连接件强度问题
连接件强度计算

320M Pa,试校核铆接头的强度。(假定每个铆钉受力相等。)
F b F 解:受力分析如图
F s F bs F 4
t
F
F
1 2 3
F
d
F/4 1 2 3
t
剪应力和挤压应力的强度条件
Fs As F
d
2
110 10 3 . 14 16
3 2
136 . 8 MPa
例8-11 图示的销钉连接中,构件A通过安全销C将 力偶矩传递到构件B。已知荷载F=2kN,加力臂长 l=1.2m,构件B的直径D=65mm,销钉的极限切应力 u=200MPa。试求安全销所需的直径d。
l C B
O
A
F
解:取构件B和安全销为研 究对象,其受力为 由平衡条件
M 0, FS D M Fl
在局部面积上的受压称为挤压或承压。相当复杂 的问题。
工程上对螺栓连接的强度计算,均采用直接实验 为依据的实用计算。 1.
F
剪切的实用计算 剪切面: 螺栓将沿两侧外力之 间、与外力作用线平行的截面 m m m—m发生相对错动,这种变形 F 形式为剪切。m-m截面发生剪切 Fs 变形,称为剪切面 m m
3
F t (b d )
110 10
1 ( 85 16 )
159 . 4 MPa
综上,接头安全。
1 2 3
F F
t
F
d
t
F/4
1 2 3
例8-16 图示悬臂梁,有两块木板钉成T型截面,铁 钉的许用剪力[FS]=800N。求铁钉的间距。
1 .8 k N 200 50
安全因数、许用应力、强度条件、连接件的强度计算--剪切,挤压

4、应用
例题4.6 已知:一个三角架,AB杆由两 根80×80×7等边角钢组成,横截面积为A1, 长度为2 m,AC杆由两根10号槽刚组成,横 截面积为A2,钢材为3号钢,容许应力 求:许可载荷? [ ] 120MPa
解:(1)、对A节点受力分析:
Fy 0
Fx 0
FNAB sin30 FP 0
ec截面,产生拉伸。
已知: l 400 mm h1 60 mm b 160 mm
h 200 mm FN, AC 60 kN π
试求挤压应力 bs 切应力
6
和拉应力
解:(1)、求 ae截面的挤压应力
计算挤压面面积:
h1 60mm 2 Abs b 160mm 11.1mm cos cos 30
安全因数、许用应力、强度条件
• 1、塑性材料何时达到失效?塑性材料极限 应力是?脆性材料失效的标志?脆性材料 的极限应力是? • 2、许用应力用公式如何表示?解释一下 • 3、拉压杆的强度条件 是什么?利用强度条 件,可以解决什么问题(三类)? • 4、应用
1、塑性材料何时达到失效?塑性材料极限应力是? 脆性材料失效的标志?脆性材料的极限应力是?
