高一数学试题答案及解析

高一数学试题答案及解析

高一数学试题答案及解析1.(3分)函数y=x+,x∈[2,+∞)的最小值为.【答案】【解析】先求导数,再利用导数的符号与单调性的关系,结合x的取值范围求解即可.解析:y′=1﹣,x∈[2,+∞)时,y′>0,故函数为增函数,最小值为f(2)=.故答案:.点评:本题主要考查了利用导数求闭区间上函数的最值,求最值是高考中常见问题,属于基础题.2.函数的导数为.【答案】【解析】根据导数的运算法则可得答案.解:∵∴y'==故答案为:点评:本题主要考查导数的运算法则.属基础题.求导公式一定要熟练掌握.3.曲线y=x3在点(0,0)处的切线方程是.【答案】y=0.【解析】先求出函数y=x3的导函数,然后求出在x=0处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.解:∵y′=(x3)′=3x2,∴k=3×02=0,∴曲线y=x3在点(0,0)切线方程为y=0.故答案为:y=0.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.4.已知f(x)=x2+2x•f′(1),则f′(0)= .【答案】﹣4.【解析】要求某点处函数的导数,应先求函数解析式f(x),本题求函数解析式f(x)关键求出未知f′(1).解:f'(x)=2x+2f'(1)⇒f'(1)=2+2f'(1),∴f'(1)=﹣2,有f(x)=x2﹣4x,f'(x)=2x﹣4,∴f'(0)=﹣4.点评:本题考查导数的运算,注意分析所求.5.函数y=ax2+1的图象与直线y=x相切,则a= .【答案】【解析】设切点为(x0,y),由于y′=2ax,利用导数的几何意义可得k=2ax=1,又由于点(x,y)在曲线与直线上,可得,即可解出a.解:设切点为(x0,y),∵y′=2ax,∴k=2ax=1,①又∵点(x0,y)在曲线与直线上,即,②由①②得a=.故答案为.点评:熟练掌握导数的几何意义、切线的方程等是解题的关键.6.已知抛物线y=x2,求过点(﹣,﹣2)且与抛物线相切的直线方程.【答案】2x﹣y﹣1=0和4x+y+4=0.【解析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在切点(x0,x2)处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后结合切线过点(﹣,﹣2)即可求出切点坐标,从而问题解决.解:设直线的斜率为k,直线与抛物线相切的切点坐标为(x0,y),则直线方程为y+2=k(x+),∵y′=2x,∴k=2x0,又点(x,x)在切线上,∴x+2=2x0(x+),∴x0=1或x=﹣2,∴直线方程为y+2=2(x+)或y+2=﹣4(x+),即为2x﹣y﹣1=0和4x+y+4=0.点评:本小题主要考查导数的概念、导数的几何意义和利用导数研究曲线上某点切线方程的能力,考查运算求解能力.属于基础题.7.函数y=f(x)的自变量在x=1处有增量△x时,函数值相应的增量为.【答案】△y=f(1+△x)﹣f(1)【解析】函数y=f(x)的自变量在x=1处有增量△x,函数在1+△x处的函数值为f(1+△x),由此可得结论.解:∵函数y=f(x)的自变量在x=1处有增量△x,∴函数在1+△x处的函数值为f(1+△x),∴函数y=f(x)的自变量在x=1处有增量△x时,函数值相应的增量为△y=f(1+△x)﹣f(1),故答案为:△y=f(1+△x)﹣f(1)点评:本题考查导数的概念,考查学生分析解决问题的能力,属于基础题.8.已知函数f(x)=x3,求证:函数在任意区间[a,a+b]上的平均变化率都是正数.【答案】见解析【解析】利用函数的解析式求出区间两个端点的函数值;利用平均变化率公式求出该函数在区间[a,a+b]上的平均变化率,即可得出结论.证明:==3a2+3ab+b2=3(a+)2+>0.因此,函数在任意区间[a,a+b]上的平均变化率都是正数.点评:本题变化的快慢与变化率,解题的关键是求出函数值做出函数值之差,数字的运算不要出错,这是用定义求导数的必经之路.9.(5分)一个酒杯的轴截面是抛物线的一部分,它的方程是x2=2y(0≤y≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围为【答案】0<r≤1【解析】设小球圆心(0,y)抛物线上点(x,y),求得点到圆心距离平方的表达式,进而根据若r2最小值在(0,0)时取到,则小球触及杯底需1﹣y≥0 进而求得r的范围.