中南大学材料力学练习册答案全集

合集下载

《材料力学》练习册答案

《材料力学》练习册答案

《材料力学》练习册答案习题一一、填空题1.对于长度远大于横向尺寸的构件称为(杆件)。

2.强度是指构件(抵抗破坏)的能力。

3.刚度是指构件(抵抗变形)的能力。

二、简答题1.试叙述材料力学中,对可变形固体所作的几个基本假设。

答:(1)均匀连续假设:组成物体的物质充满整个物体豪无空隙,且物体各点处力学性质相同(2)各向同性假设:即认为材料沿不同的方向具有相同的力学性质。

(3)小变形假设:由于大多数工程构件变形微小,所以杆件受力变形后平衡时,可略去力作用点位置及有关尺寸的微小改变,而来用原始尺寸静力平衡方程求反力和内力。

2.杆件的基本变形形式有哪几种?答:1)轴向拉伸与压缩;2)剪切;3)扭转;4)弯曲3.试说明材料力学中所说“内力”的含义。

答:材料力学中所说的内力是杆件在外力作用下所引起的“附加内力”。

4.什么是弹性变形?什么是塑性变形?答:杆件在外力作用下产生变形,当撤掉引起变形的因素后,如果杆件的变形完全消失而恢复到原来状态,这种变形称为是完全弹性的即弹性变形。

而撤掉引起变形的因素后,如果杆件的变形没有完全恢复而保留了一部分,被保留的这部分变形称为弹性变形又叫永久变形。

三、判断题1.材料单元体是无限微小的长方体(X )习题二一、填空题1.通过一点的所有截面上(应力情况的总和),称为该点的应力状态。

45的条纹,条纹是材料沿(最2.材料屈服时,在试件表面上可看到与轴线大致成ο大剪应力面)发生滑移而产生的,通常称为滑移线。

3.低碳钢的静拉伸试验中,相同尺寸的不同试件“颈缩”的部位不同,是因为(不同试件的薄弱部位不同)4.对于没有明显屈服阶段的塑性材料,通常规定以产生塑性应变(εs=0.2% 时的应用定为名义屈服极限,用δρ2表示)5.拉,压杆的横截面上的内力只有(轴力)。

6.工程中,如不作特殊申明,延伸率δ是指(L=10 d)标准试件的延伸率二、简答题1.试叙述低碳钢的静拉伸试验分几个阶段?各处于什么样的变形阶段。

材料力学习题册参考答案

材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。

中南大学材料力学练习题答案1

中南大学材料力学练习题答案1

轴 向 拉 压 与 剪 切 (一)一、概念题1.C ;2.B ;3.B ;4. C ;5.B6.︒=0α的横截面;︒=90α的纵向截面;︒=45α的斜截面;︒=0α的横截面和︒=90α的纵向截面 7.230MPa ;325Mpa 8.0.47%;0.3%9.26.4%;65.2%;塑性材料10.杯口状;粒状;垂直;拉;成︒45左右的角;切 11.s σ;ssn σ;b σ;bbn σ二、计算题1.2.解:横截面上应力 M P a Pa A F N 10010100102010200643=⨯=⨯⨯==-σAB 斜截面(︒=50α):M P aM P aAB AB2.49100sin 21002sin 23.4150cos 100cos 22=︒===︒⨯==αστασσBC 斜截面(︒-=40α):MPaMPaBC BC2.49)80sin(21002sin 27.58)40(cos 100cos 22-=︒-===︒-⨯==αστασσ杆内最大正应力和最大切应力分别为:M P aM P a502100max max ====στσσ3.解:根据活塞杆的强度条件确定最大油压P 1:62112121013044)(⨯⨯=-d p d D ππ M P a p 1.181=根据螺栓的强度条件确定最大油压P 2:62221210110644)(⨯⨯⨯=-d p d D ππ M P a p 5.62=所以最大油压MPa p p 5.62==4.解: 研究A 轮,由静力平衡方程得 N A B AB F kN W F ===604 查型钢表得角钢的横截面面积 2410058.4m A -⨯=[]σσ<=*⨯⨯==-MPa AF NAB AB93.7310058.421060243所以斜杆AB 是安全的。