FP1
FNAB 260 130kN
2
FP min FP!, FP 2
130kN
例题4.7 起重吊钩的上端借螺母固定,若吊钩 螺栓内径 d 55 mm F 170kN 材料许用应力 160 MPa 试校核螺栓部分的强度。 解:计算螺栓内径处的面积
1、何为剪切面?何为剪力,如何求,用何表 示?名义切应力?注意剪切面的确定。 • 在外力作用下,铆钉的m-n截面将发生相对 错动,称为剪切面。
各类焊缝连接的强度计算

各类焊缝连接的强度计算焊缝是一种将金属材料通过熔化和凝固来连接的工艺。
焊接连接的强度是判断焊缝质量的重要指标之一,也是确保焊接结构安全可靠的关键因素之一、下面将介绍不同类型焊缝连接的强度计算方法。
1.纵向接头焊缝强度计算方法纵向接头焊缝是指在连接件的纵向方向上进行焊接。
若焊缝的宽度为b,其强度计算方法如下所示:强度=焊缝截面积×焊缝的强度焊缝截面积=焊缝宽度×连接件的长度焊缝的强度可以通过实验得出,一般根据焊缝的类型和焊接材料的强度来确定。
2.横向接头焊缝强度计算方法横向接头焊缝是指在连接件的横向方向上进行焊接。
横向接头焊缝的强度计算方法与纵向接头焊缝类似,只是焊缝的宽度和连接件的长度需要根据具体情况来确定。
3.对接焊缝强度计算方法对接焊缝是将两个平行连接件通过焊接进行连接。
对接焊缝的强度计算方法一般采用连接件的孔边有效长度来进行计算。
孔边有效长度是指连接件孔边与焊缝的距离。
对于不同类型的对接焊缝,可以根据实验得到的结果或者理论计算的方法来确定焊缝的强度。
4.角接焊缝强度计算方法角接焊缝是将两个连接件按照一定的角度进行焊接。
角接焊缝的强度计算方法与对接焊缝类似,也是采用连接件的孔边有效长度来进行计算。
需要注意的是,上述计算方法是根据焊缝的形状和连接件的尺寸来确定的,对于具体的焊缝强度计算,还需要考虑材料的物理性质、焊接工艺参数等因素。
此外,还可以通过有限元分析等数值模拟方法来计算焊缝连接的强度。
这种方法可以更真实地模拟焊接过程和焊缝的行为,得到更准确的强度预测结果。
综上所述,焊缝连接的强度计算需要考虑多个因素,包括焊缝形状、连接件尺寸、焊接材料的强度、物理性质和焊接工艺参数等。
正确的强度计算方法可以确保焊接结构的安全性和可靠性。
飞机机身连接件的强度与可靠性评估方法

飞机机身连接件的强度与可靠性评估方法飞机作为一种复杂的机械设备,其机身连接件的强度与可靠性评估至关重要。
因为机身连接件直接影响着飞机的飞行安全和乘客的舒适度。
本文将介绍飞机机身连接件的强度与可靠性评估方法,以确保飞机在飞行过程中具备足够的强度和可靠性。
一、材料选用飞机机身连接件的强度与可靠性评估首先要考虑材料的选用。
优质的材料是保证机身连接件强度和可靠性的基础。
常用的飞机连接件材料包括高强度合金钢、铝合金、钛合金等。
选择材料时需要考虑其耐腐蚀性、抗疲劳性、承载能力等因素,以确保连接件在各种极端环境下都能够正常工作。
二、结构设计飞机机身连接件的结构设计也对其强度和可靠性有着重要影响。
合理的结构设计可以减小连接件的应力集中区域,提高其承载能力和抗疲劳性。
同时,在设计过程中要考虑到连接件的拆卸和安装便捷性,以方便检修和更换。
三、强度分析为了评估飞机机身连接件的强度,可以采用有限元分析等方法对其进行强度分析。
通过建立连接件的有限元模型,可以模拟出不同载荷下的应力分布和变形情况,进而评估其强度是否满足设计要求。
根据分析结果可以对连接件的设计进行调整和优化,以提高其强度和稳定性。
四、可靠性评估除了强度评估,飞机机身连接件的可靠性评估也是非常重要的。
可靠性评估可以通过可靠性增长模型、失效模式分析等方法来进行。
通过统计数据和工程经验,可以评估连接件在特定使用条件下的寿命和失效概率,从而制定合理的维护计划和检修周期,确保连接件的可靠性达到要求。