解:设小球圆心(0,y)抛物线上点(x,y)点到圆心距离平方r2=x2+(y﹣y0)2=2y+(y﹣y)2=Y2+2(1﹣y)y+y2若r2最小值在(0,0)时取到,则小球触及杯底所以1﹣y≥0所以0<y≤1所以0<r≤1故答案为0<r≤1点评:本题主要考查了抛物线的应用.考查了学生利用抛物线的基本知识解决实际问题的能力.10.如图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为12 m,镜深2 m,(1)建立适当的坐标系,求抛物线的方程和焦点的位置;(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度.【答案】(1)y2=18x,F(,0).(2)6.5m.【解析】(1)先建立直角坐标系,得到A的坐标,然后设出抛物线的标准方程进而可得到P的值,从而可确定抛物线的方程和焦点的位置.(2)根据盛水的容器在焦点处,结合两点间的距离公式可得到每根铁筋的长度.解:(1)如图,在反光镜的轴截面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于镜口直径.由已知,得A点坐标是(2,6),设抛物线方程为y2=2px(p>0),则36=2p×2,p=9.所以所求抛物线的标准方程是y2=18x,焦点坐标是F(,0).(2)∵盛水的容器在焦点处,∴A、F两点间的距离即为每根铁筋长.|AF|==(或|AF|=+2=).故每根铁筋的长度是6.5m.点评:本题主要考查抛物线的应用.抛物线在现实生活中应用很广泛,在高考中也占据重要的地位,一定要掌握其基础知识做到活学活用.11.以双曲线=1的右顶点为焦点的抛物线的标准方程为()A.y2=16x B.y2=﹣16x C.y2=8x D.y2=﹣8x【答案】A【解析】根据双曲线方程,算出它的右焦点为F(4,0),也是抛物线的焦点.由此设出抛物线方程为y2=2px,(p>0),结合抛物线焦点坐标的公式,可得p=8,从而得出该抛物线的标准方程.解析由双曲线方程﹣=1,可知其焦点在x轴上,由a2=16,得a=4,∴该双曲线右顶点的坐标是(4,0),∴抛物线的焦点为F(4,0).设抛物线的标准方程为y2=2px(p>0),则由=4,得p=8,故所求抛物线的标准方程为y2=16x.故选A.点评:本题给出抛物线焦点与已知双曲线的右焦点重合,求抛物线的标准方程,着重考查了双曲线、抛物线的标准方程与简单几何性质等知识,属于基础题.12.求椭圆+y2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.【答案】离心率e=.焦点,顶点(±2,0),(0,±1).【解析】利用椭圆+y2=1,可得a2=4,b2=1.即可得到a,b,c=.进而得到长轴和短轴的长、离心率、焦点和顶点的坐标.解:∵椭圆+y2=1,∴a2=4,b2=1.∴a=2,b=1..∴椭圆的长轴和短轴的长分别为2a=4,2b=2.离心率e=.焦点,顶点(±2,0),(0,±1).点评:熟练掌握椭圆的标准方程及其性质是解题的关键.13.(3分)(2009•广东)巳知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G 上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.【答案】.【解析】由题设条件知,2a=12,a=6,b=3,由此可知所求椭圆方程为.解:由题设知,2a=12,∴a=6,b=3,∴所求椭圆方程为.答案:.点评:本题考查椭圆的性质和应用,解题时要注意公式的灵活运用.14.(3分)已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为9,离心率为的椭圆的标准方程为.【答案】或.【解析】由题意可得,解得a与b即可.解:由题意可得,解得.∴椭圆的标准方程为或.故答案为或.点评:熟练掌握椭圆的标准方程及其性质事件他的关键.15.(3分)椭圆=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是()A.