5.解:杆的轴力图为4923maxmax 105101004107.15-⨯=⨯⨯⨯===d AEF ENt t πσεmm d 20=6.解:(1)MPa Pa E 7351035.70035.01021089=⨯=⨯⨯==εσ(2)mmm ll l ll l 7.831037.810035.1)()(2222222=⨯=-=-+=-+∆=∆-ε(3)A F N σ=N F F N P 3.965.10037.834001.0107352sin 226=⨯⨯⨯⨯⨯==πθ轴 向 拉 压 与 剪 切 (二)一、概念题1. D ;2.A ;3.B ;4.D ;5.D ;6.D ;7.C 8.AP 25(压);)(27←EAPa9.[]τπ≤dhP;[]bs d D Pσπ≤-)(422;[]σπ≤24dP二、计算题1. 如图示,钢缆单位长度所受重力为γA q =,则x 截面上的轴力为 P x A P qx x F N +=+=γ)(。

材料力学完整课后习题答案

材料力学完整课后习题答案

习题2-2一打入基地内的木桩如图所示,杆轴单位长度的摩擦力fkx2,试做木桩的后力图。

解:由题意可得:l 1 0 fdx F 有kl 3 F k 3F / l 3 3 l FN x1 3Fx 2 / l 3dx F x1 / l 3 0习题2-3 石砌桥墩的墩身高l 10m ,其横截面面尺寸如图所示。

荷载 F 1000kN ,材料的密度2.35kg / m 3 ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:N F G F Alg 2-3 图1000 3 2 3.14 12 10 2.35 9.8 3104.942kN 墩身底面积: A 3 2 3.14 12 9.14m 2 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

N 3104.942kN 339.71kPa 0.34MPa A 9.14m 2习题2-7 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7 图解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:Fdx l F F l dx d l ,l dx EA x 0 EA x E 0 A x r r1 x r r d d1 d ,r 2 1 x r1 2 x 1 ,r2 r1 l l 2l 2 d d1 d d1 d d1 2 d d A x 2 x 1 u2 ,d 2 x 1 du 2 dx 2l 2 2l 2 2l 2l 2l dx d d 2l du dx du ,2 2 1 du 2 d 2 d1 A x u d1 d 2 u l F F l dx 2 Fl l du 因此,l dx 0 u 2 0 EA x E 0 A x E d1 d 2 l 2 Fl 1 l 2 Fl 1 u E d d d d E d1 d 2 0 2 2 d 1 1 x 1 2l 2 0 2 Fl 1 1 E d1 d 2 d 2 d 1 dd1 l 1 2l 2 2 2 Fl 2 2 4 Fl E d1 d 2 d 2 d1 Ed 1 d 2习题2-10 受轴向拉力 F 作用的箱形薄壁杆如图所示。

材料力学习题册1-14概念答案.

材料力学习题册1-14概念答案.

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( × ) 1.2 内力只作用在杆件截面的形心处。

( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。

( × ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ∨ ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。

( ∨ ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。

( × ) 1.9 同一截面上各点的切应力τ必相互平行。

( × ) 1.10 应变分为正应变ε和切应变γ。

( ∨ ) 1.11 应变为无量纲量。

( ∨ ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。

( ∨ ) 1.13 若物体内各点的应变均为零,则物体无位移。

( × ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( × )二、填空题1.1 材料力学主要研究 受力后发生的以及由此产生1.2 拉伸或压缩的受力特征是 ,变形特征是 。

B题1.15图题1.16图外力的合力作用线通过杆轴线 杆件1.3 剪切的受力特征是 ,变形特征是 。

1.4 扭转的受力特征是 ,变形特征是 。

1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

1.8 所谓 ,是指材料或构件抵抗破坏的能力。

材力习题册参考答案1

材力习题册参考答案1

材力习题册参考答案(1第一章绪论一、选择题1.根据均匀性假设,可认为构件的在各处相同。

A.应力B.应变 C.材料的弹性系数D.位移2.构件的强度是指,刚度是指,稳定性是指。

A.在外力作用下构件抵抗变形的能力 B.在外力作用下构件保持原有平衡状态的能力 C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) ,图(b),图(c) 。

