2016-2017年江苏省苏州市新区一中高二上学期期中数学试卷及参考答案
2016-2017学年江苏省苏州市高三(上)期中数学试卷-教师用卷

2016-2017学年江苏省苏州市高三(上)期中数学试卷一、填空题(本大题共14小题,共70.0分)1.已知集合A={x|0≤x≤2},B={x|−1<x≤1},则A∩B=______ .【答案】{x|0≤x≤1}【解析】解:∵集合A={x|0≤x≤2},B={x|−1<x≤1},∴A∩B={x|0≤x≤1}.故答案为:{x|0≤x≤1}.利用交集定义和不等式性质求解.本题考查交集的求法,是基础题,解时要认真审题,注意交集性质的合理运用.2.若命题p:∃x∈R,使x2+ax+1<0,则¬p:______ .【答案】∀x∈R,使x2+ax+1≥0【解析】解:因为特称命题的否定是全称命题,所以,命题p:∃x∈R,使x2+ax+1<0,则¬p:∀x∈R,使x2+ax+1≥0.故答案为:∀x∈R,使x2+ax+1≥0.求出函数的导数,由导数的几何意义代入x=π,计算即可得到所求切线的斜率.2本题考查导数的运用:求切线的斜率,考查导数的几何意义,考查运算能力,属于基础题.5. 已知tan α=−43,则tan(α−π4)=______ . 【答案】7【解析】解:∵tan α=−43,则tan(α−π4)=tan α−11+tan α=−43−11+(−43)=7,故答案为:7.利用两角差的正切公式求得要求式子的值.本题主要考查两角差的正切公式的应用,属于基础题.6. 已知等比数列{a n }的各项均为正数,且满足:a 1a 9=4,则数列{log 2a n }的前9项之和为______ . 【答案】9【解析】解:∵a n >0,且a 1a 9=4, ∴a 52=a 1a 9=4,a 5=2.∴log 2a 1+log 2a 2+⋯+log 2a 9=log 2(a 1a 2…a 9)=log 2a 59=9log 2a 5=9log 22=9. 故答案为:9.本题考查对数的运算性质,考查了等比数列的通项公式,是基础的计算题. f (x )=8x ,则f (−193)=______ . 时,f (x )=8x ,,sin C =3sin B ,则A =______ . a ,利用余弦定理表示出cos A ,将表示出的a ,c 及b 代入求出cos A 的值,即可确定出A 的度数.此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.9. 已知函数f (x )= x 2+x ,x ≤02x−1,x >0,若函数g (x )=f (x )−m 有三个零点,则实数m 的取值范围是______ .【答案】(−14,0]【解析】解:由g (x )=f (x )−m =0得f (x )=m , 若函数g (x )=f (x )−m 有三个零点,等价为函数f (x )与y =m 有三个不同的交点, 作出函数f (x )的图象如图:当x ≤0时,f (x )=x 2+x =(x +12)2−14≥−14, 若函数f (x )与y =m 有三个不同的交点, 则−14<m ≤0,即实数m 的取值范围是(−14,0], 故答案为:(−14,0].根据函数与零点的关系将函数转化为两个函数图象的交点个数问题,利用数形结合进行求解即可.本题主要考查函数与零点的应用,根据函数与方程的关系转化为两个函数的图象的交点问题,利用数形结.的图象向右平移23π个单位长度后,所得图象与原【答案】3【解析】解:∵函数y =sin(ωx +π3)的图象向右平移23π个单位后与原图象重合, ∴23π=n ×2πω,n ∈Z ,∴ω=3n,n∈Z,又∵ω>0,故其最小值是3.故答案为:3.函数y=sin(ωx+π3)的图象向右平移23π个单位后与原图象重合可判断出23π是周期的整数倍,由此求出ω的表达式,判断出它的最小值.本题考查由y=A sin(ωx+φ)的部分图象确定其解析式,本题判断出是周期的整数倍,是解题的关键,属于基础题.12.数列{a n}满足a n+1=a n(1−a n+1),a1=1,数列{b n}满足:b n=a n a n+1,则数列{b n}的前10项和S10=______.【答案】1011【解析】解:由a n+1=a n(1−a n+1)得:1an+1−1a n=1,所以得到数列{1a n}是以1为首项,1为公差的等差数列,1 2−13+⋯+110−111=1−111=1011b n=a n a n+1,通项时要会对1n(n+1)进行变形.依次成等差数列且a2+c2=kb2,A−π6)+43,∵0<A<2π3,∴−π6<2A−π6<7π6,∴−12<sin(2A−π6)≤1,∴1<23sin(2A−π6)+43≤2,∴实数k的取值范围是(1,2].故答案为:(1,2].利用角A、B、C成等差数列B=π3,利用a2+c2=kb2,可得k=23sin(2A−π6)+43,即可利用正弦函数的性质求得实数k的取值范围.本题考查等差数列的性质,考查正弦定理,考查辅助角公式的运用,考查学生分析解决问题的能力,属于中档题.14.已知函数f(x)=x−a(x+a),若对于定义域内的任意x1,总存在x2使得f(x2)<f(x1),则满足条件的实数a 的取值范围是______ .【答案】a≥0【解析】解:对于定义域内的任意x1总存在x2使得f(x2)<f(x1),即为f(x)在定义域内无最小值;①a=0时,f(x)=1无最小值显然成立;的导数为上递减,在(−a,3a)上递增,在(3a,+∞)递f(x1);上递减,即有f(x)在x=3a处取得处无最小值;讨论a=0,a>0,二、解答题(本大题共12小题,共154.0分)15.已知函数f(x)=3x+λ⋅3−x(λ∈R).(1)若f(x)为奇函数,求λ的值和此时不等式f(x)>1的解集;(2)若不等式f(x)≤6对x∈[0,2]恒成立,求实数λ的取值范围.【答案】解:(1)∵f(x)=3x+λ⋅3−x为奇函数,∴f(−x)+f(x)=3−x+λ⋅3x+3x+λ⋅3−x=(3x+3−x)+λ(3x+3−x)=(λ+1)(3x+3−x)=0,∵3x+3−x>0,∴λ+1=0,即λ=−1.此时f(x)=3x−3−x,由f(x)>1,得3x−3−x>1,即(3x)2−3x−1>0,解得:3x<1−52(舍),或3x>1+52,即x>log31+52.∴不等式f(x)>1的解集为(log31+52,+∞);(2)由f(x)≤6得3x+λ3−x≤6,即3x+λ3≤6,令t=3x∈[1,9],原不等式等价于t+λt≤6在t∈[1,9]上恒成立,亦即λ≤6t−t2在t∈[1,9]上恒成立,令g(t)=6t−t2,t∈[1,9],f(x)>1求得3x的范围,进一步求t2在t∈[1,9]上恒成立,令的等差中项,62成立的正整数n的最小值.n12nn×2n)①则2S n=−(1×22+2×23+⋯+n×2n+1)②②−①,得S n=(2+22+⋯+2n)−n⋅2n+1=2n+1−2−n⋅2n+1即数列{b n}的前项和S n=2n+1−2−n⋅2n+1…(10分)则S n+n⋅2n+1=2n+1−2>62,所以n>5,即n的最小值为6.…(12分)【解析】(I)由题意,得a1q+a1q2+a1q3=28a1q+a1q3=2(a1q2+2),由此能求出数列{a n}的通项公式.(Ⅱ)b n=a n log12a n=2n⋅log122n=−n⋅2n,Sn=b1+b2+⋯+b n=−(1×2+2×22+⋯+n×2n),所以数列{b n}的前项和S n=2n+1−2−n⋅2n+1,使S n+n⋅2n+1>62成立的正整数n的最小值.本题考查数列的性质的应用,解题时要认真审题,注意数列与不等式的综合运用,合理地进行等价转化.17.已知函数f(x)=2sin(x+π3)⋅cos x.(1)若0≤x≤π2,求函数f(x)的值域;(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(求cos(A−B)的值.【答案】解:(1)f(x)=2sin(x+π3)⋅cos x3cos解得a=7;…(10分)由正弦定理asin A =bsin B,得sin B=b sin Aa=217,…(12分)∵b<a,∴B<A,∴cos B=277,∴cos(A−B)=cos A cos B+sin A sin B=12×277+32×217=5714.…(15分)【解析】(1)利用三角恒等变换化简f(x),根据x的取值范围即可求出函数f(x)的值域;(2)由f(A)的值求出角A的大小,再利用余弦定理和正弦定理,即可求出cos(A−B)的值.本题考查了三角恒等变换以及正弦、余弦定理的应用问题,是综合性题目.18.如图,有一块平行四边形绿地ABCD,经测量BC=2百米,CD=1百米,∠BCD=120∘,拟过线段BC上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将绿地分为面积之比为1:3的左右两部分,分别种植不同的花卉,设EC=x百米,EF=y百米.(1)当点F与点D重合时,试确定点E的位置;(2)试求x的值,使路EF的长度y最短.=1−2x,∠EGF=60∘,GF=2x−1,∠EGF=120∘,【解析】(1)当点F与点D重合时,S△CDE=14S平行四边形ABCD=34,即S△CDE=12CE⋅CD⋅sin120∘=34x=34⇒x=1,从而确定点E的位置;(2)分类讨论,确定y关于x的函数关系式,利用配方法求最值.本题考查了函数在实际问题中的应用及二次函数的性质应用,属于中档题.19. 已知数列{a n }的前n 项和为A n ,对任意n ∈N ∗满足An +1n +1−A n n=12,且a 1=1,数列{b n }满足b n +2−2b n +1+b n =0(n ∈N ∗),b 3=5,其前9项和为63.(1)求数列{a n }和{b n }的通项公式;(2)令c n =b n a n+anb n,数列{c n }的前n 项和为T n ,若对任意正整数n ,都有T n ≥2n +a ,求实数a 的取值范围;(3)将数列{a n },{b n }的项按照“当n 为奇数时,a n 放在前面;当n 为偶数时,b n 放在前面”的要求进行“交叉排列”,得到一个新的数列:a 1,b 1,b 2,a 2,a 3,b 3,b 4,a 4,a 5,b 5,b 6,…,求这个新数列的前n 项和S n . 【答案】解:(1)∵A n +1n +1−A n n =12,∴数列{A n n }是首项为1,公差为12的等差数列, ∴A n n=A 1+(n −1)×12=12n +12,即A n =n (n +1)2(n ∈N ∗),+12−1n +1−1n +2)=2n +3− (3)数列{a n }的前n 项和A n =n (n +1)2,数列{b n }的前n 项和B n =n (n +5)2.①当n =2k (k ∈N ∗)时,S n =A k +B k =k (k +1)2+k (k +5)2=k 2+3k ;②当n =4k +1(k ∈N ∗)时,S n =A 2k +1+B 2k =(2k +1)(2k +2)2+2k (2k +5)2=4k 2+8k +1,特别地,当n=1时,S1=1也符合上式;③当n=4k−1(k∈N∗)时,S n=A2k−1+B2k=(2k−1)2k2+2k(2k+5)2=4k2+4k.综上:S n=14n2+32n,n=2kn2+6n−34,n=4k−32,k∈N∗…(16分),即不等式2a≤1x3+3x在x∈[1,2]上有解,…(4分)设y=1x3+3x=3x2+1x3(x∈[1,2]),∵y′=−3x2−3x4<0对x∈[1,2]恒成立,∴y=1x3+3x在x∈[1,2]上单调递减,∴当x=1时,y=1x3+3x的最大值为4,∴2a≤4,即a≤2…(7分)(3)由(1)知,f(x)在(0,+∞)上的最小值为f(2a )=1−4a2,①当1−4a>0,即a>2时,f(x)>0在(0,+∞)上恒成立,∴ℎ(x)=max{f(x),g(x)}在(0,+∞)上无零点…(8分)②当1−4a2=0,即a=2时,f(x)min=f(1)=0,又g(1)=0,∴ℎ(x)=max{f(x),g(x)}在(0,+∞)上有一个零点…(9分)③当1−4a2<0,即0<a<2时,设φ(x)=f(x)−g(x)=ax3−3x2+1−ln x(0<x<1),∵φ′(x)=3ax2−6x−1x <6x(x−1)−1x<0,∴φ(x)在(0,1)上单调递减,又φ(1)=a−2<0,φ(1e )=ae3+2e2−3e2>0,∴存在唯一的x0∈(1e,1),使得φ(x0)=0.Ⅰ.当0<x≤x0时,∵φ(x)=f(x)−g(x)≥φ(x0)=0,∴ℎ(x)=f(x)且ℎ(x)为减函数,又ℎ(x0)=f(x0)=g(x0)=ln x0<ln1=0,f(0)=1>0,∴ℎ(x)在(0,x0)上有一个零点;Ⅱ.当x>x0时,∵φ(x)=f(x)−g(x)<φ(x0)=0,∴ℎ(x)=g(x)且ℎ(x)为增函数,∵g(1)=0,∴ℎ(x)在(x0,+∞)上有一个零点;从而ℎ(x)=max{f(x),g(x)}在(0,+∞)上有两个零点…(15分)综上所述,当0<a<2时,ℎ(x)有两个零点;当a=2时,ℎ(x)有一个零点;当a>2时,ℎ(x)有无零点 (16))【解析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为不等式2a≤1x3+3x在x∈[1,2]上有解,根据函数的单调性求出a的范围即可;(3)通过讨论a的范围结合函数的单调性判断函数的零点个数即可.本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.21.如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,过E作BA的延长线的垂线,垂足为F.求证:AB2=BE⋅BD−AE⋅AC.【答案】证明:连接AD,因为AB为圆的直径所以∠ADB=90∘,又EF⊥AB,∠AFE=90∘,则A,D,E,F四点共圆,∴BD ⋅BE =BA ⋅BF , 又△ABC∽△AEF , ∴AB AE=AC AF,即AB ⋅AF =AE ⋅AC∴BE ⋅BD −AE ⋅AC =BA ⋅BF −AB ⋅AF =AB ⋅(BF −AF )=AB 2.【解析】连接AD ,利用AB 为圆的直径结合EF 与AB 的垂直关系,通过证明A ,D ,E ,F 四点共圆知,BD ⋅BE =BA ⋅BF ,再利用△ABC∽△AEF 得到比例式,最后利用线段间的关系即求得AB 2=BE ⋅BD −AE ⋅AC .本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.22. 已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1 = 11,并且矩阵M 将点(−1,3)变换为(0,8).(1)求矩阵M ;(2)求曲线x +3y −2=0在M 的作用下的新曲线方程.【答案】解:(1)设M =a b c d ,由 a b c d 11 =8 11 及 a b c d −13= 08 , 得 a +b =8c +d =8−a +3b =0−c +3d =8,解得 a =6b =2c =4d =4,∴M =6244. (2)设原曲线上任一点P (x ,y )在M 作用下对应点, 则 x ′y ′ = 6244 x y ,即 x ′=6x +2y y ′=4x +4y ,解之得 x =2x ′−y ′8y =−2x ′+3y ′8, 代入x +3y −2=0得,即曲线x +3y −2=0在M 的作用下的新曲线方程为x −2y +4=0. 【解析】(1)利用特征值、特征向量的定义,建立方程,即可得出结论; (2)求出变换前后坐标之间的关系,即可得出结论.本题考查特征值、特征向量的定义,考查矩阵变换,考查学生分析解决问题的能力,属于中档题.23. 已知平面直角坐标系xOy 中,圆C 的参数方程为 y =r sin θ+2x =r cos θ+2(θ为参数,r >0).以直角坐标系原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 ρsin(θ+π4)+1=0. (1)求圆C 的圆心的极坐标;(2)当圆C 与直线l 有公共点时,求r 的取值范围.【答案】解:(1)由C : y =r sin θ+2x =r cos θ+2得(x −2)2+(y −2)2=r 2, ∴曲线C 是以(2,2)为圆心,r 为半径的圆, ∴圆心的极坐标为(2 2,π4)…(5分)(2)由l : 2ρsin(θ+π4)+1=0得l :x +y +1=0,从而圆心(2,2)到直线l的距离为d=2=522,∵圆C与直线l有公共点,∴d≤r,即r≥522…(10分)【解析】(1)消去参数,得圆C的普通方程,即可求圆C的圆心的极坐标;d=2=52≤r XX 的数学期望为E (X )=0×12(1−a )2+1×12(1−a 2)+2×12(2a −a 2)+3×a 22=4a +12.(2)P (X =1)−P (X =0)=12[(1−a 2)−(1−a )2]=a (1−a ),P (X =1)−P (X =2)=12[(1−a 2)−(2a −a 2)]=1−2a 2,P (X =1)−P (X =3)=12[(1−a 2)−a 2]=1−2a 22.由 a (1−a )≥01−2a2≥01−2a 22≥0和0<a <1,得0<a ≤12, 即a 的取值范围是(0, 12].【解析】(1)随机变量X 的可能取值为0,1,2,3.分别求出相应的概率,由此能求出X 的分布列和数学期望.(2)由已知条件结合概率的性质列出方程组,能求出a 的取值范围.本题考查离散型随机变量的分布列和数学期望的求法,考查实数值的取值范围的求法,是中档题,解题时要认真审题,注意概率知识的合理运用.26. 在如图所示的四棱锥S −ABCD 中,SA ⊥底面ABCD ,∠DAB =∠ABC =90∘,SA =AB =BC =a ,AD =3a (a >0),E 为线段BS 上的一个动点. (1)证明:DE 和SC 不可能垂直;(2)当点E 为线段BS的三等分点(靠近B )时,求二面角S −CD −E 的余弦值.【答案】解:(1)∵SA ⊥底面ABCD ,∠DAB =90∘, ∴AB 、AD 、AS 两两垂直.故以A 为原点,建立空间直角坐标系,如图 …(1分)则S (0,0,a ),C (a ,a ,0),D (0,3a ,0)(a >0), ∵SA =AB =a 且SA ⊥AB ,∴设E (x ,0,a −x )其中0≤x ≤a ,…(2分)∴DE =(x ,−3a ,a −x ),SC=(a ,a ,−a ), 假设DE 和SC 垂直,则DE ⋅SC=0,…(4分) 即ax −3a 2−a 2+ax =2ax −4a 2=0,解得x =2a ,…(5分)这与0≤x ≤a 矛盾,假设不成立,所以DE 和SC 不可能垂直 …(6分)(2)∵E为线段BS的三等分点(靠近B),∴E(23a,0,13a).设平面SCD的一个法向量是n1=(x1,y1,z1),∵CD=(−a,2a,0),SD=(0,3a,−a),∴n1⋅CD=0n1⋅SD=0,即3ay1−az1=0−ax1+2ay1=0,即z1=3y1x1=2y1,取n1=(2,1,3),…(8分)设平面CDE的一个法向量是n2=(x2,y2,z2),∵CD=(−a,2a,0),DE=(23a,−3a,13a),∴n2⋅CD=0n2⋅DE=0,即−ax2+2ay2=023ax2−3ay2+13az2=0,即z2=5y2x2=2y2,取n2=(2,1,5),…(10分)设二面角S−CD−E的平面角大小为θ,由图可知θ为锐角,∴cosθ=|cos<n1,n2>|=n1 ⋅n2|n1|⋅|n2|=14⋅30=210521,即二面角S−CD−E的余弦值为210521…(12分)【解析】由题可知,可以直接建立空间直角坐标线证明位置关系和计算角.(1)只要向量DE⋅SC≠0恒成立,即可说明DE和SC不可能垂直;也可用反证法:假设DE与SC垂直,即DE⋅SC=0,找出矛盾.(2)求出平面SCD和平面CDE的法向量,用向量角的余弦值来反应二面角的大小.考查了用空间向量法分析空间位置关系.考查了用空间向量法求法向量、二面角的大小.考查了化归思想,空间想象能力,运算能力.本题能想到用向量法是解题的关键,在处理第一问的两直线不垂直问题有一定的技巧,且各棱没有明确的数值,用字母来表示长度,运算上有一定的难度,属于中档题.。