±B.±C.±D.±【答案】A【解析】设点P的坐标为(m,n),根据椭圆方程求得焦点坐标,进而根据线段PF1的中点M 在y轴上,推断m+3=0求得m,代入椭圆方程求得n,进而求得M的纵坐标.解:设点P的坐标为(m,n),依题意可知F1坐标为(3,0)∴m+3=0∴m=﹣3,代入椭圆方程求得n=±∴M的纵坐标为±故选A点评:本题主要考查了椭圆的应用.属基础题.16.(3分)已知椭圆=1的上焦点为F,直线x+y﹣1=0和x+y+1=0与椭圆分别相交于点A,B和C,D,则AF+BF+CF+DF=()A.2B.4C.4D.8【答案】D【解析】利用直线过椭圆的焦点,转化为椭圆的定义去求解.解:如图:两条平行直线分别经过椭圆的两个焦点,连接AF1,FD.由椭圆的对称性可知,四边形AFDF1(其中F1是椭圆的下焦点)为平行四边形,所以AF1=FD,同理BF1=CF.所以AF+BF+CF+DF=AF+BF+BF1+AF1=4a=8.故选D.点评:本题主要考查了椭圆的方程和椭圆的性质,综合性较强.17.(3分)已知命题p:2+2=5,命题q:3>2,则下列判断正确的是()A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假【答案】B【解析】先判断命题p,q的真假,然后利用复合命题的真假关系进行判断.解:因为命题p为假,命题q为真,故“p或q”为真,“p且q”为假,“非p”为真,“非q”为假,故选B.点评:本题主要考查复合命题的真假判断,比较基础.18.(5分)分别写出由下列各组命题构成的“p∧q”“p∨q”“¬p”形式的命题:(1)p:π是无理数,q:e是有理数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任一个内角.【答案】(1)“p∧q”:π是无理数且e是有理数.“p∨q”:π是无理数或e是有理数.“¬p”:π不是无理数.(2)“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“¬p”:三角形的外角不等于与它不相邻的两个内角的和.【解析】根据复合命题的结果分别写出“p∧q”“p∨q”“¬p”形式.解(1)“p∧q”:π是无理数且e是有理数.“p∨q”:π是无理数或e是有理数.“¬p”:π不是无理数.(2)“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“¬p”:三角形的外角不等于与它不相邻的两个内角的和.点评:本题主要考查复合命题的结构形式,比较基础.19.(3分)命题“若a<b,则2a<2b”的否命题为,命题的否定为.【答案】否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b【解析】同时否定条件和结论得到命题的否命题.不改变条件,只否定结论,得到命题的否定.解:命题“若a<b,则2a<2b”的否命题为:若a≥b,则2a≥2b,命题的否定为:若a<b,则2a≥2b.故答案为:否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b点评:本题考查了命题的否命题和命题的否定.20.(8分)已知命题p:1∈{x|x2<a};q:2∈{x|x2<a}(1)若“p∨q”为真命题,求实数a的取值范围;(2)若“p∧q”为真命题,求实数a的取值范围.【答案】(1)a>1;(2)a>4.【解析】根据题意,首先求得P为真与q为真时,a的取值范围,(1)若“p∨q”为真命题,则p、q为至少有一个为真,对求得的a的范围求并集可得答案;(2)若“p∧q”为真命题,则p、q同时为真,对求得的a的范围求交集可得答案.解:若P为真,则1∈{x|x2<a},所以12<a,则a>1;若q为真,则2∈{x|x2<a},有x2<a,解可得a>4;(1)若“p∨q”为真,则p、q为至少有一个为真,即a>1和a>4中至少有一个成立,取其并集可得a>1,此时a的取值范围是a>1;(2)若“p∧q”为真,则p且q同时为真,即a>1和a>4同时成立,取其交集可得a>4,此时a的取值范围是a>4.点评:本题考查复合命题真假的判断,要牢记复合命题真假的判读方法.。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.2.