材料加工冶金传输原理习题答案(吴树森版)
材料加工冶金传输原理第五章(吴树森版)

5.1 边界层理论的基本概念 5.2 平面层流边界层微分方程 5.3 边界层内积分方程 5.4 平面绕流摩擦阻力计算
第五章 边界层理论
理论形成的背景:
实际流体流动无论是层流还是湍流,真正能够求得解析解的例子很少 ,主要是由于流体流动的控制方程是非线性的偏微分方程,处理该类方 程目前也是科学界的一大难题,但我们可以有近似的处理方法,方法之 一是在假设条件下获得简化的微分方程并用数值法求解,方法二是针对 湍流流动划分为边界层和中心区。 在实际工程中大多数问题是流体在固体限制的区域内的流动,远离固 体壁面区域的流体速度梯度很小,这样我们可以把远离边壁的大部分流 体处理为无粘性流体(基于速度梯度小,粘性力可忽略),用欧拉方程
这些边界条件是
1 )y 0,x 0 2)y>时,x 0 x 3)y>时, 0 4)y 0, 0 y y
2 x 2
第五章 边界层理论
第五章 边界层理论
(5-19) 联立
(5-17)
第五章 边界层理论
湍流边界层内积分方程的解
第五章 边界层理论
第五章 边界层理论
m dy
x 0 x
l
M dy dy
2 x 0 x x 0 x
l
l
第五章 边界层理论
2)从CD面单位时间流出的动量记为 M
记为m x+Δx
x+Δx ,流出的质量
m
x x
d dy dy x dx
l l 0 x 0 x
[ ]
1
p 0 y
p dp x dx
p
2 v0
0
2
C
材料加工冶金传输原理习题答案

第一章 流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体. 流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1—2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。
解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1。
4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V V K ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=—5*10—6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10—9Pa —1。
注意:式中V 是指液体变化前的体积1。
6 如图1.5所示,在相距h =0。
06m 的两个固定平行乎板中间放置另一块薄板,在薄 板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0yx νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
(整理)冶金传输原理习题答案

第一章 流体的主要物理性质(吉泽升版)1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。
解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V VK ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=-5*10-6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。
注意:式中V 是指液体变化前的体积1.6 如图1.5所示,在相距h =0.06m 的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0y x νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
材料加工冶金传输原理课件(吴树森)

用翼栅及高温,化学, 用翼栅及高温,化学,多相流动理论成功设 计制造大型气轮机,水轮机, 计制造大型气轮机,水轮机,涡喷发动机等动力 机械, 机械,为人类提供单机达百万千瓦的强大动力 。
气轮机叶片
大型水利枢纽工程,超高层建筑, 大型水利枢纽工程,超高层建筑,大跨度桥 梁等的设计和建造离不开水力学和风工程。 梁等的设计和建造离不开水力学和风工程。
50~60年代又改进为船型,阻力系数为0.45。
80年代经风洞实验系统研究后,进一步改进为鱼 型,阻力系数为0.3。
后来又出现楔型,阻力系数为0.2。
90年代以后,科研人员研制开发了气动性能更优 良的未来型汽车,阻力系数仅为0.137。
90年代以后,科研人员研制开发了气动性能更优良 的未来型汽车,阻力系数仅为0.137。
虽然生活在流体环境中, 虽然生活在流体环境中,人们对一些 流体运动却缺乏认识,比如: 流体运动却缺乏认识,比如:
1. 高尔夫球 :表面光滑还是粗糙? 表面光滑还是粗糙? 2. 汽车阻力: 来自前部还是后部? 汽车阻力: 来自前部还是后部? 3. 机翼升力 :来自下部还是上部? 来自下部还是上部?
高尔夫球运动起源于15世纪的苏格兰。
现在的高尔夫球表面有许多窝,在同样大小和重量下, 现在的高尔夫球表面有许多窝,在同样大小和重量下, 飞行距离为光滑球的5倍 飞行距离为光滑球的 倍。
光滑的球和非光滑球对比
汽车发明于19世纪末 世纪末。 汽车阻力 汽车发明于 世纪末。
当时人们认为汽车高速前进时的阻力主要来自车前部 对空气的撞击。 对空气的撞击。
此后, 此后,流体力学的发展主要经历了三个阶段:
1.伯努利所提出的液体运动的能量估计及欧拉 所提出的液体运动的能量估计及欧拉 所提出的液体运动的解析方法, 所提出的液体运动的解析方法,为研究液体运 动的规律奠定了理论基础, 动的规律奠定了理论基础,从而在此基础上形 成了一门属于数学的古典“水动力学” 成了一门属于数学的古典“水动力学”(或古 流体力学” 典“流体力学”)。
材料加工冶金传输原理第十章(吴树森版)