江苏省苏州市2017届高三上学期期中调研考试数学试题(WORD版)

2016—2017学年第一学期高三期中调研试卷 数学 2016.11注意事项:1.本试卷共4页.满分160分,考试时间120分钟.2.请将填空题的答案和解答题的解题过程写在答题卷上,在本试卷上答题无效. 3.答题前,务必将自己的姓名、学校、准考证号写在答题纸的密封线内.一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{02}A x x =≤≤,{11}B x x =-<≤,则A B =I ▲ . 2.若命题2:,10p x x ax ∃∈++<R 使,则p ⌝: ▲ .3.函数12xy x -=+的定义域为 ▲ . 4.曲线cos y x x =-在点(,)22ππ处的切线的斜率为 ▲ .5.已知4tan 3α=-,则tan()4πα-= ▲ .6.已知等比数列{}n a 的各项均为正数,且满足:194a a =,则数列2{log }n a 的前9项之和为 ▲ .7.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()8x f x =,则19()3f -= ▲ .8.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若222a b bc -=,sin 3sin C B =,则A = ▲ .9.已知函数221,0(),0x x f x x x x ->⎧=⎨+⎩≤,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是▲ .10.若函数cos21tan (0)sin 22y θπθθθ+=+<<,则函数y 的最小值为 ▲ .11.已知函数()sin()(0)3f x x πωω=+>,将函数()y f x =的图象向右平移23π个单位长度后,所得图象与原函数图象重合,则ω的最小值等于 ▲ .12.已知数列{}n a 满足:111(1),1n n n a a a a ++=-=,数列{}n b 满足:1n n n b a a +=⋅,则数列{}n b 的前10项的和10S = ▲ .13.设ABC ∆的三个内角A ,B ,C 所对应的边为a ,b ,c ,若A ,B ,C 依次成等差数列且222a c kb +=,则实数k 的取值范围是 ▲ . 14.已知函数2()()x af x x a -=+,若对于定义域内的任意1x ,总存在2x 使得21()()f x f x <,则满足条件的实数a 的取值范围是 ▲ .二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)已知函数()33()x xf x λλ-=+⋅∈R(1)若()f x 为奇函数,求λ的值和此时不等式()1f x >的解集; (2)若不等式()6f x ≤对[0,2]x ∈恒成立,求实数λ的取值范围.16.(本题满分14分)已知等比数列{}n a 的公比1q >,且满足:23428a a a ++=,且32a +是24,a a 的等差中项. (1)求数列{}n a 的通项公式;(2)若12log n n n b a a =,12n n S b b b =+++ ,求使1262n n S n ++⋅>成立的正整数n 的最小值.17.(本题满分15分) 已知函数()2sin()cos 3f x x x π=+⋅.(1)若02x π≤≤,求函数()f x 的值域;(2)设ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,若A 为锐角且3()2f A =,2b =,3c =,求cos()A B -的值.18.(本题满分15分)如图,有一块平行四边形绿地ABCD ,经测量2BC =百米,1CD =百米,120BCD ∠= ,拟过线段BC 上一点E 设计一条直路EF (点F 在四边形ABCD 的边上,不计路的宽度),EF 将绿地分成两部分,且右边面积是左边面积的3倍,设EC x =百米,EF y =百米. (1)当点F 与点D 重合时,试确定点E 的位置; (2)试求x 的值,使路EF 的长度y 最短.CBDAE19. (本题满分16分)已知数列{}n a 的前n 项和为n A ,对任意*n ∈N 满足1112n n A A n n +-=+,且11a =,数列{}n b 满足2120(*)n n n b b b n ++-+=∈N ,35b =,其前9项和为63.(1)求数列{}n a 和{}n b 的通项公式; (2)令n nn n nb ac a b =+,数列{}n c 的前n 项和为n T ,若对任意正整数n ,都有2n T n a +≥,求实数a 的取值范围;(3)将数列{},{}n n a b 的项按照“当n 为奇数时,n a 放在前面;当n 为偶数时,n b 放在前面”的要求进行“交叉排列”,得到一个新的数列:11223344556,,,,,,,,,,,a b b a a b b a a b b ⋅⋅⋅,求这个新数列的前n 项和n S .20. (本题满分16分)已知32()31(0)f x ax x a =-+>,定义{}(),()()()max (),()(),()()f x f x g x h x f x g x g x f x g x ⎧==⎨<⎩≥.(1)求函数()f x 的极值;(2)若()()g x xf x '=,且存在[1,2]x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()h x (0)x >的零点个数.2016—2017学年第一学期高三期中调研试卷数 学 (附加) 2016.11注意事项:1.本试卷共2页.满分40分,考试时间30分钟.2.请在答题卡上的指定位置作答,在本试卷上作答无效.3.答题前,请务必将自己的姓名、学校、考试证号填写在答题卡的规定位置.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)(本小题满分10分)如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F . 求证:2AB BE BD AE AC =⋅-⋅B .(矩阵与变换)(本小题满分10分)已知二阶矩阵M 有特征值8λ=及对应的一个特征向量111e ⎡⎤=⎢⎥⎣⎦,并且矩阵M 将点(1,3)-变换为(0,8).(1)求矩阵M ;(2)求曲线320x y +-=在M 的作用下的新曲线方程.C .(极坐标与参数方程) (本小题满分10分)已知平面直角坐标系xOy 中,圆C 的参数方程为cos 2(,0)sin 2x r r y r θθθ=+⎧>⎨=+⎩为参数.以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为π2sin()104ρθ++=.(1)求圆C 的圆心的极坐标;(2)当圆C 与直线l 有公共点时,求r 的取值范围.D .(不等式选讲)(本小题满分10分)已知,,,a b c d 都是正实数,且1a b c d +++=,求证:2222111115a b c d a b c d +++++++≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某公司对新招聘的员工张某进行综合能力测试,共设置了A 、B 、C 三个测试项目.假定张某通过项目A 的概率为12,通过项目B 、C 的概率均为a (01)a <<,且这三个测试项目能否通过相互独立.(1)用随机变量X 表示张某在测试中通过的项目个数,求X 的概率分布和数学期望()E X (用a 表示);(2)若张某通过一个项目的概率最大,求实数a 的取值范围.23.(本小题满分10分)在如图所示的四棱锥S ABCD -中,SA ⊥底面A B C D ,90DAB ABC ︒∠=∠=,SA AB BC a ===,3AD a =(0)a >,E 为线段BS 上的一个动点.(1)证明:DE 和SC 不可能垂直;(2)当点E 为线段BS 的三等分点(靠近B )时,求二面角S CD E --的余弦值.ADBCSE2016—2017学年第一学期高三期中调研试卷数 学 参 考 答 案一、填空题(本大题共14小题,每小题5分,共70分)1.{|0}x x ≤≤1 2.2,10x x ax ∀∈++R 使≥ 3.(2,1]- 4.2 5.7 6.9 7.2- 8.3π9.1(,0]4-10.2 11.3 12.101113.(1,2] 14.0a ≥ 二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)解:(1)函数()33x x f x λ-=+⋅的定义域为R .∵()f x 为奇函数,∴()()0f x f x -+=对x ∀∈R 恒成立,即3333(1)(33)0xxxxxxλλλ---+⋅++⋅=++=对x ∀∈R 恒成立,∴1λ=-. ..........3分 此时()331x x f x -=->即2(3)310x x -->,解得1+51533()22x x -><或舍去, ..........6分 ∴解集为31+5{|log }2x x >. ..........7分 (2)由()6f x ≤得336x x λ-+⋅≤,即363x xλ+≤,令3[1,9]x t =∈,原问题等价于6t tλ+≤对[1,9]t ∈恒成立,亦即26t t λ-+≤对[1,9]t ∈恒成立, ...........10分 令2()6,[1,9]g t t t t =-+∈,∵()g t 在[1,3]上单调递增,在[3,9]上单调递减,∴当9t =时,()g t 有最小值(9)27g =-,∴27λ-≤. .........14分 16.(本题满分14分)解:(1)∵32a +是24,a a 的等差中项,∴3242(2)a a a +=+, ..........1分 代入23428a a a ++=,可得38a =,∴2420a a +=,∴21311820a q a q a q ⎧=⎪⎨+=⎪⎩,解之得122a q =⎧⎨=⎩或13212a q =⎧⎪⎨=⎪⎩, ........4分 ∵1q >,∴122a q =⎧⎨=⎩,∴数列{}n a 的通项公式为2n n a =. ..........6分(2)∵1122log 2log 22n n n n n n b a a n ===-⋅, ..........7分∴2(12222)n n S n =-⨯+⨯++⋅ , ……①)22)1(2221(S 2132+⋅+⋅-++⨯+⨯-=n n n n n , ……②②-①得23122222n n n S n +=++++-⋅1112(12)222212n n n n n n +++-=-⋅=--⋅-. ..........12分∵1262n n S n ++⋅>,∴12262n +->,∴16n +>,5n >, ..........13分∴使1262n n S n ++⋅>成立的正整数n 的最小值为6. ..........14分 17.(本题满分15分)解:(1)()(sin 3cos )cos f x x x x =+x x x 2cos 3cos sin +=133sin 2cos 2222x x =++3sin(2)32x π=++. .........2分 由02x π≤≤得,42333x πππ+≤≤,3sin(2)123x π-+≤≤, .........4分 ∴330sin(2)1322x π+++≤≤,即函数)(x f 的值域为3[0,1]2+. .....6分 (2)由33()sin(2)322f A A π=++=得sin(2)03A π+=,又由02A π<<,∴42333A πππ<+<,∴23A ππ+=,3A π=. ........8分在ABC ∆中,由余弦定理2222cos =7a b c bc A =+-,得7=a . .......10分由正弦定理sin sin a bA B=,得sin 21sin 7b A B a ==, ......12分 ∵b a <,∴B A <,∴27cos 7B =,∴cos()cos cos sin sin A B A B A B -=+12732157272714=⨯+⨯=. ....15分18.(本题满分15分)解:(1)平行四边形ABCD 的面积为1212sin12032ABCD S =⨯⨯⨯= ,当点F 与点D 重合时,13sin12024CFE S CE CD x ∆=⋅⋅= ,∵14CFE ABCD S S ∆= ,∴33=44x ,1x =(百米),∴E 是BC 的中点. ....3分 (2)①当点F 在CD 上时,∵0113sin120244CFE ABCD S CE CF S ∆=⋅⋅== ,∴1CF x=, ........4分在三角形CDE 中,22202cos120EF CE CF CE CF =+-⋅⋅,∴22113y x x =++≥,当且仅当1x =时取等号, 此时E 在BC 中点处且F 与D 重合,符合题意; ...............8分②当点F 在DA 上时,∵()3132244ABCD CEFD x FD S S +=⋅== 梯形,∴1DF x =-, ..........9分 Ⅰ.当CE DF <时,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,12,60EG GF x EGF ==-∠= ,由余弦定理得2421y x x =-+; Ⅱ.当CE DF ≥,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,21,120EG GF x EGF ==-∠= ,由余弦定理得2421y x x =-+;由Ⅰ、Ⅱ可得22134214()44y x x x =-+=-+, ...............13分∴当14x =时,min 32y =,此时E 在BC 的八等分点(靠近C )处且34DF =(百米),符合题意; ....14分 ∴由①②可知,当14x =(百米)时,路EF 最短为32(百米). ....15分19.(本题满分16分) 解:(1)∵1112n n A A n n +-=+,∴数列n A n ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列, ∴1111(1)222n A A n n n =+-⨯=+,即*(1)()2n n n A n +=∈N ,∴*11(1)(2)(1)1()22n n n n n n n a A A n n +++++=-=-=+∈N ,又11a =,∴*()n a n n =∈N . .............3分∵2120n n n b b b ++-+=,∴ 数列{}n b 是等差数列,设{}n b 的前n 项和为n B ,∵3799()632b b B +==且35b =, ∴79b =,∴{}n b 的公差为7395=17373b b --=--,*2()n b n n =+∈N . ......5分(2)由(1)知21122()22n n n n n b a n n c a b n n n n +=+=+=+-++, ∴12n n T c c c =+++ 1111122(1)3242n n n =+-+-++-+11122(1)212n n n =++--++11232()12n n n =+-+++, ∴11232()12n T n n n -=-+++. ...............7分设1132()12n R n n =-+++,则11142()013(1)(3)n n R R n n n n +-=-=>++++, ∴数列{}n R 为递增数列, .............9分∴min 14()3n R R ==,∵对任意正整数n ,都有2n T n a -≥恒成立,∴43a ≤. .............10分(3)数列{}n a 的前n 项和(1)2n n n A +=,数列{}n b 的前n 项和(5)2n n n B +=. ①当*2()N n k k =∈时,2(1)(5)322n k k k k k k S A B k k ++=+=+=+;②当*41()N n k k =+∈时,2+12(21)(22)2(25)22n k k k k k k S A B +++=+=+2481k k =++,特别地,当1n =时,11S =也符合上式;③当*41()N n k k =-∈时,2212(21)22(25)4422n k k k k k k S A B k k --+=+=+=+.