在z轴上与点A(﹣4,1,7)和点B(3,5,﹣2)等距离的点C的坐标为.【答案】(0,0,)【解析】根据C点是z轴上的点,设出C点的坐标(0,0,z),根据C点到A和B的距离相等,写出关于z的方程,解方程即可得到C的竖标,写出点C的坐标.解:由题意设C(0,0,z),∵C与点A(﹣4,1,7)和点B(3,5,﹣2)等距离,∴|AC|=|BC|,∴=,∴18z=28,∴z=,∴C点的坐标是(0,0,)故答案为:(0,0,)点评:本题考查两点之间的距离公式,不是求两点之间的距离,而是应用两点之间的距离相等,得到方程,应用方程的思想来解题,本题是一个基础题.3.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.4.已知,则以下不等式中恒成立的是()A.B.C.D.【答案】A.【解析】由于,可知,的值不能确定,当时,成立;当时,,成立;当时,,则成立,综上.【考点】绝对值不等式的性质.5.下面的函数中,周期为的偶函数是()A.B.C.D.【答案】C【解析】由A和C的周期是,而B和D的周期是4,知B,D与题意不符,故排除,又因为是奇函数,而是偶函数知应选C.【考点】三角函数的性质.6.要得到函数的图像,只要将函数的图像()A.向左平行移动个单位B.向左平行移动个单位C.向右平行移动个单位D.向右平行移动个单位【答案】D【解析】因为要得到函数的图像,只要将函数的图象向右平移个单位即可,故选D.【考点】三角函数图像的变换.7.若函数对任意的都有,则()A.B.C.D.【答案】B【解析】函数满足是,说明的图象关于直线对称,此点对应的函数值一定是函数的最大(小)值.【考点】三角函数图象的对称轴.8.如果函数在区间上是减少的,那么实数的取值范围是()A.B.C.D.【答案】A【解析】因为,函数在区间上是减少的,所以,在图象对称轴的左侧,即,所以,,选A。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知点()在第三象限,则角在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由于点是第三象限角,,在第二象限.【考点】三角函数在各个象限的符号.3.等比数列的前项和为,若,,则()A.15B.30C.45D.60【答案】C【解析】可以将每三项看作一项,则也构成一个等比数列.所以,故选C.【考点】等比数列性质.4.三边长分别是,则它的最大锐角的平分线分三角形的面积比是( )A.1:1B.1:2C.1:4D.4:3【答案】B【解析】如图,设,由余弦定理可得,所以为钝角,又因为,由大边对大角,可知为的最大锐角,作角的平分线,交于点,则有,故选B.【考点】1.余弦定理;2.三角形的面积公式.5.设是不同的直线,是不同的平面,下列命题中正确的是( )A.若,则B.若,则C.若,则⊥D.若,则【答案】C【解析】由可知与的关系为:相交、平行或线在面内,故A、B错;由可在中a中找一条直线使,又,所以,而,所以,得,故选C.【考点】面面垂直的判定.6.若,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为,所以,所以。

因为,所以。

所以。

故D正确。

【考点】对数的基础知识。

7.函数,的最小正周期为()A.B.C.D.【答案】C【解析】这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如的最小正周期为,而的最小正周期为,故函数的最小正周期为,故选C.【考点】三角函数的图像与性质.8.圆与圆的位置关系为( )A.内切B.相交C.外切D.相离【答案】B【解析】圆心分别为(-2,0),(2,1),半径分别为2,3.圆心距,所以,两圆的位置关系为相交,选B。