(1)
式中,定性温度Tf可取 ' " T f (T f T f ) 2 式中,Tf'、Tf" — —管道进、出口流体温度。
( 2)流体粘性系数 f 不宜过大 : f ≯ 2 水
(1)温差(TW Tf )不宜过大 : 空气 ≯ 50℃; 水 ≯ 20 ~ 30℃; 油 ≯ 10℃.
• (1)努塞尔准数Nu
– 将其变形为
其物理意义可理解为流体的导热热阻和其对流热阻的比 值,它反映了给定流场的对流换热能力与其导热能力的 对比关系,其大小反映了对流传热能力的大小。由于式 中包含有待定的物理量α ,故Nu是被决定性准数。
10.3 对流换热的准数方程式
• (2)傅里叶数Fo 将其变形为
物理意义可理解为流体的单位体积物体的导热 速率与单位体积物体的蓄热速率比值,Fo越大, 温度场越趋于稳定。
10.3 对流换热的准数方程式
• (3)物性准数Pr 将其变形为
物理意义可理解为流体动量传输能力与热量传 输能力之比。从边界层概念出发,可以认为是 动力边界层与热边界层的相对厚度指标。
10.3 对流换热的准数方程式
T T T T 2T 2T 2T vx vy vz a( 2 ) 2 2 t x y z x y z
10.3 对流换热的准数方程式
10.3 对流换热的准数方程式
10.3 对流换热的准数方程式
10.3 对流换热的准数方程式
10.3 对流换热的准数方程式
能量微分方程方程 v x
动量微分方程 连续性方程
T T 2T vy a x y y 2
v x v x 2vx vx vy x y y 2
v x v y 0 x y
材料加工冶金传输原理习题答案

第一章 流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。
解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V VK ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=-5*10-6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。
注意:式中V 是指液体变化前的体积1.6 如图1.5所示,在相距h =0.06m 的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0y x νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
材料加工冶金传输原理习题答案

第一章流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易於流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
2、在图所示的虹吸管中,已知H1=2m,H2=6m,管径D=15mm,如果不计损失,问S处的压强应为多大时此管才能吸水?此时管内流速υ2及流量Q各为若干?(注意:管B端并未接触水面或探入水中)解:选取过水断面1-1、2-2及水准基准面O-O,列1-1面(水面)到2-2面的贝努利方程再选取水准基准面O’-O’,列过水断面2-2及3-3的贝努利方程(B) 因V2=V3 由式(B)得5、有一文特利管(如下图),已知d 1 ?15cm ,d 2=10cm ,水银差压计液面高差?h ??20cm 。
若不计阻力损失,求常温(20℃)下,通过文氏管的水的流量。
解:在喉部入口前的直管截面1和喉部截面2处测量静压力差p 1和p 2,则由式const v p =+22ρ可建立有关此截面的伯努利方程: ρρ22212122p v p v +=+ 根据连续性方程,截面1和2上的截面积A 1和A 2与流体流速v 1和v 2的关系式为2211v A v A =所以 ])(1[)(2212212A A p p v --=ρ 通过管子的流体流量为 ])(1[)(2212212A A p p A Q --=ρ )(21p p -用U 形管中液柱表示,所以074.0))15.01.0(1(10)1011055.13(2.081.92)1.0(4])(1[)(22223332212'2=-⨯⨯-⨯⨯⨯⨯=--∆=πρρρA A h g A Q (m 3/s)式中 ρ、'ρ——被测流体和U 形管中流体的密度。
如图6-3—17(a)所示,为一连接水泵出口的压力水管,直径d=500mm ,弯管与水准的夹角45°,水流流过弯管时有一水准推力,为了防止弯管发生位移,筑一混凝土镇墩使管道固定。
冶金传输原理习题答案