综上:22213, 2 4263, 43465, 414n n n n k n n S n k n n n k ⎧+=⎪⎪+-⎪==-⎨⎪⎪++=-⎪⎩,*k ∈N . ...........16分 20.(本题满分16分)解:(1)∵函数32()31f x ax x =-+,∴2'()363(2)f x ax x x ax =-=-. ..........1分 令'()0f x =,得10x =或22x a=,∵0a >,∴12x x <,列表如下: x(,0)-∞ 0 2(0,)a 2a 2(,)a+∞'()f x +- 0 + ()f x↗极大值 ↘ 极小值 ↗ ∴()f x 的极大值为(0)1f =,极小值为22228124()11f a a a a =-+=-........3分(2)2363)()(x ax x f x x g -='=,∵存在[1,2]x ∈使()()h x f x =,∴()()f x g x ≥在[1,2]x ∈上有解,即32323136ax x ax x -+-≥在[1,2]x ∈上有解, 即不等式3132a x x+≤在[1,2]x ∈上有解, .............4分设233[1,32]131()x y x x x x +∈=+=,∵2433'0x y x --=<对[1,2]x ∈恒成立,∴313y x x =+在[1,2]x ∈上单调递减,∴当1x =时,313y x x=+的最大值为4, ∴24a ≤,即2a ≤. .........7分 (3)由(1)知,()f x 在(0,)+∞上的最小值为224()1f aa=-, ①当2410a->,即2a >时,()0f x >在(0,)+∞上恒成立, ∴()max{(),()}h x f x g x =在(0,)+∞上无零点. .........8分②当2410a-=,即2a =时,min ()(1)0f x f ==,又(1)0g =,∴()max{(),()}h x f x g x =在(0,)+∞上有一个零点. .........9分③当2410a-<,即02a <<时,设32()()()31ln x f x g x ax x x ϕ=-=-+-(01)x <<,∵211'()366(1)0x ax x x x x xϕ=--<--<,∴()x ϕ在(0,1)上单调递减,又232123(1)20,()0a e a e e e ϕϕ-=-<=+>,∴存在唯一的01(,1)x e∈,使得0()0x ϕ=. Ⅰ.当00x x <≤时,∵0()()()()0x f x g x x ϕϕ=-=≥,∴()()h x f x =且()h x 为减函数,又0000()()()ln ln10,(0)10h x f x g x x f ===<==>,∴()h x 在0(0,)x 上有一个零点; Ⅱ.当0x x >时,∵0()()()()0x f x g x x ϕϕ=-<=,∴()()h x g x =且()h x 为增函数, ∵(1)0g =,∴()h x 在0(,)x +∞上有一个零点;从而()max{(),()}h x f x g x =在(0,)+∞上有两个零点. .........15分 综上所述,当02a <<时,()h x 有两个零点;当2a =时,()h x 有一个零点;当2a >时,()h x 有无零点. ..........16分21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲,本小题满分10分)证明:连接AD ,∵AB 为圆的直径,∴AD BD ⊥,又EF AB ⊥,则,,,A D E F 四点共圆,∴BD BE BA BF ⋅=⋅. .............5分 又ABC ∆∽AEF ∆, ∴AB ACAE AF=,即AB AF AE AC ⋅=⋅, ∴2()BE BD AE AC BA BF AB AF AB BF AF AB ⋅-⋅=⋅-⋅=⋅-=. .....10分 B .(矩阵与变换,本小题满分10分)解:(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,由11811a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦及1038a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得883038a b c d a b c d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解得6244a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,∴6244M ⎡⎤=⎢⎥⎣⎦. ................4分(2)设原曲线上任一点(,)P x y 在M 作用下对应点'(',')P x y ,则'6244'x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即'62'44x x y y x y =+⎧⎨=+⎩,解之得2''82'3'8x y x x y y -⎧=⎪⎪⎨-+⎪=⎪⎩, 代入320x y +-=得'2'40x y -+=,即曲线320x y +-=在M 的作用下的新曲线方程为240x y -+=. ......10分C .(极坐标与参数方程,本小题满分10分)解:(1)由cos 2:sin 2x r C y r θθ=+⎧⎨=+⎩得222(2)(2)x y r -+-=, ∴曲线C 是以(2,2)为圆心,r 为半径的圆, ∴圆心的极坐标为(22,)4π. .............5分 (2)由π:2sin()104l ρθ++=得:10l x y ++=, 从而圆心(2,2)到直线l 的距离为|221|5222d ++==, ∵圆C 与直线l 有公共点,∴d r ≤,即522r ≥. ..........10分 D .(不等式选讲,本小题满分10分) 证明:∵2222[(1)(1)(1)(1)]()1111a b c d a b c d a b c d ++++++++++++++ 2(1111)1111a b c d a b c d a b c d+⋅++⋅++⋅++⋅++++≥ 2()1a b c d =+++=, ............5分又(1)(1)(1)(1)5a b c d +++++++=, ∴2222111115a b c d a b c d +++++++≥. ............10分 22.(本题满分10分)解:(1)随机变量X 的可能取值为0,1,2,3.022211(0)(1)C (1)(1)22P X a a ==--=-; 021222111(1)C (1)(1)C (1)(1)222P X a a a a ==-+--=-; 122222111(2)C (1)(1)C (2)222P X a a a a a ==-+-=-; 222211(3)C 22P X a a ===. 从而X 的分布列为X 0 1 23 P 21(1)2a - 21(1)2a -21(2)2a a - 22a X 的数学期望为222211141()0(1)1(1)2(2)322222a a E X a a a a +=⨯-+⨯-+⨯-+⨯=. ......5分 (2)221(1)(0)[(1)(1)](1)2P X P X a a a a =-==---=-, 22112(1)(2)[(1)(2)]22a P X P X a a a -=-==---=, 222112(1)(3)[(1)]22a P X P X a a -=-==--=. 由2(1)012021202a a a a ⎧⎪-⎪-⎪⎨⎪⎪-⎪⎩≥≥≥和01a <<,得102a <≤,即a 的取值范围是1(0,]2. ....10分 23.(本题满分10分)解:(1)∵SA ⊥底面ABCD ,90DAB ︒∠=,∴AB 、AD 、AS 两两垂直.以A 为原点,AB 、AD 、AS 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图), ...............1分则(0,0,)S a ,(,,0)C a a ,(0,3,0)D a (0)a >,∵SA AB a ==且SA AB ⊥,∴设(,0,)E x a x -其中0x a ≤≤,∴(,3,)DE x a a x =-- ,(,,)SC a a a =- , ................2分 假设DE 和SC 垂直,则0DE SC ⋅= ,即2223240ax a a ax ax a --+=-=,解得2x a =,这与0x a ≤≤矛盾,假设不成立,所以DE 和SC 不可能垂直. ........4分(2)∵E 为线段BS 的三等分点(靠近B ),∴21(,0,)33E a a .设平面SCD 的一个法向量是1111(,,)n x y z = ,平面CDE 的一个法向量是2222(,,)n x y z = , ∵(,2,0)CD a a =- ,(0,3,)SD a a =- ,∴1100n CD n SD ⎧⋅=⎪⎨⋅=⎪⎩ , 即11112030ax ay ay az -+=⎧⎨-=⎩,即111123x y z y =⎧⎨=⎩,取1(2,1,3)n = , ............6分∵(,2,0)CD a a =- ,21(,3,)33DE a a a =- ,∴2200n CD n DE ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222220213033ax ay ax ay az -+=⎧⎪⎨-+=⎪⎩,即222225x y z y =⎧⎨=⎩,取2(2,1,5)n = , ............8分 设二面角S CD E --的平面角大小为θ,由图可知θ为锐角, ∴12121241152105cos |cos ,|21||||1430n n n n n n θ⋅++=<>===⋅⋅ , 即二面角S -CD -E 的余弦值为210521. ............10分。
2016-2017学年高二上学期期中考试数学试题 Word版含答案

2016-2017学年高二上学期期中考试数学试题一、选择题(本大题共8小题,每小题5分,共40分)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.05B .0.35C .0.7D .0.95 2.全称命题“2,54x R x x ∀∈+=”的否定是( )A .2000,54x R x x ∃∈+=B .2,54x R x x ∀∈+≠C .2000,54x R x x ∃∈+≠D .以上都不正确3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .144.某程序框图如图所示,若输出的结果是62,则判断框中可以是( ) A .7?i ≥ B .6?i ≥ C .5?i ≥ D .4?i ≥5.对于实数,,a b c ,“a b >”是“22ac bc >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)- 7.点P 在边长为1的正方形ABCD 内运动,则动点P 到 定点A 的距离|PA |1<|的概率为( )A.πB.2π C.4π D .6π8.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅ 的最大值为( ) A .2 B .3 C .6 D .8二、填空题(每题5分,共6个小题,满分30分) 9.某课题组进行城市空气质量调查,按地域把24个城市分 成甲、乙、丙三组,对应城市数分别为 4、12、8.若用分层 抽样方法抽取6个 城市,则甲组中应抽取的城市数为________.10.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.11.有一个容量为200的样本,其频率分布直方图如图所示, 据图知,样本数据在[8,10)内的频数为 12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合) 的中点的轨迹方程为13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为 . 14.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若1m ≥,则22(m 1)x m 30mx -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.第18题图16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.17.(满分13分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n 人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求,,n a p 的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=>(1)当1a =时,求椭圆的焦点坐标及椭圆的离心率; (2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,求22|F ||F |A B ⋅的值.2016-2017学年高二上学期期中考试数学试题答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.答案:D2.全称命题“∀x ∈R ,x 2+5x =4”的否定是( )A .∃x 0∈R ,x 20+5x 0=4 B .∀x ∈R ,x 2+5x ≠4 C .∃x 0∈R ,x 20+5x 0≠4 D .以上都不正确解析:选C 全称命题的否定为特称命题.3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .14解析:由甲组数据的众数为14得x =y =4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10.答案:C4.某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .i >6?B .i >7?C .i ≥6?D .i ≥5?解析:根据题意可知该程序运行情况如下: 第1次:S =0+21=2,i =1+1=2; 第2次:S =2+22=6,i =3; 第3次:S =6+23=14,i =4; 第4次:S =14+24=30,i =5; 第5次:S =30+25=62,i =6; 第6次:S =62+26=126,i =7;此时S =126,结束循环,因此判断框应该是“i >6?”.答案:A5.“a <0”是“方程ax 2+1=0至少有一个负根”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选C 方程ax 2+1=0至少有一个负根等价于x 2=-1a,故a <0,故选C.6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)-【解析】圆心坐标为(3,0),∴c =3,又b =4,∴5a =. ∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0). 【答案】 D7.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4D .π 解析:如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P到定点A 的距离|PA |<1的概率为S ′S =π4. 答案:C 8.直线l 经过椭圆的一个短轴顶点顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +yb=1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B .二、填空题(每题5分,共6个小题,满分30分)9.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样方法抽取6个城市,则甲组中应抽取的城市数为________.答案:110.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.答案:311.有一个容量为200的样本,其频率分布直方图如图所示,据图知,样本数据在[8,10)内的频数为( )A .38B .57C .76D .95 答案:C12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合)的中点的轨迹方程为2214x y += 13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.【答案】221168x y +=14.