五、质量控制最后,在生产和使用过程中的质量控制也是保证飞机机身连接件强度和可靠性的重要环节。
要严格按照设计要求和工艺流程生产连接件,并进行严格的质量检查和控制。
在使用过程中要定期进行检查和维护保养,及时发现并处理潜在问题,确保连接件始终处于良好的工作状态。
综上所述,飞机机身连接件的强度与可靠性评估是保证飞机飞行安全的重要环节。
通过优质材料的选用、合理的结构设计、强度分析、可靠性评估和质量控制,可以有效地确保连接件具备足够的强度和可靠性,为飞机的飞行安全提供保障。
连接件的强度计算

故铆钉连接满足剪切强度要求。
图6-22
② 校核铆钉或钢板的挤压强度。 每个铆钉受到的挤压力为
FC
F 2
52 2
26 kN
挤压面积为
AC d 1610 160 m m2
C
FC AC
26 103 160
162.5 MPa C 320 MPa
故铆钉连接满足挤压强度要求。
3
所以,此连接能承受的最大荷载 F = 314 kN。
图6-24
建筑力学
建筑力学
连接件的强度计算
1.1 剪切与挤压的概念
在工程实际中,机械和结构大都由许多零件或构件连接而成。连接的形式 有铆接、焊接、键连接、销钉连接等。其中,起连接作用的构件称为连接件,如 用来连接钢板的螺栓或铆钉、用来作为连接零件的销轴、用来连接轴和轮子的键 等,如图6-19 所示。
图6-19
这些连接件的受力特点是:作用在构件两侧面上外力合力的大小相等、方向 相反、作用线平行,与轴线垂直且相距很近,如图6-20a 所示;变形特点是:介于 作用力中间部分的截面,有发生相对错动的趋势。构件的这种变形称为剪切变形; 发生相对错动的截面称为剪切面,剪切面平行于作用力的方向,如图6-20b 所示, m‒m 截面为剪切面。F Βιβλιοθήκη 2dt270F
2 25 16 106
120 106
F 120 106 270 2 25 16 106 422.4 kN
(b) 根据Ⅱ‒Ⅱ截面计算,其受力如图6-24e 所示。
FN 2 A2
6F 8
b 4d t
3F 4
270 4 25 16 106
120 106
F 120 106 270 4 2516 106 4 435.2 kN
材料力学第2章答案

(2)若设计时取试验机的安全因数 n = 2 ,则杆 CD 的横截面面积为多少?
8
(3)若试样直径 d = 10 mm ,今欲测弹性模量 E ,则所加载荷最大不能超过多少?
解(1) σ
2-5 何谓失效?极限应力、安全因数和许用应力间有何关系?何谓强度条件?利用强度 条件可以解决哪些形式的强度问题?
答 失效(包括强度失效、刚度失效和稳定性失效)是指构件不能正常工作。 许用应力=极限应力/安全因数。 利用强度条件可以解决强度校核、截面设计和确定许用载荷等。
2-6 试指出下列概念的区别:比例极限与弹性极限;弹性变形与塑性变形;延伸率与正 应变;强度极限与极限应力;工作应力与许用应力。
α = 90° τ 90° = 0
2-5 图 示 拉 杆 沿 斜 截 面 m − m 由 两 部 分 胶 合 而 成 , 设 在 胶 合 面 上 许 用 拉 应 力 [σ ] = 100 MPa ,许用切应力[τ ] = 50 MPa 。并设胶合面的强度控制杆件的拉力。问:
(1)为使杆件承受最大拉力 F ,角α 的值应为多少? (2)若杆件横截面面积为 4 cm2,并规定α ≤ 60° ,确定许用载荷[F ] 。
∑ Fx = 0 , FCx = 0
图(c)
∑ M D = 0 , FC'y = 0
图(b)
∑ M B = 0 , FN1 = 10 kN (拉)
∑ Fy = 0 , FN2 = 20 kN (拉)
6
σ1
=
FN1 A1
=
4FN1 πd12
=