第一章 流体的主要物理性质(吉泽升版)1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。
解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V V K ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=-5*10-6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。
注意:式中V 是指液体变化前的体积1.6 如图1.5所示,在相距h =0.06m 的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0yx νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易於流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
2、在图所示的虹吸管中,已知H1=2m ,H2=6m ,管径D=15mm ,如果不计损失,问S 处的压强应为多大时此管才能吸水?此时管内流速υ2及流量Q 各为若干?(注意:管B 端并未接触水面或探入水中) 解:选取过水断面1-1、2-2及水准基准面O-O ,列1-1面(水面)到2-2面的贝努利方程再选取水准基准面O ’-O ’, 列过水断面2-2及3-3的贝努利方程(B) 因V2=V3 由式(B)得5、有一文特利管(如下图),已知d 1 ?15cm ,d 2=10cm ,水银差压计液面高差?h ??20cm 。
若不计阻力损失,求常温(20℃)下,通过文氏管的水的流量。
解:在喉部入口前的直管截面1和喉部截面2处测量静压力差p 1和p 2,则由式const v p =+22ρ可建立有关此截面的伯努利方程: ρρ22212122p v p v +=+根据连续性方程,截面1和2上的截面积A 1和A 2与流体流速v 1和v 2的关系式为所以 ])(1[)(2212212A A p p v --=ρ 通过管子的流体流量为 ])(1[)(2212212A A p p A Q --=ρ )(21p p -用U 形管中液柱表示,所以074.0))15.01.0(1(10)1011055.13(2.081.92)1.0(4])(1[)(22223332212'2=-⨯⨯-⨯⨯⨯⨯=--∆=πρρρA A h g A Q (m 3/s)式中 ρ、'ρ——被测流体和U 形管中流体的密度。
如图6-3—17(a)所示,为一连接水泵出口的压力水管,直径d=500mm ,弯管与水准的夹角45°,水流流过弯管时有一水准推力,为了防止弯管发生位移,筑一混凝土镇墩使管道固定。
若通过管道的流量s ,断面1-1和2-2中心点的压力p1相对=108000N/㎡,p2相对=105000N/㎡。
试求作用在镇墩上的力。
[解] 如图6—3—17(b)所示,取弯管前後断面1—1和2-2流体为分离体,现分析分离体上外力和动量变化。
图 虹吸管设管壁对流体的作用力R ,动量方程在x 轴的投影为: 则动量方程在x 轴的投影为:镇墩对流体作用力的合力R 的大小及方向为: 流体对镇墩的作用力P 与R 的大小相等方向相反。
1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和品质体积v 。
解:由液体密度、重度和品质体积的关系知: ∴品质体积为)/(001.013kg m ==ρν某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V V K ⎥⎦⎤⎢⎣⎡∆∆-=1ΔV=995-1000=-5*10-6m 3 注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。
注意:式中V 是指液体变化前的体积如图所示,在相距h =的两个固定平行乎板中间放置另一块薄板,在薄 板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为 平板受到上下油面的阻力之和与施加的力平衡,即代入数据得η=第二章 流体静力学(吉泽升版) 2-1作用在流体上的力有哪两类,各有什麽特点?解:作用在流体上的力分为品质力和表面力两种。
品质力是作用在流体内部任何质点上的力,大小与品质成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什麽是流体的静压强,静止流体中压强的分布规律如何?解: 流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店座标位置决定,即作用於一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:h P h P P P Z P Z γργγ+=+=+=+002211g 或同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强可以互换,比势能总是相等的。
2-4如图2-22所示,一圆柱体d =,品质M =50kg .在外力F =520N 的作用下压进容器中,当h=时达到平衡状态。
求测压管中水柱高度H =? 解:由平衡状态可知:)()2/()mg 2h H g d F +=+ρπ( 代入数据得H=盛水容器形状如图所示。
已知hl =,h2=,h3=,h4=,h5=。