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是 ①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可. 若p 真,由y =c x为减函数,得0<c <1. .....................3分 当1,22x ⎡⎤∈⎢⎥⎣⎦时,由不等式2(x 1)22-+≥(x =1时取等号)知(x)f 在1,22⎡⎤⎢⎥⎣⎦上的最小值为2 ......................6分若q 真,则42c <,即12c < .......................8分 若p 真q 假,则112c ≤<; .......................10分 若p 假q 真,则0c ≤. ......................12分 综上可得,(]1,0,12c ⎡⎫∈-∞⎪⎢⎣⎭......................13分16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,计算被调查的出租车司机对新法规知晓情况比较好的频率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.解:(1)答对题目数小于9的人数为55,记“答对题目数大于等于9”为事件A ,P (A )=1-55100=0.45. .......................6分 (2)记“选出的2人中至少有一名女出租车司机”为事件M ,设答对题目数小于8的司机为A ,B ,C ,D ,E ,其中A ,B 为女司机,任选出2人包含AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,共10种情况,.......................9分(3)至少有一名女出租车司机的事件为AB ,AC ,AD ,AE ,BC ,BD ,BE ,共7种 ..12分则P (M )=710=0.7. ......13分16.(满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM第3题图17.(本小题满分14分) (Ⅰ)证明:在△ABC 中,因为AC =,2AB =,1BC =,所以 BC AC ⊥. ………………3分 又因为 AC FB ⊥, 因为BC FB B =所以 ⊥AC 平面FBC . ………………6分 (Ⅱ)M 为AC 中点时,连结CE ,与DF 交于点N ,连结MN .因为 CDEF 为正方形,所以N 为CE 中点. ……………8分 所以 EA //MN . ……………10分 因为 ⊂MN 平面FDM ,⊄EA 平面FDM , ………12分 所以 EA //平面FDM . …………13分18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率. 规范解答不失分 (Ⅰ)由茎叶图可知:甲班身高集中于160179:之间, 而乙班身高集中于170180: 之间.因此乙班平均身高高于甲班 ...............4分 (Ⅱ)158162163168168170171179182170.10x ++++++++==...............6分 甲班的样本方差为:222222222221(158170)(162170)(163170)(168170)10(168170)(170170)(171170)(179170)(179170)(182170)57.2.s ⎡=-+-+-+-⎣+-+-+-+-+-+-=...............8分(Ⅲ)设身高为176cm的同学被抽中的事件为A;从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173)(181,176)(181,178)(181,179)(179,173)(179,176)(179,178)(178,173)(178, 176) (176,173)共10个基本事件,...............10分而事件A含有4个基本事件;...............12分所以42().105P A ...............14分19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求n,a,p的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.解:(1)第二组的概率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以频率组距=0.35=0.06.............2分 频率分布直方图如下:............4分第一组的人数为1200.6=200,频率为0.04×5=0.2, 所以n =2000.2=1 000 .............6分 因为第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65. 第四组的频率为0.03×5=0.15,所以第四组的人数为1 000×0.15=150.所以a =150×0.4=60 .............8分(2)因为年龄在[40,45)岁的“低碳族”与[45,50)岁的“低碳族”的人数的比为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)中有4人,[45,50)中有2人.设[40,45)中的4人为a ,b ,c ,d ,[45,50)中的2人为m ,n ,则选取2人作为领队的情况有(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),共15种, ............10分(3)其中恰有1人年龄在[40,45)岁的情况有(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),共8种, ............12分(4)所以选取的2名领队中恰有1人年龄在[40,45)岁的概率P =815.............14分 20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=> (1)当1a =时,求椭圆的焦点坐标及离心率;(2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,证明22|F ||F |A B ⋅为定值. 解:(1)焦点坐标12(1,0),F (1,0)F - ..........2分离心率12e = ..........3分(2)当斜率不存在时11|||F B |F A ===此时212|FA ||F B|3a ⋅= 5分当斜率不存在=时,设1122(x ,y ),B(x ,y )A:()AB y k x a =-由222(x a)x 4y k y a =-⎧⎨+=⎩ 得222222(1k )x 240ak x k a a +-+-= 7分 222212122224,11ak k a a x x x x k k -+==++ 9分11|FA |x a |==-22|F A |x a |==-所以22111212|FA||FB|(1)|x x a(x )a |k x ⋅=+-++ 12分 22222222242(1k )|a |11k a a a k k k -=+-+++23a = 13分 所以 22|F ||F |A B ⋅为定值23a .。
江苏省苏州中学2017-2018学年高二上学期期中数学试题(带答案解析)

江苏省苏州中学2017-2018学年高二上学期期中考试数学试题第II 卷(非选择题)一、填空题1.两个相交平面能把空间分成 个部分.2.直线x -y +2=0的倾斜角是________3.若点()1,t 在过点()0,1和()3,4的直线上,则实数t 的值为________4.过点()4,3P 且在两坐标轴上的截距相等的直线共________条.5.对任意实数m ,直线30mx y m --+=恒过定点,则该定点的坐标为_________ 6.在四面体ABCD 中,AB ⊥平面BCD ,BC CD ⊥,则其四个面中直角三角形的个数为____7.底面直径和高均为2的圆柱的体积为________8.已知二面角设l αβ--的大小为60o ,m α⊂,m l ⊥,n β⊂,//n l ,则下列说法中正确的个数为________________①//m n ②m n ⊥ ③//m β ④m β⊥ ⑤//n α ⑥n α⊥9.若各棱长均为1的正六棱柱的12个顶点都在球O 上,则球O 的表面积为____ 10.在棱长为1的正方体1111ABCD A B C D -中,M 是1BB 的中点,直线1D M 与平面ABCD 交于点N ,则线段AN 的长度为________11.在正四面体ABCD 中,直线AB 与平面ACD 所成角的余弦值为_________ 12.在各棱长均为1的正四棱锥P ABCD -中,M 为线段PB 上的一动点,则当AM MC +最小时,cos AMC ∠=_________13.在平面直角坐标系xoy 中,ABC ∆的坐标分别为()1,1A --,()2,0B ,()1,5C ,则BAC ∠的平分线所在直线的方程为_______14.小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,2⎡⎤⎢⎥,类似地,他研究了函数()3g x =,[]0,1x ∈,则函数()g x 的值域为_____二、解答题15.已知过点()3,4P 的直线1l 与直线:3450l x y +-=平行.(1)求直线1l 的方程;(2)求直线1l 与直线l 之间的距离;(3)若过点 ()3,4P 的直线2l 与直线l 相交于点Q ,且4PQ =,求直线2l 的方程. 16.如图,在正方体1111ABCD A B C D -中.(1)求证://AC 平面1111D C B A(2)求证: 1,AC BC 为异面直线(3)求直线AC 与1BC 所成角的大小.17.已知点()4,1P 关于直线:230l x y -+=的对称点为Q .(1)求点Q 的坐标;(2)若点N 在直线l 上,点O 为坐标原点,在下列条件下求点N 的坐标;①||||ON NP +最小②||||ON NP -最小18.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=o ,侧面PAB ⊥底面ABCD ,90BAP ∠=o ,AB AC =,E 、F 分别为BC ,AD 的中点,点M 在线段PD 上.(1)若M 为PD 的中点,求证:平面//MEF 平面PAB ;(2)求证:EF ⊥平面PAC ;(3)若1AP AB ==,求点D 到平面PBC 的距离.19.小明设计了一款正四棱锥形状的包装盒,如图所示,ABCD 是边长为40cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱锥形状的包装盒,设正四棱锥底面正方形的边长为x cm .(1)试用x 表示该四棱锥的高度h ,并指出x 的取值范围;(2)若要求侧面积不小于2600cm ,求该四棱锥的高度的最大值,并指出此时该包装盒的容积.20.已知1α,2α为实数,过原点O 分别作直线111:cos sin 10l x y αα+-=,222:cos sin 10l x y αα+-=的垂线,垂足分别为1H ,2H .(1)若10,2πα⎛⎫∈ ⎪⎝⎭,且直线1l 与x 轴、y 轴交于A ,B 两点,当OAB ∆面积最小时,求实数1α的值;(2)若直线12H H 过点1,02P ⎛⎫⎪⎝⎭,设直线1l 与2l 的交点为Q ,求证:点Q 在一条直线上.参考答案1.4【解析】试题分析:画出示意图即可得:两个相交平面能把空间分成2个部分考点:本题考查了平面的基本性质及推论点评:解答本题,关键是了解两个平面的位置关系,根据模型分析即可2.45°.【解析】分析:先将一般式方程化成斜截式,写出直线的斜率和倾斜角.详解:将20x y ++=化为2y x =--,则该直线的斜率为1-,其倾斜角为3π4. 点睛:本题考查直线的方程、直线的斜率和倾斜角等知识,意在考查学生的基本运算能力. 3.2【解析】【分析】求出过点()0,1和()3,4的直线方程,将1x =代入方程,即可求解.【详解】过点()0,1和()3,4的直线方程为1y x =+,当1x =时,2,2y t =∴=.故答案为:2.【点睛】本题考查点共线以及直线方程,属于基础题.4.2【解析】【分析】直线过原点截距均为0,直线不过原点设为截距式,即可求出结论.【详解】若直线过原点,方程为34y x =, 当直线不过原点,依题意设直线方程为1x y a a+=, (4,3)P 代入直线方程得71,7a a==, 所求的直线方程为70x y +-=,所以过()4,3P 且在两坐标轴上的截距相等的直线共2条.故答案为:2.【点睛】本题考查直线的几何特征,注意过原点的直线在x 轴的截距是在y 轴截距的任意倍,属于基础题.5.(1,3)【解析】【分析】将直线方程化为点斜式,即可求解.【详解】30mx y m --+=化为3(1)y m x -=-,方程表示过点(1,3)斜率为m 的直线方程,所以直线过定点(1,3).故答案为:(1,3).【点睛】本题考查直线方程一般式与其它形式之间互化,属于基础题.6.4【解析】【分析】根据已知可得,,AB BC AB BD BC CD ⊥⊥⊥,可证CD ⊥平面ABC ,即可得出结论.【详解】如图所示四面体ABCD 中,AB ⊥平面BCD ,,,AB BC AB BD AB CD ⊥⊥⊥,,ABC ABD V V 为直角三角形,,,,BC CD BC AB B BC AB ⊥=⊂I 平面ABC ,CD \^平面,ABC CD AC ∴⊥,,ACD BCD ∴V V 为直角三角形,四面体ABCD 中,四个面中都是直角三角形.故答案为:4.【点睛】本题考查线线垂直的判定,线面垂直是解题的关键,要注意空间中的垂直关系相互转化,属于基础题.7.2π【解析】【分析】根据圆柱的体积公式,即可求解.【详解】底面直径和高均为2的圆柱的体积为2122ππ⨯⨯=.故答案为:2π.【点睛】本题考查柱体的体积,熟记公式是解题的关键,属于基础题.8.2【解析】【分析】根据线线,线面关系逐项判断,即可得出结论.【详解】①若//m n ,而//n l ,则//m l ,与已知m l ⊥矛盾,所以//m n 不正确,即①不正确;②m l ⊥,//n l ,则m n ⊥,②正确;③m α⊂,m l ⊥,,m l 相交,所以m 与β相交,③不正确;④若m β⊥,m α⊂则a β⊥,与已知二面角l αβ--的大小为60o 矛盾,所以④不正确;⑤//,,,//n l l n n ααα⊂⊄∴Q ,所以⑤正确,⑥不正确.正确个数为2个.故答案为:2【点睛】本题考查空间线面、面面的位置关系判断,熟记性质定理是解题的关键,属于基础题. 9.5π【解析】【分析】设正六棱柱ABCDEF A B C D E F ''''''-的上下底面中心为,M M ',根据正六棱柱的对称性,1MM 中点O 为球心,求出底面ABCDEF 的外接圆圆心,即可求解.【详解】设正六棱柱ABCDEF A B C D E F ''''''-的底面中心为,M M ',MM '中点为O ,则O 到正六棱柱的各顶点距离都相等,所以O 为正六棱柱外接球的球心,连,OB MB ,OB 为正六棱柱外接球的半径,1111,222MB AB OM MM AA ''=====,OB ===, 球O 的表面积为254()454OB πππ=⨯=. 故答案为:5π.【点睛】本题考查多面体与球的“接”“切”问题,确定外接球的球心是解题的关键,属于中档题.10【解析】【分析】在平面11BB D D 中,1D M 与BD 的交点即为N ,求出BN 长,即可求解.【详解】连BD ,在正方体1111ABCD A B C D -中,11111,//,BB DD BB DD DD BD =⊥,所以四边形11BB D D 为矩形,1,BD D M 相交,其交点为1D M 平面ABCD 的交点N ,Q M 是1BB 的中点,111,//2BM DD BM DD ∴=, BM 为1DD N V 的中位线,B 为DN 中点,正方体各棱长为1,BN BD ∴==,1,135ABN AB BN ABN ==∠=o V ,2222cos AN AB BN AB BN ABN =+-⋅⋅∠32152=+⨯=,AN ∴=故答案为【点睛】本题考查空间线面位置关系,确定直线与平面交点是解题的关键,意在考查直观想象能力,属于中档题.11.3【解析】【分析】设O 为ACD V 的中心,连,OA OB ,根据正四面体的垂直关系,可得BAO ∠为所求的角,解Rt ABO V ,即可得出结论.【详解】设O 为ACD V 的中心,连,OB OA 交CD 于E ,则E 为CD 中点,在正四面体ABCD 中,OB ⊥平面,ACD OA 为AB 在平面ACD 射影,BAO ∴∠为直线AB 与平面ACD 所成角,设正四面体的边长为1,则2233OA AE ===在Rt ABO V中,cos OA BAO AB ∠==. 故答案为:3.【点睛】本题考查直线与平面所成的角,要注意求空间角的步骤“做”“证”“算”缺一不可,属于基础题.12.13-【解析】【分析】将侧面PAB 和侧面PBC 平展在一个平面上,连AC ,即可求出满足AM MC +最小时,点M 的位置,以及,AM CM 长,解AMC V ,即可求出结论.【详解】将侧面PAB 和侧面PBC 平展在一个平面上,连AC 与PB 交点即为满足AM MC +最小,正四棱锥P ABCD -各棱长均为1,在平展的平面中四边形PABC 为菱形,且60PAB ∠=o ,AM MC ==P ABCD -中,AC = 在ACM V 中,222332144cos 32324AM CM AC AMC AM CM +-+-∠===-⋅⋅. 故答案为:13-.【点睛】本题考查线线角,要注意多面体表面的长度关系转化为共面的长度关系,考查直观想象能力,属于中档题.13.0x y -=【解析】【分析】设BAC ∠的平分线与BC 交于D ,根据角平分线与面积关系求出||||CD DB ,利用共线向量坐标关系,求出D 点坐标,即可求解.