【考点】圆与圆的位置关系点评:简单题,判定圆与圆的位置关系,有“代数法”和“几何法”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学试题答案及解析1.(2015•洛阳一模)已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为()A.{a|a<﹣6}B.{a|﹣6<a<C.{a|a<}D.{a|a<﹣6或a>【答案】B【解析】求出复数的表达式,根据题意列出不等式组,求出a的取值范围.解:∵复数z1=3﹣ai,z2=1+2i,∴===﹣i;∴,解得﹣6<a<,∴实数a的取值范围{a|﹣6<a<}.故选:B.点评:本题考查了复数的代数运算问题,解题时应注意虚数单位i2=﹣1,是基础题.2.(2014•重庆)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(2014•重庆)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据复数的几何意义,即可得到结论.解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.点评:本题主要考查复数的几何意义,比较基础.4.(2015•河南一模)设复数z1=1﹣i,z2=2+i,其中i为虚数单位,则z1•z2的虚部为()A.﹣1B.1C.﹣i D.i【答案】A【解析】利用复数的运算法则即可得出.解:∵复数z1=1﹣i,z2=2+i,z 1•z2=(1﹣i)(2+i)=3﹣i.其虚部为﹣1.故选:A.点评:本题考查了复数的运算法则,属于基础题.5.(2015•惠州模拟)复数Z=(其中i为虚数单位)的虚部是()A.﹣B.i C.D.﹣i【答案】C【解析】先化简复数,由虚部的定义可得答案.解:复数Z===,则虚部为,故选:C.点评:本题考查复数的基本概念,属基础题.6.(2015•红河州一模)||=()A.0B.1C.2D.【答案】D【解析】首先将复数进行分母实数化,然后利用模的概念求解.解:因为===﹣1﹣i;所以||=|﹣1﹣i|=;故选D.点评:本题考查了复数的化简以及求复数的模,属于基础题.7.(2015•武昌区模拟)i为虚数单位,若,则|z|=()A.1B.C.D.2【答案】A【解析】利用复数模的运算性质,将已知关系式等号两端取模,即可即可求得答案解:∵,∴|||z|=||,即2|z|=2,∴|z|=1,故选:A.点评:本题考查了复数求模、熟练应用模的运算性质是关键,属于基础题.8.(2015•沈阳一模)设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【答案】A【解析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.点评:本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.9.(2015•德阳模拟)如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.B.C.﹣D.2【答案】C【解析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,利用实部和虚部互为相反数,求出b.解:==+i由=﹣得b=﹣.故选C.点评:本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.10.(2014•银川模拟)复数在复平面内的对应点到原点的距离为()A.B.C.1D.【答案】B【解析】先利用两个复数的除法法则,求出复数的化简结果,并求出此复数在复平面内的对应点的坐标,利用两点间的距离公式求出此点到原点的距离.解:∵,对应点为(,),此点到原点的距离为=,故选 B.点评:本题考查两个复数的除法法则的应用,复数对应点的坐标,以及两点间的距离公式的应用.11.(2011•辽宁)i为虚数单位,=()A.0B.2i C.﹣2i D.4i【答案】A【解析】直接利用i的幂运算,化简表达式即可得到结果.解:==0故选A.点评:本题是基础题,考查复数的基本运算,i的幂的运算性质,考查计算能力,常考题型.12.(2011•揭阳一模)集合,则()A.i∈A B.i2∈A C.i3∈A D.i4∉A【答案】B【解析】化简集合A={﹣1,0,1}.再利用虚数单位i的性质,判断各选项.解:集合={﹣1,0,1}.易知i∉A,i3=﹣i∉A,所以A,C错误.i2=﹣1∈A,C对.i4=1∈A,D错.故选B.点评:本题考查集合的表示方法,虚数单位i的性质,元素与集合的关系.属于基础题.13.(2015•株洲一模)阅读下面程序框图,则输出结果s的值为()A.B.C.