求各点的表压强。
解:表压强是指:实际压强与大气压强的差值。
2-6两个容器A 、B 充满水,高度差为a 0为测量它们之间的压强差,用顶部充满油的倒U 形管将两容器相连,如图所示。
已知油的密度ρ油=900kg /m 3,h =,a =。
求两容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为h ,B 球中心与油面高度差为b ;由流体静力学公式知:2-8一水压机如图所示。
已知大活塞直径D =,小活塞直径d=5cm ,杠杆臂长a =15cm ,b =,活塞高度差h =1m 。
当施力F1=98N 时,求大活塞所能克服的载荷F2。
解:由杠杆原理知小活塞上受的力为F 3:a F b F *=*3 由流体静力学公式知: ∴F 2=2-10水池的侧壁上,装有一根直径d =的圆管,圆管内口切成a =45°的倾角,并在这切口上装了一块可以绕上端铰链旋转的盖板,h=2m ,如图所示。
如果不计盖板自重以及盖板与铰链间的摩擦力,问开起盖板的力T 为若干?(椭圆形面积的J C =πa 3b/4) 解:建立如图所示坐标系oxy ,o 点在自由液面上,y 轴沿着盖板壁面斜向下,盖板面为椭圆面,在面上取微元面dA,纵坐标为y ,淹深为h=y * sin θ,微元面受力为 板受到的总压力为盖板中心在液面下的高度为 h c =d/2+h 0=,y c =a+h 0/sin45° 盖板受的静止液体压力为F=γh c A=9810**πab 压力中心距铰链轴的距离为 :X=d=,由理论力学平衡理论知,当闸门刚刚转动时,力F 和T 对铰链的力矩代数和为零,即:22232DF 2d F ⎪⎭⎫⎝⎛=+⎪⎭⎫⎝⎛πρπgh故T=2-14有如图所示的曲管AOB 。
OB 段长L1=,∠AOB=45°,AO 垂直放置,B 端封闭,管中盛水,其液面到O 点的距离L2=,此管绕AO 轴旋转。
问转速为多少时,B 点的压强与O 点的压强相同?OB 段中最低的压强是多少?位於何处? 解:盛有液体的圆筒形容器绕其中心轴以等角速度ω旋转时,其管内相对静止液体压强分布为:以A 点为原点,OA 为Z 轴建立坐标系 O 点处面压强为20gl P P a ρ+=B 处的面压强为gZ P P a B ρωρ-+=2r 22其中:Pa 为大气压。
21145cos ,45s L L Z in L r -︒=︒= 当PB=PO 时ω=sOB 中的任意一点的压强为对上式求P 对r 的一阶导数并另其为0得到,2ωgr =即OB 中压强最低点距O 处m rL 15.045sin =︒='代入数据得最低压强为P min =103060Pa 第三章习题(吉泽升版)已知某流场速度分布为 ,试求过点(3,1,4)的流线。
解:由此流场速度分布可知该流场为稳定流,流线与迹线重合,此流场流线微分方程为:即:求解微分方程得过点(3,1,4)的流线方程为: 试判断下列平面流场是否连续?解:由不可压缩流体流动的空间连续性方程(3-19,20)知: ,当x=0,1,或y=k π (k=0,1,2,……)时连续。
三段管路串联如图所示,直径d 1=100 cm ,d 2=50cm ,d 3=25cm ,已知断面平均速度v 3=10m/s ,求v 1,v 2,和品质流量(流体为水)。
解:可压缩流体稳定流时沿程品质流保持不变,⎪⎩⎪⎨⎧=-=-1)3(1)2(33y z y x故:品质流量为: 水从铅直圆管向下流出,如图所示。
已知管直径d 1=10 cm ,管口处的水流速度v I =s ,试求管口下方h =2m 处的水流速度v 2,和直径d 2。
解:以下出口为基准面,不计损失,建立上出口和下出口面伯努利方程:代入数据得:v2=s 由 得:d2=水箱侧壁接出一直径D =的管路,如图所示。
已知h1=,h2=,不计任何损失,求下列两种情况下A 的压强。
(1)管路末端安一喷嘴,出口直径d=;(2)管路末端没有喷嘴。
解:以A 面为基准面建立水平面和A 面的伯努利方程:以B 面为基准,建立A,B 面伯努利方程:(1)当下端接喷嘴时,解得va=s, PA=(2)当下端不接喷嘴时,解得PA=如图所示,用毕托管测量气体管道轴线上的流速Umax ,毕托管与倾斜(酒精)微压计相连。
已知d=200mm ,sin α=,L=75mm ,酒精密度ρ1=800kg /m 3,气体密度ρ2=m 3;Umax=(v 为平均速度),求气体品质流量。
()s A /Kg 490v Q M 33==•=水ρρgv P g v P h a a 2022221++=++γγ2211v A v A =gv P P h aA a 2002D 21++=+++γγγγab A a P g v Pg v h ++=+++2022D 222b b a a A v A v =ba v v =解:此装置由毕托管和测压管组合而成,沿轴线取两点,A(总压测点),测静压点为B ,过AB 两点的断面建立伯努利方程有: 其中ZA=ZB, vA=0,此时A 点测得 的是总压记为PA*,静压为PB 不计水头损失,化简得 由测压管知:由於气体密度相对於酒精很小,可忽略不计。
由此可得气体品质流量: 代入数据得如图所示,一变直径的管段AB ,直径dA=,dB=,高差h=,用压强表测得PA =7x104Pa ,PB =4x104Pa ,用流量计测得管中流量Q=12m 3/min ,试判断水在管段中流动的方向,并求损失水头。
解:由於水在管道内流动具有粘性,沿着流向总水头必然降低,故比较A 和B 点总水头可知管内水的流动方向。
即:管内水由A 向B 流动。