【详解】设BAC ∠的角平分线与BC 交于(,)D a b ,1||||sin ||||221||||||||sin 2ACD ABD AC AD CAD S AC CD S AB DB AB AD BAD ⋅⋅∠∴=====⋅⋅∠V V , 2,(1,5)2(2,)CD DB a b a b ∴=--=--u u u r u u u r ,解得55,33a b ==, 55(,)33D ∴,所以BAC ∠的平分线AD 方程为0x y -=. 故答案为:0x y -=.【点睛】本题考查角平分线方程、向量共线坐标,应用角平分线性质是解题的关键,属于中档题.14.2] 【解析】【分析】根据斜率的几何意义,()32g x x =-表示函数y =(2,3)连线的斜率,数形结合,即可求解.【详解】 ()32g x x =-为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x =∈图像上, (1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-, 最小值为过A点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k --=≠∆=--=,即281210k k -+=,解得k =或k =当k =3[0,1]4==,当34k -=3[0,1]== 不合题意,舍去,()g x值域为3[,2]4. 故答案为:3[,2]4.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.15.(1)34250x y +-=;(2)4;(3)430x y -=.【解析】【分析】(1)根据直线平行关系,设出直线1l 的方程,点P 坐标代入求出参数,即可求解;(2)根据平行线距离关系,转化为求点P 到直线l 的距离;(3)由(2)得4PQ =为P 到直线l 的距离,所以2l 垂直l ,根据两直线的垂直关系,即可求出直线2l 方程.【详解】(1)直线1l 与直线:3450l x y +-=平行,设1l 方程为340,5x y m m ++=≠-,点()3,4P 代入1l 方程得25m =-,直线1l 方程为34250x y +-=;(2)1l Q 平行2l ,直线1l 与直线l 之间的距离等于点P 到直线l 的距离,4=,所以直线1l 与直线l 之间的距离4;(3)||4PQ =且点Q 在直线l 上,由(2)得||PQ 为到P 到直线l 的距离,所以2l l ⊥,设其方程为430,(3,4)x y n P -+=代入得0n =,所以直线2l 方程为430x y -=.【点睛】本题考查直线与直线的位置关系以及点到直线的距离,注意平行和垂直关系合理设直线方程,属于基础题.16.(1)证明详见解答;(2)证明详见解答;(3)3π. 【解析】【分析】(1)根据正方体的平行关系,可证11//AC A C ,即可证明结论;(2)用反证法证明,假设1,AC BC 共面,得出A 在平面11BB C C 内,即可证明结论; (3)利用正方体可证11//AD BC ,做出异面直线AC 与1BC 所成的角,通过1ACD △,即可求解.【详解】(1)在正方体1111ABCD A B C D -中,连11A C 1111//,AA CC AA CC =,四边形11AAC C 为平行四边形,1111//,AC AC AC ∴⊂平面1111D C B A ,AC ⊄平面1111D C B A ,//AC ∴平面1111D C B A ;(2)假设1,AC BC 为共面直线,则1,,,A B C C 在同一个平面内,1,,B C C Q 三点不共面,1,,B C C ∴确定平面11BB C C ,1,,,A B C C ∴共面于平面11BB C C ,这与已知点A 不在平面11BB C C 内矛盾,所以假设不成立,即1,AC BC 是异面直线;(3)连11,AD CD ,在正方体1111ABCD A B C D -中,1111//,AB C D AB C D =,四边形11ABC D 为平行四边形,11//D A BC ∴,1CAD ∠(或补角)为异面直线AC 与1BC 所成角,在1ACD △中,111,3AC CD AD CAD π==∴∠=, 所以直线AC 与1BC 所成角为3π.【点睛】本题考查线面平行证明、异面直线证明、异面直线所成的角,要注意几何法求空间角体现角的“做”和“证”,属于基础题.17.(1)Q (2,5);(2;②.【解析】【分析】(1)设点Q 的坐标为(,)a b ,利用PQ 中点在直线l 上,PQ 与直线l 垂直,建立,a b 方程关系,即可求解;(2)①由(1)得||||NP NQ =,数形结合可得||||||ON NQ OQ +≥,即可求出结论; ②由||||||||ON NP NP -≤,根据图形去绝对值,即可求出结论.【详解】(1)设点Q 的坐标为(,)a b ,依题意得1244123022b a a b -⎧=-⎪⎪-⎨++⎪-⋅+=⎪⎩,解得25a b =⎧⎨=⎩,即(2,5)Q , 所以点Q 坐标为(2,5);(2)①,P Q Q 关于直线l 对称,点N 在直线l 上,||||,||||||||||NP QN ON NP ON QN OQ ∴=∴+=+≥=,当且仅当,,O N Q 三点共线时,等号成立,所以||||ON NP +;②||||||||,||||||ON NP OP ON NP OP -≤-≥-=当且仅当,,O N P 三点共线时,等号成立,所以||||ON NP -的最小值为【点睛】本题考查点关于直线对称、动点到两定点距离和以及差的最小值,应用几何法求最值是解题的关键,意在考查直观想象能力,属于中档题.18.(1)证明详见解答;(2)证明详见解答;(3)3. 【解析】【分析】 (1)由已知可得//,//EF AB MF PA ,进而有//EF 平面PAB ,//MF 平面PAB ,即可证明结论;(2)根据已知可得PA ⊥平面ABCD ,所以有PA EF ⊥,在底面ABCD 中,可得AB AC ⊥,//AB EF ,进而有EF AC ⊥,即可证明结论;(3)求出,PBC BCD V V 的面积,利用等体积法,即可求解.【详解】(1)底面ABCD 是平行四边形,E 、F 分别为,BC AD 的中点,//EF AB ∴,M Q 为PD 的中点,//MF PA ∴,AB Ì平面PAB ,EF ⊄平面PAB ,//EF ∴平面PAB ,同理//MF 平面PAB ,,,EF MF F EF MF =⊂I 平面MEF ,∴平面//MEF 平面PAB ;(2)侧面PAB ⊥底面ABCD ,90BAP ∠=o ,即PA AB ⊥,侧面PAB ⋂底面,ABCD AB PA =⊂平面PAB ,PA ∴⊥平面,ABCD EF ⊂平面,ABCD PA EF ⊥Q ,底面ABCD 是平行四边形,135,45BCD ABC ∠=∴∠=o o, ,90,,//,AB AC BAC AB AC EF AB EF AC =∴∠=⊥∴⊥o Q ,,,PA AC A PA AC =⊂Q I 平面PAC ,∴EF ⊥平面PAC ;(3)PA ⊥Q 平面,,ABCD PA AB PA AC ∴⊥⊥,1,,PA AB AC PB PC AB AC BC =====⊥∴=PBC ∴△是等边三角形,2PBC S ∴==V , 211//,22BCD ABC BC AD S S AB ∴===V V Q , 设点D 到平面PBC 的距离为h ,11,33P BCD D PBC BCD PBC V V PA S h S --=∴⋅=⋅V V Q ,1h == 所以点D 到平面PBC的距离为3. 【点睛】本题考查面面平行、线面垂直的证明以及点到面的距离,注意空间垂直之间的相互转化,应用等体积法求点面距要熟练掌握,属于中档题.19.(1)h x =∈;(2)max 20h =,40003. 【解析】【分析】(1)设正四棱锥侧面等腰三角形高为h ',由正方形ABCD ,可得2x h '+=,,2x h h '组成直角三角形,即可得到,x h 关系,进而求出x 的范围; (2)利用(1)中,x h '关系,求出侧面积关于x 的函数,进一步求出满足条件的x 范围,可求出h 的最大值,即可求出结论.【详解】(1)设正四棱锥侧面等腰三角形高为h ',在正方形ABCD 中,22x x h h ''+=∴=,在四棱锥中,222222(),)224x x x h h h '=+∴=+,2800,h h =-∴=Q 28000,0h x =->∴<<,h x ∴=∈;(2)四棱锥的侧面积2142)60022x S xh x x '=⨯==-+≥,26000x -+≤,解得0x x ≤≤<<Qx ∴≤<x =时,max 20h ==,此时包装盒的容积为2211400020333V x h ==⨯⨯=, 所以满足条件的四棱锥的高度的最大值为20, 此时该包装盒的容积为40003. 【点睛】本题考查函数的应用问题、正方形和正四棱锥的性质、一元二次不等式、一次函数最值,意在考查直观想象、数学建模、数学计算能力,属于中档题,20.(1)4π;(2)证明详见解答. 【解析】【分析】 (1)求出,A B 两点坐标,将OAB ∆面积表示为1α的函数,求出最小值,即可求出结论; (2)求出原点到直线12,l l 的距离为1,可得12,l l 为单位圆的切线,切点为12,H H ,将12,l l 方程用12,H H 坐标表示,设Q 的坐标,代入12,l l 方程,进而求出直线12H H 方程,即可求解.【详解】(1)1110,,sin 0,cos 02πααα⎛⎫∈≠≠ ⎪⎝⎭直线111:cos sin 10l x y αα+-=, 令11110,,(0,)sin sin x y B αα==, 令11110,,(,0)cos cos y x B αα==, 11111112sin cos sin 2AOB S ααα=⋅⋅=V , 110,022πααπ<<∴<<Q , 当11sin 21,4παα==时,min ()1AOB S =V ,OAB ∆面积最小时,实数1α的值为4π; (2)原点O 的直线1l1=, 同理原点O 的直线2l 距离为1,所以12,l l 为圆221x y +=的切线,答案第17页,总17页 12,H H 为切点,直线12H H 过点1,02P ⎛⎫ ⎪⎝⎭,且直线1l 与2l 相交于Q , 12,H H ∴不在x 轴上,设11112212(,),(,),0,0H x y H x y y y ≠≠,所以直线1l 化为1111()x y y x x y -=--,整理得111x x y y +=, 同理2l 方程为221x x y y +=,设1l 与2l 的交点为00(,)Q x y ,所以有101020201,1x x y y x x y y +=+=,所以直线12H H 方程为001x x y y +=,且过点1(,0)2P , 0011,22x x ∴==,即点Q 在直线2x =上. 【点睛】本题考查直线方程、直线与圆位置关系,解题的关键要把直线转化为圆的切线,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.。
苏州新区一中数学高二上期中经典题(提高培优)

一、选择题1.(0分)[ID :13010]已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s <>2.(0分)[ID :12998]用电脑每次可以从区间()0,1内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为( ) A .127B .23C .827D .493.(0分)[ID :12997]在本次数学考试中,第二大题为多项选择题.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分,小明因某原因网课没有学习,导致题目均不会做,那么小明做一道多选题得5分的概率为( ) A .115B .112C .111D .144.(0分)[ID :12994]设样本数据1210,,,x x x 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =,则1210,,,y y y 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +5.(0分)[ID :12989]抛掷一枚质地均匀的骰子,记事件A 为“向上的点数是偶数”,事件B 为“向上的点数不超过3”,则概率()P A B =( )A .12B .13C .23D .566.(0分)[ID :12975]有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .157.(0分)[ID :12967]将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A .192181020C C C B .1921810202C C C C .1921910202C C C D .192191020C C C 8.(0分)[ID :12965]微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A.1.19B.1.23C.1.26D.1.319.(0分)[ID:12963]某校高一1班、2班分别有10人和8人骑自行车上学,他们每天骑行路程(单位:千米)的茎叶图如图所示:则1班10人每天骑行路程的极差和2班8人每天骑行路程的中位数分别是A.14,9.5B.9,9C.9,10D.14,910.(0分)[ID:12954]执行如图所示的程序框图,则输出的结果是()A.5B.7C.9D.1111.(0分)[ID:12951]若框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是()A.k>8?B.k≤8?C.k<8?D.k=9?12.(0分)[ID :12949]已知不等式501x x -<+的解集为P ,若0x P ∈,则“01x <”的概率为( ). A .14B .13C .12D .2313.(0分)[ID :12944]如图所示是为了求出满足122222018n +++>的最小整数n ,和两个空白框中,可以分别填入( )A .2018S >?,输出1n -B .2018S >?,输出nC .2018S ≤?,输出1n -D .2018S ≤?,输出n14.(0分)[ID :12934]某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .6?i >B .7?i >C .6?i ≥D .5?i ≥15.(0分)[ID :13018]采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .13二、填空题16.(0分)[ID :13127]在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示).17.(0分)[ID :13118]古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________18.(0分)[ID :13103]在区间[]3,3-上随机取一个数x ,使得11x +≥成立的概率为______.19.(0分)[ID :13101]变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表: X 10 11.3 11.8 12.5 13 U 10 11.3 11.8 12.5 13 Y12345V54321用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.20.(0分)[ID :13090]如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a ,b 分别为98、63,则输出的a =_______.21.(0分)[ID :13069]已知变量,x y 取值如表:x0 1 4 5 6 8y 1.3 1.85.66.17.4 9.3若y 与x 之间是线性相关关系,且ˆ0.95yx a =+,则实数a =__________.22.(0分)[ID :13068]已知多项式32256f x x x x =--+(),用秦九韶算法,当10x =时多项式的值为__________.23.(0分)[ID :13064]根据下图所示的流程图,回答下面问题:若a =50.6,b =0.65,c =log0.65,则输出的数是________.24.(0分)[ID :13040]已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;25.(0分)[ID :13029]从一副扑克牌中取出1张A ,2张K ,2张Q 放入一盒子中,然后从这5张牌中随机取出两张,则这两张牌大小不同的概率为__________.三、解答题26.(0分)[ID :13222]某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数, 得到如下资料: 日期1月10日 2月10日 3月10日 4月10日 5月10日 6月10日 昼夜温差()x c 10 11 13 12 8 6 就诊人数y (个) 222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取 2 组,用剩下的 4 组数据求 线性回归方程,再用被选取的 2 组数据进行检验; (Ⅰ)求选取的 2 组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出 y 关于x 的线性回归方程 ;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?