A.0 B.2r C.r D. 4.下列结论中( C )是正确的。

A.内力是应力的代数和; B.应力是内力的平均值;C.应力是内力的集度; D.内力必大于应力;5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力是否相等。

A.不相等; B.相等; C.不能确定;6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指。

A. 认为组成固体的物质不留空隙地充满了固体的体积;B. 认为沿任何方向固体的力学性能都是相同的;C. 认为在固体内到处都有相同的力学性能;D. 认为固体内到处的应力都是相同的。

二、填空题1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。

2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件- 1 -提供必要的理论基础和计算方法。

3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。

4.度量一点处变形程度的两个基本量是应变ε和切应变γ。

三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。

2.外力就是构件所承受的载荷。

3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

4.应力是横截面上的平均内力。

5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。

6.材料力学只限于研究等截面杆。

四、计算题1.图示三角形薄板因受外力作用而变形,角点B垂直向上的位移为,但AB和BC仍保持为直线。

材料力学习题及参考答案

材料力学习题及参考答案

答案:
5.对于拉伸曲线上没有屈服平台的合金塑性材料,
工程上规定 0.2 作为名义屈服极限,此时相对应的
应变量为 0.2%。
()
答案:
四、计算
1.矿井起重机钢绳如图(a)所示,AB段截面积 A1 300mm2, BC段截面积 A2 400mm2,钢绳的单位体积重量 28kN / m3, 长度l 50m,起吊重物的重量 P 12kN,求:1)钢绳内的最大 应力;2)作轴力图。
2P
P
P
1 23 4
P
1
m Pa
23
4

2a
a
2a
(a)
(b)
2a
2
a/2
1
a
1
c
4R
A 4
R 3
3
C R
P
1 45o2
B
2
R
D 1
d
解: 各截面上内力分量的方向从略,仅记大小。
a 2P拉伸,N2 P拉伸;
bQ1 P,M1 2Pa;
Y 2N cos P 0,得
N=
P
2cos
a

y
N

C
x
P
c
(2)求杆的变形 AC、BC杆的伸长变形相同,即
l Nl Pl b
NAC 和P拉 伸
NCB P。 ( )
答案:
C
A
P
B
ll 2.图示结构由两根尺寸完全相同的杆件组成。AC杆为铜 合金,BC杆为低碳钢杆,则此两杆在力P作用下具有相 同的拉应力。 ( )
答案:
A
B

C P
3.正应变的定义为 / E。

中南大学材料力学练习册答案全集

中南大学材料力学练习册答案全集

轴 向 拉 压 与 剪 切 (一)一、概念题1.C ;2.B ;3.B ;4. C ;5.B6.︒=0α的横截面;︒=90α的纵向截面;︒=45α的斜截面;︒=0α的横截面和︒=90α的纵向截面 7.230MPa ;325Mpa 8.0.47%;0.3%9.26.4%;65.2%;塑性材料10.杯口状;粒状;垂直;拉;成︒45左右的角;切 11.s σ;s s n σ;b σ;bb n σ 二、计算题1.2.解:横截面上应力 MPa Pa A F N 10010100102010200643=⨯=⨯⨯==-σ AB 斜截面(︒=50α):MPaMPaAB AB 2.49100sin 21002sin 23.4150cos 100cos 22=︒===︒⨯==αστασσ BC 斜截面(︒-=40α):MPaMPaBC BC 2.49)80sin(21002sin 27.58)40(cos 100cos 22-=︒-===︒-⨯==αστασσ 杆内最大正应力和最大切应力分别为:MPaMPa502100max max ====στσσ 3.解:根据活塞杆的强度条件确定最大油压P 1:62112121013044)(⨯⨯=-d p d D ππ MPa p 1.181=根据螺栓的强度条件确定最大油压P 2:62221210110644)(⨯⨯⨯=-d p d D ππ MPa p 5.62=所以最大油压MPa p p 5.62==4.解: 研究A 轮,由静力平衡方程得 NAB AB F kN W F ===604 查型钢表得角钢的横截面面积 2410058.4m A -⨯=[]σσ<=*⨯⨯==-MPa A F NAB AB93.7310058.421060243 所以斜杆AB 是安全的。