﹣D.0【答案】D【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,进而根据正弦函数的图象和性质得到答案.解:由已知中的程序框图可知:该程序的功能是:利用循环结构计算并输出变量S=+++…+的值;由y=是周期为6的周期函数,且+++…+=0,∴S=+++…+=336×(+++…+)﹣=0﹣0=0,故选:D点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.14.(2015•邢台模拟)执行如图所示的程序框图,若输出的值是13,则判断框内应为()A.k<6?B.k≤6?C.k<7?D.k≤7?【答案】A【解析】执行程序框图,依次写出每次循环得到的k,c,a,b的值,当c=13时,k=6,此时应该不满足条件,退出循环,输出c的值为13,故判断框内应为k<6?.解:执行程序框图,有a=1,b=1,k=0k=1,满足条件,c=2,a=1,b=2k=2,满足条件,c=3,a=2,b=3k=3,满足条件,c=5,a=3,b=5k=4,满足条件,c=8,a=5,b=8k=5,满足条件,c=13,a=8,b=13k=6,此时应该不满足条件,退出循环,输出c的值为13,故判断框内应为k<6?故选:A.点评:本题主要考查了程序框图和算法,属于基本知识的考查.15.(2014•福建)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1B.2C.3D.4【答案】B【解析】根据框图的流程模拟运行程序,直到不满足条件2n>n2,跳出循环,确定输出的n值.解:由程序框图知:第一次循环n=1,21>1;第二次循环n=2,22=4.不满足条件2n>n2,跳出循环,输出n=2.故选:B.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.16.下列判断不正确的是()A.画工序流程图类似于算法的流程图,要先把每一个工序逐步细化,按自上向下或自左到右的顺序B.在工序流程图中可以出现循环回路,这一点不同于算法流程图C.工序流程图中的流程线表示相邻两工序之间的衔接关系D.工序流程图中的流程线都是有方向的指向线【答案】B【解析】本题考查的流程图和结构图的基本概念,只要根据工序流程图和算法流程图的相关概念逐一进行分析,即可求解.解:因为每个工序是不能重复执行.∴在工序流程图中不能出现循环回路.故答案B不正确.故选B.点评:流程图和结构图源处生产和生活实际,经过数学加工后又要应用于生产和生活实际,因此对流程图和结构图概念的剖析,要坚持理论联系实际的原则.注意:在程序框图内允许有闭合回路,而在工序流程图内不允许出现闭合回路.17.下列关于工序流程图的说法正确的是()A.流程图内每一道工序,可以用矩形表示也可用平行四边形表示B.流程线是一条标有箭头的线段,可以是单向的也可以是双向的C.流程图中每一道工序是不可以再分的D.在工序流程图上不允许出现几道工序首尾相接的圈图或循环回路【答案】B【解析】根据工序流程图中各框图的功能,对答案逐一进行判断可得结论.解:流程图内每一道工序,可以用矩形表示,故A错误;流程线是一条标有箭头的线段,可以是单向的也可以是双向的,故B正确;流程图中每一道工序是可以再分为详细的子工序,故C错误;在工序流程图上允许出现几道工序首尾相接的圈图或循环回路,故D错误;故选B点评:本题考查的知识点是工序流程图,熟练掌握各框图的功能是解答的关键.18.已知某一项工程的工序流程图如图所示,其中时间单位为“天”,根据这张图就能算出工程的工期,这个工程的工期为天.【答案】10【解析】仔细观察工序流程图,寻找关键路线,注意利用优选法对重复的供需选择用时较多的.进而问题即可获得解答.解:由题意可知:工序①→工序④工时数为2,工序④→工序⑥工时数为2,工序⑥→工序⑦工时数为5,工序⑦→工序⑧工时数为1,所以所用工程总时数为:2+2+5+1=10天.故答案为:10.点评:本题考查流程图的作用,解题时要仔细观察工序流程图,寻找关键路线,属于基础题.19.小宁中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除④之外,一次只能进行一道工序.小宁要将面条煮好,最少用分钟.【答案】15【解析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为①、④、⑤步时间之和.