附:对于一组数据11(,)u v ,2,2)u v ( ,…,(,)n n u v ,其回归直线V u αβ=+ 的斜率和截距的最小二乘估计分别为i 1i i i 12i n()(?)u )ˆ(n u u v u β==∑-=∑-,ˆ-ˆu ανβ= . 27.(0分)[ID :13208]国家公安机关为给居民带来全方位的安全感,大力开展智慧警务社区建设.智慧警务建设让警务更智慧,让民生更便利,让社区更安全.下表是某公安分局在建设智慧警务社区活动中所记录的七个月内的该管辖社区的违法事件统计数据: 月份 1 2 3 4 5 6 7 违法案件数196101663421116根据以上数据,绘制了如图所示的散点图.(1)根据散点图判断,用y a bx =+与(0,01)xy c d b d =⋅<<<哪一个更适宜作为违法案件数y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果及表中所给数据,求y 关于x 的回归方程(保留两位有效数字),并预测第8个月该社区出现的违法案件数(取整数). 参考数据:yv71i ii x y =∑71i i i x v =∑721ii x=∑ 2.541062.141.54945 36.186 140346.74其中i i v lgy =,7117i i v v ==∑.参考公式:对一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线的斜率和截距的最小二乘估计公式分别为:1221ni i i nii u v nuvunuβ==-=-∑∑,v u αβ=-.28.(0分)[ID :13164]某药厂为了了解某新药的销售情况,将今年2至6月份的销售额整理得到如下图表:(1)根据2至6月份的数据,求出每月的销售额y 关于月份x 的线性回归方程y b x a ∧∧∧=+;(2)根据所求线性回归方程预测该药厂今年第三季度(7,8,9月份)这种新药的销售总额.(参考公式:^1221()ni ii nii x y nx yb xn x ==-=-∑∑,^^y x a b=-) 29.(0分)[ID :13138]某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x (单位:千万元)对年销售量y (单位:千万件)的影响,统计了近10年投入的年研发费用i x 与年销售量()1,2,,10i y i =的数据,得到散点图如图所示:(Ⅰ)利用散点图判断,y a bx =+和dy c x =⋅(其中c ,d 为大于0的常数)哪一个更适合作为年研发费用x 和年销售量y 的回归方程类型(只要给出判断即可,不必说明理由);(Ⅱ)对数据作出如下处理:令ln i u x =,ln i y υ=,得到相关统计量的值如下表:根据(Ⅰ)的判断结果及表中数据,求y 关于x 的回归方程; (Ⅲ)已知企业年利润z (单位:千万元)与x ,y 的关系为27z y x e=-(其中2.71828e =),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据()()()1122,,,,,,n n u u u υυυ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()1122211ˆnniii ii i nni i i i u u u nu u uu nuυυυυβ====---==--∑∑∑∑,ˆˆˆu αυβ=- 30.(0分)[ID :13137]某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学所需时间的范围是[]0100,,样本数据分组为)020⎡⎣,,)2040⎡⎣,,)4060⎡⎣,,)6080⎡⎣,,)80100⎡⎣,.(1)求直方图中x 的值;(2)如果上学所需时间不少于1小时的学生可申请在学校住宿,若该学校有600名新生,请估计新生中有多少名学生可以申请住宿;(3)由频率分布直方图估计该校新生上学所需时间的平均值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C 3.C 4.A 5.D6.C7.A8.C9.A10.C11.A12.B13.A14.A15.C二、填空题16.【解析】【分析】【详解】已知六个点任取三个不同取法总数为:;可构成三角形的个数为:所以所求概率为:17.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为18.【解析】【分析】求出不等式的解集计算长度运用几何概型即可求出概率【详解】或则在区间上随机取一个数x使得成立的概率为故答案为【点睛】本题考查了几何概型中的长度型概率只需将题目中的含有绝对值不等式进行求19.【解析】分析:根据回归系数几何意义得详解:因为Y与X之间正增长所以因为V与U之间负增长所以因此点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是20.7【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的值【详解】由程序框图可知:则因此输出的为故答案为7【点睛】本题主要考查程序框图的循环结构流程图属21.【解析】分析:首先求得样本中心点然后结合回归方程过样本中心点即可求得实数a 的值详解:由题意可得:回归方程过样本中心点则:解得:故答案为:145点睛:本题主要考查回归方程的性质及其应用等知识意在考查学22.【解析】分析:由题意首先整理所给的多项式然后利用秦九韶算法求解多项式的值即可详解:由题意可得:当时故答案为点睛:本题主要考查秦九韶算法及其应用意在考查学生的转化能力和计算求解能力23.6【解析】因为所以输出24.【解析】为单独递增函数所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性除注意各段的单调性外还要注意25.【解析】试题分析:从这5张牌中随机取出两张的情况有:其中不同的有8种故概率是三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】,x s的值,即可得到答案.分别根据数据的平均数和方差的计算公式,求得2【详解】由题意,根据平均数的计算公式,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则()()()()()2222212481757070706070907050x x x ⎡⎤=-+-++-+-+-⎣⎦()()()2221248170707050050x x x ⎡⎤=-+-++-+⎣⎦,()()()()()222222124817070708070707050s x x x ⎡⎤=-+-++-+-+-⎣⎦()()()222124817070701007550x x x ⎡⎤=-+-++-+<⎣⎦,故275s <.选A . 【点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,数基础题.2.C解析:C 【解析】 由题意可得: 每个实数都大于13的概率为12133p =-=, 则3个实数都大于13的概率为328327⎛⎫= ⎪⎝⎭. 本题选择C 选项.3.C解析:C 【解析】 【分析】根据题意结合组合的知识可知,总的答案的个数为11个,而正确的答案只有1个,根据古典概型的计算公式,即可求得结果. 【详解】总的可选答案有:AB ,AC ,AD ,BC ,BD ,CD , ABC ,ABD ,ACD ,BCD ,ABCD ,共11个, 而正确的答案只有1个, 即得5分的概率为111p =. 故选:C. 【点睛】本题考查了古典概型的基本知识,关键是弄清一共有多少个备选答案,属于中档题.4.A解析:A 【解析】试题分析:因为样本数据1210,,,x x x 的平均数是1,所以1210,,...y y y 的平均数是121012101210.........1101010y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =),以及数据1210,,,x x x 的方差为4可知数据1210,,,y y y 的方差为2144⨯=,综上故选A.考点:样本数据的方差和平均数.5.D解析:D 【解析】 【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况,得到答案. 【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况, 故5()6P AB =. 故选:D . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.6.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.7.A解析:A 【解析】 【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果. 【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C 种结果, 而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C 中结果,根据古典概型的概率公式得192181020=C C P C . 故选:A. 【点睛】本题主要考查古典概型和组合问题,属于基础题.8.C解析:C 【解析】 【分析】根据频率分布直方图中平均数的计算方法求解即可. 【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=. 故选:C 【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.9.A解析:A 【解析】2班共有8个数据,中间两个是9和10,因此中位数为9.5,只有A 符合,故选A .(1班10个数据最大为22,最小为8,极差为14).10.C解析:C 【解析】循环依次为123,123;S K =+==+=369,325;S K =+==+=91019,527;S K =+==+=191433,729;S K =+==+=结束循环,输出9;K =选C.11.A解析:A 【解析】 【分析】根据所给的程序运行结果为S =20,执行循环语句,当计算结果S 为20时,不满足判断框的条件,退出循环,从而到结论. 【详解】由题意可知输出结果为S =20, 第1次循环,S =11,K =9, 第2次循环,S =20,K =8,此时S 满足输出结果,退出循环,所以判断框中的条件为k >8. 故选:A . 【点睛】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.12.B解析:B 【解析】 【分析】 【详解】分析:解分式不等式得集合P ,再根据几何概型概率公式(测度为长度)求结果. 详解:(5)(1)050101x x x x x -+<⎧-<⇒⎨+≠+⎩, ∴{}|15P x x =-<<,||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.13.A解析:A 【解析】 【分析】 通过要求122222018n +++>时输出且框图中在“是”时输出确定“”内应填内容;再通过循环体确定输出框的内容.【详解】因为要求122222018n +++>时输出,且框图中在“是”时输出,所以“”内输入“2018S >?”,又要求n 为最小整数, 所以“”中可以填入输出1n -,故选:A . 【点睛】本题考查了程序框图的应用问题,是基础题.14.A解析:A 【解析】试题分析:根据程序框图可知,该程序执行的是2362222++++,所以判断框中应该填i>6?.考点:本小题主要考查程序框图的识别和应用,考查学生读图、识图的能力.点评:要分清是当型循环还是直到型循环,要特别注意退出循环的条件的应用,避免多执行或少执行一步.15.C解析:C 【解析】 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.二、填空题16.【解析】【分析】【详解】已知六个点任取三个不同取法总数为:;可构成三角形的个数为:所以所求概率为:解析:34【分析】 【详解】已知A C E F B C D 、、、共线;、、共线;六个点任取三个不同取法总数为:36C ;可构成三角形的个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=. 17.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为 解析:12【解析】五种抽出两种的抽法有2510C =种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是12,故答案为12. 18.【解析】【分析】求出不等式的解集计算长度运用几何概型即可求出概率【详解】或则在区间上随机取一个数x 使得成立的概率为故答案为【点睛】本题考查了几何概型中的长度型概率只需将题目中的含有绝对值不等式进行求 解析:23【解析】 【分析】求出不等式的解集,计算长度,运用几何概型即可求出概率 【详解】11x +≥0x ∴≥或2x ≤-则在区间[]33-,上随机取一个数x ,使得11x +≥成立的概率为4263= 故答案为23【点睛】本题考查了几何概型中的长度型概率,只需将题目中的含有绝对值不等式进行求解,然后计算出长度,即可得到结果19.【解析】分析:根据回归系数几何意义得详解:因为Y 与X 之间正增长所以因为V 与U 之间负增长所以因此点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是解析:12b b >.分析:根据回归系数几何意义得120b b >> 详解:因为Y 与X 之间正增长,所以10b > 因为V 与U 之间负增长,所以20b < 因此120b b >>,点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .b 的正负,决定正相关与负相关.20.7【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的值【详解】由程序框图可知:则因此输出的为故答案为7【点睛】本题主要考查程序框图的循环结构流程图属解析: 7 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出a 的值. 【详解】由程序框图可知:9863a b =>=,359863,286335a b ∴←=-←=-, 73528,21287a b ∴←=-←=-, 14217,72114a b ←=-←=-,7147a ←=-,则7a b ==,因此输出的a 为7,故答案为7. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.21.【解析】分析:首先求得样本中心点然后结合回归方程过样本中心点即可求得实数a 的值详解:由题意可得:回归方程过样本中心点则:解得:故答案为:145点睛:本题主要考查回归方程的性质及其应用等知识意在考查学 解析:1.45【解析】分析:首先求得样本中心点,然后结合回归方程过样本中心点即可求得实数a 的值.详解:由题意可得:01456846x +++++==,1.3 1.8 5.6 6.17.49.35.256y +++++==,回归方程过样本中心点,则:5.250.954a =⨯+,解得: 1.45a =. 故答案为: 1.45.点睛:本题主要考查回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.22.【解析】分析:由题意首先整理所给的多项式然后利用秦九韶算法求解多项式的值即可详解:由题意可得:当时故答案为点睛:本题主要考查秦九韶算法及其应用意在考查学生的转化能力和计算求解能力 解析:756【解析】分析:由题意首先整理所给的多项式,然后利用秦九韶算法求解多项式的值即可. 详解:由题意可得:()()322256256f x x x x x x x =--+=--+()256x x x ⎡⎤=--+⎣⎦,当10x =时,()()10102105106756f =-⨯-⨯+=⎡⎤⎣⎦. 故答案为 756.点睛:本题主要考查秦九韶算法及其应用,意在考查学生的转化能力和计算求解能力.23.6【解析】因为所以输出解析:6 【解析】因为a b c >>,所以输出50.6.a =24.【解析】为单独递增函数所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性除注意各段的单调性外还要注意 解析:45a ≤<【解析】()()12120f x f x x x ->-⇒ log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()为单独递增函数,所以15045log (32)3(5)3aa a a a >⎧⎪->⇒≤<⎨⎪-≥--⎩ 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围25.【解析】试题分析:从这5张牌中随机取出两张的情况有:其中不同的有8种故概率是 解析:45【解析】试题分析:从这5张牌中随机取出两张的情况有:,,,,,,,,,AK AK AQ AQ KK KQ KQ KQ KQ QQ ,其中不同的有8种,故概率是84105P == 。
2016-2017学年江苏省苏州市新区一中高二(上)数学期中试卷带解析答案