4 ×10 ×103 π ×102 ×10−6
= 127 MPa
螺栓连接补强措施方案

螺栓连接补强措施方案
补强措施方案如下:
1.优化螺栓尺寸和材料选择:根据连接件所需的力学性能和使
用环境条件,选择合适的螺栓尺寸和材料。
优先选择高强度且耐腐蚀的材料,如不锈钢或合金钢。
2.检测螺栓预紧力:在连接螺栓之前,使用扭矩扳手或张力计
等工具准确测量并控制螺栓的预紧力。
确保所有螺栓都达到设计要求的预紧力水平,以提高连接的稳定性和可靠性。
3.使用涂层材料:在螺栓连接表面涂覆一层防腐润滑剂或涂层
材料。
这些材料能够增加螺栓的耐腐蚀性能,并减少摩擦力,从而保护螺栓连接并延长其使用寿命。
4.增加螺栓数量或采用双线连接:在连接件的设计中,可以增
加螺栓数量或采用双线连接的方式。
这样可以增加连接的强度和稳定性,分散载荷并减少单个螺栓的负荷,从而提高连接的耐久性。
5.定期检查和维护:定期检查螺栓连接的状态并进行必要的维护。
这包括紧固螺栓、更换损坏的螺栓、清洁连接表面等。
及时发现并修复螺栓连接的问题,可以避免进一步的损坏和故障。
6.加固设计:根据具体应用需求,可以在连接件设计中加入其
他加固措施,如增加连接板的厚度、设计加强筋等。
这些措施可以提高连接的强度和稳定性,从而增强螺栓连接的耐久性。
请注意,在文中使用适当的段落和语言流畅的过渡来组织这些措施,并确保避免使用相同的标题文字。
连接件的强度计算

二、 挤压实用计算
连接件与被连接件在互相传递力时,接触表面是 相互压紧的,接触表面上的总压紧力称为挤压力,
相应的应力称为挤压应力( bs )。
假定挤压应力在计算挤压面上均匀分布,表示为:
bs
Fbs Abs
上式计算得到的名义挤压应力与接触中点处的
最大理论挤压应力值相近。
按名义挤压应力公式得到材料的极限挤压应力 。
Abs
h1
cos
b
60mm cos 30
160mm
11.1mm2
(2)、求ed截面的切应力:
FQ A
FN,AC cos
A
60103 N cos30 64103 mm2
0.812MPa
(3)、计算下弦杆截面削弱处 ec 截面的拉应力
FN, AB Aec
60103 Ncos30 (200 60)160mm2
(2)、剪断钢板的冲剪力
FQ A
F A
u
F u A u πd
400MPa π 18mm5mm
113103 N 113kN
例6 为使压力机在超过最大压力 F 160 kN
作用时,重要机件不发生破坏,在压力机冲头内
装有保险器(压塌块)。设极限切应力
u 360MPa ,已知保险器(压塌块)中的尺寸
d1 50 mm d2 51 mm D 82 mm
试求保险器(压塌块)中的尺寸 值。
解:为了保障压力机安全运行,应使保险器达 到最大冲压力时即破坏。
F
πd1
u
F 160103 N 2.83mm πd1u π 50mm360MPa
利用保险器被剪 断,以保障主机 安全运行的安全 装置,在压力容 器、电力输送及 生活中的高压锅 等均可以见到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连接件的强度问题
例 已知:F = 80 kN, = 10 mm, b = 80 mm, d = 16 mm, [ ] = 100 MPa, [ bs ] = 300 MPa, [ ] = 160 MPa 试:校核接头强度 (不考虑应力集中)
BJJTU(HHM)
连接件的强度问题
解:1. 单板受力分析
解:铆钉受双剪
Fs 2F 2 2A d 2 50 103 112MPa < 2 17
Fb 50 103 铆钉挤压应力: bs 294MPa < bs td 10 17
F
F
故铆钉强度足够。
BJJTU(HHM)
BJJTU(HHM)
连接件的强度问题
销钉
螺栓