解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开10分钟,同时洗菜6分钟,准备面条及佐料2分钟,总计10分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+10+3=15分钟.故答案为:15点评:解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.20.(2014•潍坊三模)已知函数f(x)定义域为D,若∀a,b,c∈D,f(a),f(b),f(c)都是某一三角形的三边,则称f(x)为定义在D上的“保三角形函数”,以下说法正确的个数有()①f(x)=1(x∈R)不是R上的“保三角形函数”②若定义在R上的函数f(x)的值域为[,2],则f(x)一定是R上的“保三角形函数”③f(x)=是其定义域上的“保三角形函数”④当t>1时,函数f(x)=e x+t一定是[0,1]上的“保三角形函数”A.1个B.2个C.3个D.4个【答案】B【解析】由题目已知中,根据“可构造三角形函数”的定义对四个选项进行判断即可得出正确选项.解:对于①,由题设所给的定义知,∀a,b,c∈R,f(a),f(b),f(c)都是某一正三角形的三边长,是“可构造三角形函数”,故①错误;对于②,若函数f(x)的值域为[,2],由2>2,故f(x)一定是“可构造三角形函数”,故②正确;对于③,当a=0,b=3,c=3时,f(a)=1>f(b)+f(c)=,不构成三角形,故③错误;对于④,由于函数f(x)=e x+t一定是[0,1]上的最小值为1+t,最大值为e+t,若t>1,则2(1+t)>e+t,故f(x)一定是“可构造三角形函数”,故④正确;故选:B.点评:本题考查综合法推理及函数的值域,三角形的性质,理解新定义是解答的关键.21.(2014•陕西模拟)已知[x]表示不超过实数x的最大整数(x∈R),如:[﹣1.3]=﹣2,[0.8]=0,[3.4]=3.定义{x}=x﹣[x],求{}+{}+{}+…+{}=()A.1006B.1007C.1008D.2014【答案】B【解析】利用新定义,代入计算可得结论.解:,,∴指数为奇次幂时,值为,为偶次幂时,值为∴原式=1007,故选:B.点评:本题考查简单的合情推理,考查新定义,考查学生的计算能力,比较基础.22.已知两个相关变量x,y的回归方程是=﹣2x+10,下列说法正确的是()A.当x的值增加1时,y的值一定减少2B.当x的值增加1时,y的值大约增加2C.当x=3时,y的准确值为4D.当x=3时,y的估计值为4【答案】D【解析】根据所给的线性回归方程,把x的值代入线性回归方程,得到对应的y的值,这里所得的y的值是一个估计值.解:当x=3时,=﹣2x+10=4,即当x=3时,y的估计值为4.故选:D.点评:本题考查线性回归方程,考查用线性回归方程估计或者说预报y的值,23.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是()A.总偏差平方和B.残差平方和C.回归平方和D.相关指数【答案】B【解析】本题考查的回归分析的基本概念,根据拟合效果好坏的判断方法我们可得,数据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.解:∵拟合效果好坏的是由残差的平方和来体现的,而拟合效果即数据点和它在回归直线上相应位置的差异故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.故选B点评:拟合效果好坏的是由残差的平方和来体现的,也可以理解为拟合效果即数据点和它在回归直线上相应位置的差异,故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.24.实验测得四组(x,y)的值分别为(1,2),(2,3),(3,4),(4,4),则y与x间的线性回归方程是()A.y=﹣1+x B.y=1+x C.y=1.5+0.7x D.y=1+2x【答案】C【解析】根据所给的四对数据,算出y与x的平均数,把所求的平均数代入求b的公式,算出b的值,再把它代入求a的式子,求出a的值,写出线性回归方程即可.解:根据题意得:==2.5,==3.25,b==0.7,a=﹣b=3.25﹣0.7×2.5=1.5,∴y与x间的线性回归方程是y=1.5+0.7x.