2016-2017学年江苏省苏州市新区一中高二(上)期中数学试卷一、填空题(本大题有14小题,每小题5分共70分)1.(5分)设AA1是正方体的一条棱,则这个正方体中与AA1异面的棱共有条.2.(5分)已知平面外一条直线上有两个不同的点到这个平面的距离相等,则这条直线与该平面的位置关系是.3.(5分)用一张长12cm,宽8cm的矩形围成圆柱形的侧面,求这个圆柱的体积是cm3.4.(5分)P点在直线3x+y﹣5=0上,且P到直线x﹣y﹣1=0的距离等于,则P点的坐标为.5.(5分)直线y=3x+3关于直线l;x﹣y﹣2=0的对称直线方程为.6.(5分)设直线l的方程为2x+(k﹣3)y﹣2k+6=0(k≠3),若直线l在x轴、y轴上截距之和为0,则k的值为.7.(5分)若点(1,1)在圆(x﹣a)2+(y+a)2=4的内部,则实数a的取值范围是.8.(5分)若正六棱锥的底面边长为2cm,体积为2cm3,则它的侧面积为cm2.9.(5分)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是.10.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.11.(5分)已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x﹣4y=0的两个交点,并且有最小面积,则此圆的方程为.12.(5分)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则三棱锥P﹣ABC的体积为.13.(5分)已知过定点P(2,0)的直线l与曲线y=相交于A、B两点,O为坐标原点,当△AOB的面积取最大时,直线的倾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正确答案的序号是.(写出所有正确答案的序号)14.(5分)在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1,y1),N(x2,y2),且+=0,则实数a的值为.二、解答题(本大题有6小题,共90分)15.(14分)已知直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0(1)若直线l1与l2垂直,求实数m的值;(2)若直线l1与l2平行,求实数m的值.16.(14分)如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD(1)求证:BD⊥PC;(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.17.(14分)在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x ≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;(2)当△AOB的面积取最小值时,求直线AB的方程.(3)当PA•PB取最小值时,求直线AB的方程.18.(16分)如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的体积;(2)求证:AC⊥平面DEF;(3)若M为DB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF.19.(16分)如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为,求该圆形标志物的半径.20.(16分)已知圆O:x2+y2=r2(r>0),点P为圆O上任意一点(不在坐标轴上),过点P作倾斜角互补的两条直线分别交圆O于另一点A,B.(1)当直线PA的斜率为2时,①若点A的坐标为(﹣,﹣),求点P的坐标;②若点P的横坐标为2,且PA=2PB,求r的值;(2)当点P在圆O上移动时,求证:直线OP与AB的斜率之积为定值.2016-2017学年江苏省苏州市新区一中高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题有14小题,每小题5分共70分)1.(5分)设AA1是正方体的一条棱,则这个正方体中与AA1异面的棱共有4条.【解答】解:如图,与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.故答案为:4.2.(5分)已知平面外一条直线上有两个不同的点到这个平面的距离相等,则这条直线与该平面的位置关系是平行或相交.【解答】解:分两种情况①当A、B两点在平面α的同侧时,由于A、B到α的距离相等,所以直线AB与平面α平行;②当A、B两点在平面α的两侧时,并且AB的中点C在平面α内时,A、B到α的距离相等,此时直线AB与平面α相交.综上所述,可得:直线与平面平行或直线与平面相交故答案为:平行或相交.3.(5分)用一张长12cm,宽8cm的矩形围成圆柱形的侧面,求这个圆柱的体积是或cm3.【解答】解:∵侧面展开图是长12cm,宽8cm的矩形,若圆柱的底面周长为12cm,则底面半径R=cm,h=8cm,此时圆柱的体积V=π•R2•h=cm3若圆柱的底面周长为8cm,则底面半径R=cm,h=12cm,此时圆柱的体积V=π•R2•h=cm3.故答案为:或cm3.4.(5分)P点在直线3x+y﹣5=0上,且P到直线x﹣y﹣1=0的距离等于,则P点的坐标为(1,2)或(2,﹣1).【解答】解:设P点坐标为(a,5﹣3a),由题意知:=.解之得a=1或a=2,∴P点坐标为(1,2)或(2,﹣1).故答案为:(1,2)或(2,﹣1).5.(5分)直线y=3x+3关于直线l;x﹣y﹣2=0的对称直线方程为x﹣3y﹣11=0.【解答】解:因为直线x﹣y﹣2=0的斜率为1,故有,将其代入直线3x ﹣y+3=0即得:3(y+2)﹣(x﹣2)+3=0,整理即得x﹣3y﹣11=0.故答案为:x﹣3y﹣11=0.6.(5分)设直线l的方程为2x+(k﹣3)y﹣2k+6=0(k≠3),若直线l在x轴、y轴上截距之和为0,则k的值为1.【解答】解:直线与两坐标轴的交点分别为(k﹣3,0),(0,2),由题意可得k﹣3+2=0,∴k=1.故答案为1.7.(5分)若点(1,1)在圆(x﹣a)2+(y+a)2=4的内部,则实数a的取值范围是(﹣1,1).【解答】解:∵点(1,1)在圆(x﹣a)2+(y+a)2=4的内部,∴(1﹣a)2+(1+a)2<4.即a2<1.解得:﹣1<a<1.∴实数a的取值范围为(﹣1,1).故答案为:(﹣1,1).8.(5分)若正六棱锥的底面边长为2cm,体积为2cm3,则它的侧面积为12 cm2.【解答】解:由题意可知该几何体是底面为正六边形的棱锥体,底面为正六边形可分成6个全等的等边三角形.其边长为2,底面的面积S=6.∵该几何体体积V=2cm3,∴棱锥的高h==1所以:棱长=侧面积是6个全等的等腰三角形,其高是2,一个等腰三角形面积为2,=2×6=12.故得该几何体侧面积S侧故答案为12.9.(5分)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是②④.【解答】解:①错误,l可能在平面α内;②正确,l∥β,l⊂γ,β∩γ=n⇒l∥n⇒n⊥α,则α⊥β;③错误,直线可能与平面相交;④∵α⊥β,α∥γ,⇒γ⊥β,故④正确.故答案为②④;10.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.11.(5分)已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x﹣4y=0的两个交点,并且有最小面积,则此圆的方程为x2+y2+x﹣y+=0.【解答】解:可设圆的方程为x2+y2+2x﹣4y+λ(2x+y+4)=0,即x2+y2+2(1+λ)x+(λ﹣4)y+4λ=0,此时圆心坐标为(﹣1﹣λ,),显然当圆心在直线2x+y+4=0上时,圆的半径最小,从而面积最小,∴2(﹣1﹣λ)++4=0,解得:λ=,则所求圆的方程为:x2+y2+x﹣y+=0.故答案为:x2+y2+x﹣y+=0.12.(5分)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则三棱锥P﹣ABC的体积为.【解答】解:三棱锥是正方体的一个角,它的外接球就是三棱锥扩展为正方体的外接球,正方体的体对角线就是外接球的直径,所以正方体的体对角线长为:,球的半径为:;所以正方体的棱长为:a=2.三棱锥P﹣ABC的体积为:=.故答案为:.13.(5分)已知过定点P(2,0)的直线l与曲线y=相交于A、B两点,O为坐标原点,当△AOB的面积取最大时,直线的倾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正确答案的序号是⑤.(写出所有正确答案的序号)【解答】解:当△AOB面积取最大值时,OA⊥OB,∵过定点P(2,0)的直线l与曲线y=相交于A、B两点,∴圆心O(0,0),半径r=,∴OA=OB=,AB=2,∴圆心O(0,0)到直线直线l的距离为1,当直线l的斜率不存在时,直线l的方程为x=2,不合题意;当直线l的斜率存在时,直线l的方程为y=k(x﹣2),圆心(0,0)到直线l的距离d==1,解得k=,由题意可知当△AOB的面积取最大时,直线的倾斜角是150°.故答案为⑤.14.(5分)在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1,y1),N(x2,y2),且+=0,则实数a的值为3或﹣2.【解答】解:设MN中点为Q(x0,y0),T(1,0),圆心R(a,﹣1),根据对称性,MN⊥PR,===,∵k MN=,+=0∴k MN•k TQ=﹣1,∴MN⊥TQ,∴P,Q,R,T共线,∴k PT=k RT,即,∴a2﹣a﹣6=0,∴a=3或﹣2.故答案为:3或﹣2.二、解答题(本大题有6小题,共90分)15.(14分)已知直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0(1)若直线l1与l2垂直,求实数m的值;(2)若直线l1与l2平行,求实数m的值.【解答】解:(1)∵直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0,直线l1与l2垂直,∴(m﹣2)×1+3m=0,解得m=.(2∵直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0,直线l1与l2平行,∴,解得m=﹣1.16.(14分)如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD(1)求证:BD⊥PC;(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.【解答】证明:(1)连结AC、BD,∵在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD,∴BD⊥AC,BD⊥PA,∵PA∩AC=A,∴BD⊥平面PAC,∵PC⊂平面PAC,∴BD⊥PC.(2)∵BC∥AD,BC⊄面PAD,AD⊂面PAD,∴BC∥面PAD.∵平面PBC与平面PAD的交线为l,∴BC∥l.17.(14分)在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x ≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;(2)当△AOB的面积取最小值时,求直线AB的方程.(3)当PA•PB取最小值时,求直线AB的方程.【解答】解:(1)设A(a,a),B(b,﹣2b),则线段AB的中点为C.∴﹣2×=0,=,分别化为:a=5b,a+2b﹣3ab=0.解得:,∴直线AB的方程为:y﹣0=(x﹣1),化为:7x﹣4y﹣7=0.(2)设A(a,a),B(b,﹣2b),(a,b>0).a=b=1时,A(1,1),B(1,﹣2),S△OAB=×|OP|×|AB|==.a,b≠1时,S△OAB=×|OP|×(a+2b)=(a+2b),又,化为a+2b=3ab,∴a+2b=3ab=≤,解得:a+2b≥.∴S≥×=,△OAB当且仅当a=2b=时取等号.综上可得:当△AOB的面积取最小值时,直线AB的方程为:y=(x﹣1),化为:4x﹣y﹣4=0.(3)设直线AB的方程为:my=x﹣1..联立,解得A,可得|PA|==.联立,解得B,可得|PB|==.∴|PA|•|PB|====f(m),m=﹣3时,f(﹣3)=1;令m+3=k≠0,f(m)=g(k)==,k<0时,g(k)=≥=.k>0时,g(k)=≥=,而<,∴g(k)的最小值为:.当且仅当k=﹣时取等号.∴m=﹣﹣3.∴直线AB的方程为:(﹣﹣3)y=x﹣1.18.(16分)如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的体积;(2)求证:AC⊥平面DEF;(3)若M为DB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF.【解答】(1)解:∵△BCD是正三角形,AB⊥平面BCD,AB=BC=a,∴三棱锥D﹣ABC的体积V==.(2)证明:取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)解:连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.当CN=CA时,CF=CN,∴MN∥OF.∵MN⊄平面DEF,OF⊂平面DEF,∴MN∥平面DEF.19.(16分)如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为,求该圆形标志物的半径.【解答】解:(1)圆C:x2+(y﹣25)2=252.直线PB方程:x﹣y+50=0.设直线PF方程:y=k(x+50)(k>0),因为直线PF与圆C相切,所以,解得…(6分)所以直线PF方程:,即4x﹣3y+200=0…(8分)(2)设直线PF方程:y=k(x+50)(k>0),圆C:x2+(y﹣r)2=r2.因为tan∠APF=tan(∠GPF﹣∠GPA)==,所以…(10分)所以直线PF方程:,即40x﹣9y+2000=0.因为直线PF与圆C相切,所以,…(13分)化简得2r2+45r﹣5000=0,即(2r+125)(r﹣40)=0.故r=40…(16分)20.(16分)已知圆O:x2+y2=r2(r>0),点P为圆O上任意一点(不在坐标轴上),过点P作倾斜角互补的两条直线分别交圆O于另一点A,B.(1)当直线PA的斜率为2时,①若点A的坐标为(﹣,﹣),求点P的坐标;②若点P的横坐标为2,且PA=2PB,求r的值;(2)当点P在圆O上移动时,求证:直线OP与AB的斜率之积为定值.【解答】解:(1)①点A的坐标为(﹣,﹣),代入可得r2=2直线PA的方程为y+=2(x+),即y=2x﹣1,代入x2+y2=2,可得5x2﹣4x﹣1=0,∴点P的坐标为(1,1);②因为直线PA与直线PB的倾斜角互补且直线PA的斜率为2,所以直线PB的斜率为﹣2.设点P的坐标为(2,t),则直线PA的方程为:2x﹣y﹣4+t=0,直线PB的方程为:2x+y﹣t﹣4=0.圆心(0,0)到直线PA,PB的距离分别为d1=,d2=因为PA=2PB,所以由垂径定理得:4(r2﹣d12)=16(r2﹣d22)所以4()2﹣()2=3r2,又因为点P(2,t)在圆O上,所以22+t2=r2(2),联立(1)(2)解得r=或;(2)由题意知:直线PA,PB的斜率均存在.设点P的坐标为(x0,y0),直线OP的斜率为k OP=直线PA的斜率为k,则直线PA的方程为:y﹣y0=k(x﹣x0),联立直线PA与圆O方程x2+y2=r2,消去y得:(1+k2)x2+2k(y0﹣kx0)x+(y0﹣kx0)2﹣r2=0,因为点P在圆O上,即x 02+y02=r2,所以(y0﹣kx0)2﹣r2=(k2﹣1)x02﹣2kx0y0,由韦达定理得:x A=,故点A坐标为(,),用“﹣k“代替“k“得:点B的坐标为(,)∴k AB==∴k AB k OP=1.综上,当点P在圆O上移动时,直线OP与AB的斜率之积为定值1。
高二数学(理)上学期期中试题带答案.doc

高二数学(理)上学期期中试题带答案18.(12分)如图(1),在中,点分别是的中点,将沿折起到的位置,使如图(2)所示,M为的中点,求与面所成角的正弦值。
19.(12分)经过椭圆的左焦点作直线,与椭圆交于两点,且,求直线的方程。
20.(12分)如图,在长方体中,,点E在棱上移动。
(1)证明:;(2)等于何值时,二面角的余弦值为。
21.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.22.(12分)已知抛物线C的顶点为坐标原点,焦点为,(1)求抛物线的方程;(2)过点作直线交抛物线于两点,若直线分别与直线交于两点,求的取值范围。
牡一中2015-2016上学期高二理科数学期中试题参考答案1 2 3 4 5 6 7 8 9 10 11 12C D B D B A B C C B C B13 14 15 1616三、解答题:17.(10分)解:圆的方程为,圆心为;直线为,距离18.(12分)与面所成角的正弦值为19.(12分)解:当直线斜率不存在时,不符合题意;当直线斜率存在时,设直线,与椭圆方程联立得,由弦长公式得,直线方程为或。
20、(12分)(2)当时,二面角的余弦值为。
21、(1)设椭圆的焦半距为c,则由题设,得,解得,所以,故所求椭圆C的方程为.(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点,,将直线的方程代入,并整理,得.(*)则,.因为以线段AB为直径的圆恰好经过坐标原点O,所以,即.又于是,解得,经检验知:此时(*)式的Δ>0,符合题意.所以当时,以线段AB为直径的圆恰好经过坐标原点O.22、解:(1)(2)设,直线AB的方程为代入得,,由得,同理,所以=,令,则,则,范围为。
2016-2017年第一学期高二数学期中试题及答案

2
3
4
5
6
7
8
9
10
11
12
礼券额
20
40
60
80
100
120
100
80
60
40
20
方案3总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.