5.解:杆的轴力图为4923maxmax 105101004107.15-⨯=⨯⨯⨯===dAE F ENt t πσε mm d 20=6.解:(1)MPa Pa E 7351035.70035.01021089=⨯=⨯⨯==εσ (2)mmm l l l l l l 7.831037.810035.1)()(2222222=⨯=-=-+=-+∆=∆-ε(3)A F N σ=N F F N P 3.965.10037.834001.0107352sin 226=⨯⨯⨯⨯⨯==πθ轴 向 拉 压 与 剪 切 (二)一、概念题1. D ;2.A ;3.B ;4.D ;5.D ;6.D ;7.C8.A P 25(压);)(27←EAPa9.[]τπ≤dh P ;[]bs d D P σπ≤-)(422;[]σπ≤24dP二、计算题1. 如图示,钢缆单位长度所受重力为γA q =,则x 截面上的轴力为 P x A P qx x F N +=+=γ)(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴 向 拉 压 与 剪 切 (一)一、概念题1.C ;2.B ;3.B ;4. C ;5.B6.︒=0α的横截面;︒=90α的纵向截面;︒=45α的斜截面;︒=0α的横截面和︒=90α的纵向截面 7.230MPa ;325Mpa 8.0.47%;0.3%9.26.4%;65.2%;塑性材料10.杯口状;粒状;垂直;拉;成︒45左右的角;切 11.s σ;s s n σ;b σ;bb n σ 二、计算题1.2.解:横截面上应力 MPa Pa A F N 10010100102010200643=⨯=⨯⨯==-σ AB 斜截面(︒=50α):MPaMPaAB AB 2.49100sin 21002sin 23.4150cos 100cos 22=︒===︒⨯==αστασσ BC 斜截面(︒-=40α):MPaMPaBC BC 2.49)80sin(21002sin 27.58)40(cos 100cos 22-=︒-===︒-⨯==αστασσ 杆内最大正应力和最大切应力分别为:MPaMPa502100max max ====στσσ 3.解:根据活塞杆的强度条件确定最大油压P 1:62112121013044)(⨯⨯=-d p d D ππ MPa p 1.181=根据螺栓的强度条件确定最大油压P 2:62221210110644)(⨯⨯⨯=-d p d D ππ MPa p 5.62=所以最大油压MPa p p 5.62==4.解: 研究A 轮,由静力平衡方程得 NAB AB F kN W F ===604 查型钢表得角钢的横截面面积 2410058.4m A -⨯=[]σσ<=*⨯⨯==-MPa A F NAB AB93.7310058.421060243 所以斜杆AB 是安全的。

5.解:杆的轴力图为4923maxmax 105101004107.15-⨯=⨯⨯⨯===dAE F ENt t πσε mm d 20=6.解:(1)MPa Pa E 7351035.70035.01021089=⨯=⨯⨯==εσ (2)mmm l l l l l l 7.831037.810035.1)()(2222222=⨯=-=-+=-+∆=∆-ε(3)A F N σ=N F F N P 3.965.10037.834001.0107352sin 226=⨯⨯⨯⨯⨯==πθ轴 向 拉 压 与 剪 切 (二)一、概念题1. D ;2.A ;3.B ;4.D ;5.D ;6.D ;7.C8.A P 25(压);)(27←EAPa9.[]τπ≤dh P ;[]bs d D P σπ≤-)(422;[]σπ≤24dP二、计算题1. 如图示,钢缆单位长度所受重力为γA q =,则x 截面上的轴力为 P x A P qx x F N +=+=γ)(。