故选:C.点评:本题考查线性回归方程的求法,在一组具有相关关系的变量的数据间,利用最小二乘法做出线性回归方程的系数,再代入样本中心点求出a的值,本题是一个基础题.25.(2014•江西二模)设两个独立事件A,B都不发生的概率为.则A与B都发生的概率值可能为()A.B.C.D.【答案】D【解析】不妨设A不发生的概率为x,B不发生的概率为y,则xy=,A与B都发生的概率=(1﹣x)(1﹣y)=﹣(x+y)≤,即可得出结论.解:因为AB是独立事件,不妨设A不发生的概率为x,B不发生的概率为y,则xy=.因为x,y的范围是0<x,y≤1,x+y=x+≥,所以A与B都发生的概率=(1﹣x)(1﹣y)=﹣(x+y)≤故选:D.点评:本题考查相互独立事件的概率乘法公式,开车基本不等式的运用,属于基础题.26.(2013•江西一模)甲、乙两名棋手比赛正在进行中,甲必须再胜2盘才最后获胜,乙必须再胜3盘才最后获胜,若甲、乙两人每盘取胜的概率都是,则甲最后获胜的概率是()A.B.C.D.【答案】B【解析】分别求出甲乙再打2局,甲获胜的概率、甲乙再打3局,甲获胜的概率、甲乙再打4局,甲获胜的概率,相加,即得所求.解:甲乙再打2局,甲获胜的概率为=,甲乙再打3局,甲获胜的概率为(1﹣)××=,甲乙再打4局,甲获胜的概率为••=,故甲最后获胜的概率是为+=,故选:B.点评:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,体现了分类讨论的数学思想,属于中档题.27.(2014•唐山二模)用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.B.C.D.【答案】B【解析】依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量为5,可以看成是抽5次,从而可求得概率.解:一个总体含有100个个体,某个个体被抽到的概率为,∴以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为×5=.故选:B点评:不论用哪种抽样方法,不论是“逐个地抽取”,还是“一次性地抽取”,总体中的每个个体被抽到的概率都是一样的,体现了抽样方法具有客观公平性.28.(2007•武汉模拟)为了了解某校高三调考学生成绩,用简单随机抽样的方法从中抽取了100名学生的成绩进行统计分析,在这个问题中,100被称为()A.总体B.个体C.从总体中抽取的一个样本D.样本容量【答案】D【解析】本题的考查的对象是:某校高三调考学生成绩,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,从而得到结论.解:总体指的是某校高三调考学生成绩100名学生的成绩是样本其中100为样本容量故选D.点评:正确理解总体,个体,样本、样本容量的含义是解决本题的关键.29.从10个篮球中任取一个,检验其质量,则应采用的抽样方法为()A.简单随机抽样B.系统抽样C.分层抽样D.放回抽样【答案】A【解析】由于是从10个篮球中任取一个,个体数较少,总体的个体没有明显的层次.从所给的四个选项里观察,得到不是系统抽样、分层抽样,也不是放回抽样,是简单随机抽样.解:从10个篮球中任取一个,检验其质量,因为总体的个体没有明显的层次,且个体数较少,则应采用的抽样方法为是简单随机抽样.故选A.点评:本题考查简单随机抽样,考查分层抽样,考查系统抽样,是一个涉及到所学的所有抽样的问题,注意方向各种抽样的特点,分析清楚抽样的区别.30.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一个容量为3的样本,则某特定个体入样的概率是()A.B.C.D.【答案】C【解析】根据在简单随机抽样过程中每个个体被抽到的概率相等,被抽到的概率都等于要抽取的样本容量除以总体的个数.解:用简单随机抽样法从中抽取,∴每个个体被抽到的概率都相同,为,故选C.点评:简单随机抽样是一种最简单、最基本的抽样方法.常用的简单随机抽样方法有抽签法和随机数法.抽签法的优点是简单易行,缺点是当总体的容量非常大时,.随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便.。

相关文档
最新文档