总点数
2
3
4567891011
12
礼券额
120
100
80
60
40
20
40
60
80
100
120
如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.
17.(10分)用秦九韶算法求多项式
当 时的值。
18.(12分)为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为 ,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多 少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为 时的销售价格.
21.(12分)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.
(2)记“3个矩形颜色都不同”为事件B,由图可知,事件B的基本事件有2×3=6个,故P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省苏州市新区一中高二(上)期中数学试卷一、填空题(本大题有14小题,每小题5分共70分)1.(5分)设AA1是正方体的一条棱,则这个正方体中与AA1异面的棱共有条.2.(5分)已知平面外一条直线上有两个不同的点到这个平面的距离相等,则这条直线与该平面的位置关系是.3.(5分)用一张长12cm,宽8cm的矩形围成圆柱形的侧面,求这个圆柱的体积是cm3.4.(5分)P点在直线3x+y﹣5=0上,且P到直线x﹣y﹣1=0的距离等于,则P点的坐标为.5.(5分)直线y=3x+3关于直线l;x﹣y﹣2=0的对称直线方程为.6.(5分)设直线l的方程为2x+(k﹣3)y﹣2k+6=0(k≠3),若直线l在x轴、y轴上截距之和为0,则k的值为.7.(5分)若点(1,1)在圆(x﹣a)2+(y+a)2=4的内部,则实数a的取值范围是.8.(5分)若正六棱锥的底面边长为2cm,体积为2cm3,则它的侧面积为cm2.9.(5分)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是.10.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.11.(5分)已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x﹣4y=0的两个交点,并且有最小面积,则此圆的方程为.12.(5分)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则三棱锥P﹣ABC的体积为.13.(5分)已知过定点P(2,0)的直线l与曲线y=相交于A、B两点,O为坐标原点,当△AOB的面积取最大时,直线的倾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正确答案的序号是.(写出所有正确答案的序号)14.(5分)在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1,y1),N(x2,y2),且+=0,则实数a的值为.二、解答题(本大题有6小题,共90分)15.(14分)已知直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0(1)若直线l1与l2垂直,求实数m的值;(2)若直线l1与l2平行,求实数m的值.16.(14分)如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD(1)求证:BD⊥PC;(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.17.(14分)在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x ≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;(2)当△AOB的面积取最小值时,求直线AB的方程.(3)当PA•PB取最小值时,求直线AB的方程.18.(16分)如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的体积;(2)求证:AC⊥平面DEF;(3)若M为DB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF.19.(16分)如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为,求该圆形标志物的半径.20.(16分)已知圆O:x2+y2=r2(r>0),点P为圆O上任意一点(不在坐标轴上),过点P作倾斜角互补的两条直线分别交圆O于另一点A,B.(1)当直线PA的斜率为2时,①若点A的坐标为(﹣,﹣),求点P的坐标;②若点P的横坐标为2,且PA=2PB,求r的值;(2)当点P在圆O上移动时,求证:直线OP与AB的斜率之积为定值.2016-2017学年江苏省苏州市新区一中高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题有14小题,每小题5分共70分)1.(5分)设AA1是正方体的一条棱,则这个正方体中与AA1异面的棱共有4条.【解答】解:如图,与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.故答案为:4.2.(5分)已知平面外一条直线上有两个不同的点到这个平面的距离相等,则这条直线与该平面的位置关系是平行或相交.【解答】解:分两种情况①当A、B两点在平面α的同侧时,由于A、B到α的距离相等,所以直线AB与平面α平行;②当A、B两点在平面α的两侧时,并且AB的中点C在平面α内时,A、B到α的距离相等,此时直线AB与平面α相交.综上所述,可得:直线与平面平行或直线与平面相交故答案为:平行或相交.3.(5分)用一张长12cm,宽8cm的矩形围成圆柱形的侧面,求这个圆柱的体积是或cm3.【解答】解:∵侧面展开图是长12cm,宽8cm的矩形,若圆柱的底面周长为12cm,则底面半径R=cm,h=8cm,此时圆柱的体积V=π•R2•h=cm3若圆柱的底面周长为8cm,则底面半径R=cm,h=12cm,此时圆柱的体积V=π•R2•h=cm3.故答案为:或cm3.4.(5分)P点在直线3x+y﹣5=0上,且P到直线x﹣y﹣1=0的距离等于,则P点的坐标为(1,2)或(2,﹣1).【解答】解:设P点坐标为(a,5﹣3a),由题意知:=.解之得a=1或a=2,∴P点坐标为(1,2)或(2,﹣1).故答案为:(1,2)或(2,﹣1).5.(5分)直线y=3x+3关于直线l;x﹣y﹣2=0的对称直线方程为x﹣3y﹣11=0.【解答】解:因为直线x﹣y﹣2=0的斜率为1,故有,将其代入直线3x ﹣y+3=0即得:3(y+2)﹣(x﹣2)+3=0,整理即得x﹣3y﹣11=0.故答案为:x﹣3y﹣11=0.6.(5分)设直线l的方程为2x+(k﹣3)y﹣2k+6=0(k≠3),若直线l在x轴、y轴上截距之和为0,则k的值为1.【解答】解:直线与两坐标轴的交点分别为(k﹣3,0),(0,2),由题意可得k﹣3+2=0,∴k=1.故答案为1.7.(5分)若点(1,1)在圆(x﹣a)2+(y+a)2=4的内部,则实数a的取值范围是(﹣1,1).【解答】解:∵点(1,1)在圆(x﹣a)2+(y+a)2=4的内部,∴(1﹣a)2+(1+a)2<4.即a2<1.解得:﹣1<a<1.∴实数a的取值范围为(﹣1,1).故答案为:(﹣1,1).8.(5分)若正六棱锥的底面边长为2cm,体积为2cm3,则它的侧面积为12 cm2.【解答】解:由题意可知该几何体是底面为正六边形的棱锥体,底面为正六边形可分成6个全等的等边三角形.其边长为2,底面的面积S=6.∵该几何体体积V=2cm3,∴棱锥的高h==1所以:棱长=侧面积是6个全等的等腰三角形,其高是2,一个等腰三角形面积为2,=2×6=12.故得该几何体侧面积S侧故答案为12.9.(5分)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是②④.【解答】解:①错误,l可能在平面α内;②正确,l∥β,l⊂γ,β∩γ=n⇒l∥n⇒n⊥α,则α⊥β;③错误,直线可能与平面相交;④∵α⊥β,α∥γ,⇒γ⊥β,故④正确.故答案为②④;10.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.11.(5分)已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x﹣4y=0的两个交点,并且有最小面积,则此圆的方程为x2+y2+x﹣y+=0.【解答】解:可设圆的方程为x2+y2+2x﹣4y+λ(2x+y+4)=0,即x2+y2+2(1+λ)x+(λ﹣4)y+4λ=0,此时圆心坐标为(﹣1﹣λ,),显然当圆心在直线2x+y+4=0上时,圆的半径最小,从而面积最小,∴2(﹣1﹣λ)++4=0,解得:λ=,则所求圆的方程为:x2+y2+x﹣y+=0.故答案为:x2+y2+x﹣y+=0.12.(5分)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则三棱锥P﹣ABC的体积为.【解答】解:三棱锥是正方体的一个角,它的外接球就是三棱锥扩展为正方体的外接球,正方体的体对角线就是外接球的直径,所以正方体的体对角线长为:,球的半径为:;所以正方体的棱长为:a=2.三棱锥P﹣ABC的体积为:=.故答案为:.13.(5分)已知过定点P(2,0)的直线l与曲线y=相交于A、B两点,O为坐标原点,当△AOB的面积取最大时,直线的倾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正确答案的序号是⑤.(写出所有正确答案的序号)【解答】解:当△AOB面积取最大值时,OA⊥OB,∵过定点P(2,0)的直线l与曲线y=相交于A、B两点,∴圆心O(0,0),半径r=,∴OA=OB=,AB=2,∴圆心O(0,0)到直线直线l的距离为1,当直线l的斜率不存在时,直线l的方程为x=2,不合题意;当直线l的斜率存在时,直线l的方程为y=k(x﹣2),圆心(0,0)到直线l的距离d==1,解得k=,由题意可知当△AOB的面积取最大时,直线的倾斜角是150°.故答案为⑤.14.(5分)在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1,y1),N(x2,y2),且+=0,则实数a的值为3或﹣2.【解答】解:设MN中点为Q(x0,y0),T(1,0),圆心R(a,﹣1),根据对称性,MN⊥PR,===,∵k MN=,+=0∴k MN•k TQ=﹣1,∴MN⊥TQ,∴P,Q,R,T共线,∴k PT=k RT,即,∴a2﹣a﹣6=0,∴a=3或﹣2.故答案为:3或﹣2.二、解答题(本大题有6小题,共90分)15.(14分)已知直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0(1)若直线l1与l2垂直,求实数m的值;(2)若直线l1与l2平行,求实数m的值.【解答】解:(1)∵直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0,直线l1与l2垂直,∴(m﹣2)×1+3m=0,解得m=.(2∵直线l1:(m﹣2)x+3y+2m=0,l2:x+my+6=0,直线l1与l2平行,∴,解得m=﹣1.16.(14分)如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD(1)求证:BD⊥PC;(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.【解答】证明:(1)连结AC、BD,∵在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD,∴BD⊥AC,BD⊥PA,∵PA∩AC=A,∴BD⊥平面PAC,∵PC⊂平面PAC,∴BD⊥PC.(2)∵BC∥AD,BC⊄面PAD,AD⊂面PAD,∴BC∥面PAD.∵平面PBC与平面PAD的交线为l,∴BC∥l.17.(14分)在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x ≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;(2)当△AOB的面积取最小值时,求直线AB的方程.(3)当PA•PB取最小值时,求直线AB的方程.【解答】解:(1)设A(a,a),B(b,﹣2b),则线段AB的中点为C.∴﹣2×=0,=,分别化为:a=5b,a+2b﹣3ab=0.解得:,∴直线AB的方程为:y﹣0=(x﹣1),化为:7x﹣4y﹣7=0.(2)设A(a,a),B(b,﹣2b),(a,b>0).a=b=1时,A(1,1),B(1,﹣2),S△OAB=×|OP|×|AB|==.a,b≠1时,S△OAB=×|OP|×(a+2b)=(a+2b),又,化为a+2b=3ab,∴a+2b=3ab=≤,解得:a+2b≥.∴S≥×=,△OAB当且仅当a=2b=时取等号.综上可得:当△AOB的面积取最小值时,直线AB的方程为:y=(x﹣1),化为:4x﹣y﹣4=0.(3)设直线AB的方程为:my=x﹣1..联立,解得A,可得|PA|==.联立,解得B,可得|PB|==.∴|PA|•|PB|====f(m),m=﹣3时,f(﹣3)=1;令m+3=k≠0,f(m)=g(k)==,k<0时,g(k)=≥=.k>0时,g(k)=≥=,而<,∴g(k)的最小值为:.当且仅当k=﹣时取等号.∴m=﹣﹣3.∴直线AB的方程为:(﹣﹣3)y=x﹣1.18.(16分)如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的体积;(2)求证:AC⊥平面DEF;(3)若M为DB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF.【解答】(1)解:∵△BCD是正三角形,AB⊥平面BCD,AB=BC=a,∴三棱锥D﹣ABC的体积V==.(2)证明:取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)解:连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.当CN=CA时,CF=CN,∴MN∥OF.∵MN⊄平面DEF,OF⊂平面DEF,∴MN∥平面DEF.19.(16分)如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为,求该圆形标志物的半径.【解答】解:(1)圆C:x2+(y﹣25)2=252.直线PB方程:x﹣y+50=0.设直线PF方程:y=k(x+50)(k>0),因为直线PF与圆C相切,所以,解得…(6分)所以直线PF方程:,即4x﹣3y+200=0…(8分)(2)设直线PF方程:y=k(x+50)(k>0),圆C:x2+(y﹣r)2=r2.因为tan∠APF=tan(∠GPF﹣∠GPA)==,所以…(10分)所以直线PF方程:,即40x﹣9y+2000=0.因为直线PF与圆C相切,所以,…(13分)化简得2r2+45r﹣5000=0,即(2r+125)(r﹣40)=0.故r=40…(16分)20.(16分)已知圆O:x2+y2=r2(r>0),点P为圆O上任意一点(不在坐标轴上),过点P作倾斜角互补的两条直线分别交圆O于另一点A,B.(1)当直线PA的斜率为2时,①若点A的坐标为(﹣,﹣),求点P的坐标;②若点P的横坐标为2,且PA=2PB,求r的值;(2)当点P在圆O上移动时,求证:直线OP与AB的斜率之积为定值.【解答】解:(1)①点A的坐标为(﹣,﹣),代入可得r2=2直线PA的方程为y+=2(x+),即y=2x﹣1,代入x2+y2=2,可得5x2﹣4x﹣1=0,∴点P的坐标为(1,1);②因为直线PA与直线PB的倾斜角互补且直线PA的斜率为2,所以直线PB的斜率为﹣2.设点P的坐标为(2,t),则直线PA的方程为:2x﹣y﹣4+t=0,直线PB的方程为:2x+y﹣t﹣4=0.圆心(0,0)到直线PA,PB的距离分别为d1=,d2=因为PA=2PB,所以由垂径定理得:4(r2﹣d12)=16(r2﹣d22)所以4()2﹣()2=3r2,又因为点P(2,t)在圆O上,所以22+t2=r2(2),联立(1)(2)解得r=或;(2)由题意知:直线PA,PB的斜率均存在.设点P的坐标为(x0,y0),直线OP的斜率为k OP=直线PA的斜率为k,则直线PA的方程为:y﹣y0=k(x﹣x0),联立直线PA与圆O方程x2+y2=r2,消去y得:(1+k2)x2+2k(y0﹣kx0)x+(y0﹣kx0)2﹣r2=0,因为点P在圆O上,即x 02+y02=r2,所以(y0﹣kx0)2﹣r2=(k2﹣1)x02﹣2kx0y0,由韦达定理得:x A=,故点A坐标为(,),用“﹣k“代替“k“得:点B的坐标为(,)∴k AB==∴k AB k OP=1.综上,当点P在圆O上移动时,直线OP与AB的斜率之积为定值1赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。