耳片
分析方法:连接件受力与变形一般很复杂,精确分析困难、 不实用,通常采用假定分析法(区别于其它章节),一是假 定应力分布规律,二是根据实物实验得到连接件破坏时应力 值 。再根据上述两方面假定得到的结果,建立设计准则。 实践表明,只要有充分实验依据,在工程中是实用有效的。
当各铆钉的材料与直径均相同,且外力作用线在
铆钉群剪切面上的投影,通过铆钉群剪切面形心时, 通常认为各铆钉剪切面上的剪力相等
BJJTU(HHM)
连接件的强度问题
2. 强度校核
剪切强度:
FS 4FS F 99.5 MPa [ ] 2 2 πd πd F 4
挤压强度:
bs
Fb FS 125 MPa [ bs ] d d
1
d
1
F
Fs
Abs d ——受压圆柱面在 相应径向平面上的 投影面积;
Fb
挤压强度条件
bs
Fb F b bs Abs d
d
BJJTU(HHM)
连接件的强度问题
对工程应用的两点注释
双剪
钉剪切力
Fs F 2
F 2
F
剪切面
D
F 2
外板挤压力 Fb F 2 里板挤压力 Fb F 钉拉断
BJJTU(HHM)
连接件的强度问题
四、挤压与挤压强度条件
1. 挤压实例
挤压应力是垂直于接触面的正应力,挤压接触面上 的应力分布比较复杂。在工程计算中采用简化方法, 即假定挤压应力在有效挤压面上均匀分布。
BJJTU(HHM)
连接件的强度问题
F 2. 挤压强度条件: Fb 挤压应力 bs d 其中:Fb —— 挤压力;
A dh D2 d 2 挤压面:圆环 Abs 4
h
d
剪切面:圆柱面
挤压面
F
BJJTU(HHM)
连接件的强度问题
例:已知板厚 t 10mm ,铆钉直径 d 17 mm ,铆钉的
许用切应力[ ] 120MPa,许用挤压应力 [ bs ] 320MPa,
F 50KN , 试校核铆钉强度。
BJJTU(HHM)
连接件的强度问题
连接部分的强度计算 一、工程实例
螺栓、销钉等的连接件以及被连接的构件在连接处 的应力,与杆件的应力有什么不同?
BJJTU(HHM)
连接件的强度问题
螺栓、销钉等的连接件以及被连接的构件 在连接处的应力,都属于所谓"加力点附近 局部应力"。这些局部区域,在一般杆件的 应力分析与强度计算中是不予考虑的。
FN1 F 125 MPa [ ] A1 ( b d ) F 3F 2 N2 125 MPa [ ] A2 4( b 2d )
拉伸强度:
1
考虑应 力集中?
BJJTU(HHM)
连接件的强度问题
谢谢各位同学课堂的参与!
作业: 复习所讲内容/ 预习下章内容
连接件的强度问题
三、剪切与剪切强度条件
•假定剪切面上的 切应力均匀分布
F
1
d
1
F
Fs A
•剪切强度条件 Fs A 其中[τ物实验得到最大剪力, 然后再按上面公式得到极限 应力,除以安全系数。
BJJTU(HHM)
连接件的强度问题
连接件剪切假定计算中的许用切应力[τ] 工程上对于钢材可取: [τ]=(0.75~0.80)[σ]
螺栓、销钉等的连接件以及被连接的构件 在连接处的应力计算与拉压杆计算有相似 之处,均采用了平均应力.
BJJTU(HHM)
连接件的强度问题
F
1
d
1
F
当作为连接件的铆钉、销钉、键等零件承 受一对大小相等、方向相反、作用线互相 平行且相距很近的力作用时,这时在剪切 面上既有弯矩又有剪力,但弯矩极小,故 主要是剪力引起的剪切破坏。
BJJTU(HHM)
连接件的强度问题
二、连接件破坏形式分析
剪断(1-1截面)
F
1 1
d
F
2
拉断(2-2截面), 按拉压杆强度条件计算 剪豁(3-3截面), 边距大于孔径2倍可避免 挤压破坏(连接件接触面)
3
F
3
2
b
F
本节主要讨论1-1截面的剪断与连接件接触面 间挤压破坏的假定计算法。
BJJTU(HHM)