最大轴力、最大应力都发生在杆件顶部截面。

[]σγσ≤+==APl A A F N max max 所以 []γσA PA l -≤2.在x 处截取微段dx ,如图示,则微段的变形为dx EAPx A EA dx x F l d N +==∆γ)()(所以 ⎰⎰+=+=∆=∆llEAPl l A dx EA P x A l d l 0222)(γγ 2. 解:设每个角钢的轴力为1N F ,木柱的轴力为2N F ,则 静力关系: P N N F F F =+214 变形几何关系: 21l l ∆=∆ 物理关系: 22221111,A E lF l A E l F l N N =∆=∆ 查型钢表得角钢的截面面积24110086.3m A -⨯=。

链解上述三关系得:P N P N F F F F 72.0,07.021==根据角钢的强度条件[]111σ≤A F N 即 641016010086.307.0⨯≤⨯-P F ,得kN F P 698≤ 根据木柱的强度条件[]222σ≤A F N 即 66210121025072.0⨯≤⨯-P F ,得kN F P 1042≤ 所以许可载荷kN F P 698=3. 解:此为一静不定问题。

杆AD 、AG 及ABC 的BC 段为拉伸变形,ABC 的AB 段为压缩变形。

AB 段的轴力为AB F ,BC 段的轴力为AB P F F - 静力关系(见图):AG AD F F =︒=45cos 2AD AB F F 变形几何关系: AD AB BC l l l ∆=︒∆-∆45cos )( 物理关系:EA lF F l AB P BC )(-=∆EAlF l AB AB =∆ EAlF l AD AD 2=∆ 联解得: P P AG AD F F F F 212)12(2-=+==(拉) P AB F F 222-=(压); P BC F F 22=(拉) 4. 解:这是一个有温度应力的拉压静不定问题。

设上下两固定端的约束力分别为A F 、B F静力关系: B A F F = 变形几何关系: T l l ∆=∆ 物理关系: 21EA aF EA a F l A A +=∆ )(212t t a l T -=∆α 联解得 kN F A 35=所以杆件上部分内的温度应力为MPa A F A T 7010510354311=⨯⨯==-σ 下部分内的温度应力为MPa A F A T 35101010354322=⨯⨯==-σ5. F N1= F N3=25F ,F N2=5F 6. F N1sin2β= F N2 sin2α 7. 2σ/1σ=18.解:(1)挤压面积ab A bs =,由挤压强度条件:6331010102501050⨯≤⨯⨯⨯==-a A F bs bs bsσ 所以 mm m a 2010203=⨯≥- (2)剪切面面积bl A =,由剪切强度条件:633101102501050⨯≤⨯⨯⨯==-lA F Qτ 所以 mm m l 200102003=⨯≥- 9. 解:单个铆钉受力如图: (1)剪切强度校核:kN F Q 6200=[]τπτ>=⨯=⨯⨯==MPa Pa A F Q2.106102.106402.0106200623(2)挤压强度校核: kN F bs 3200=[]bs bs bs bsMPa A F σσ<=⨯=⨯⨯⨯==-7.166107.166102020103200663(3)拉伸强度校核钢板:有两个铆钉孔的截面P F N 32=[]σδσ<=⨯=⨯⨯-⨯⨯⨯=-==-MPa Pa d b P A F N 6.60106.6010)202150(201020032)2(326632 有一个铆钉孔的截面P F N =[]σδσ<=⨯=⨯-⨯⨯=-==-MPa Pa d b P A F N 9.76109.7610)20150(2010200)(6632盖板:有两个铆钉孔的截面P F N 21=[]σδσ<=⨯=⨯⨯-⨯⨯⨯=-==-MPa Pa d b P A F N 9.90109.9010)202150(101020021)2(216631有一个铆钉孔的截面P F N 61=[]σδσ<=⨯=⨯-⨯⨯⨯=-==-MPa Pa d b P A F N 6.25106.2510)20150(101020061)(616631 所以该接头剪切强度不够,不安全。

扭 转一、概念题1.B ;2. B ;3. D ;4.A ;5.D ;6.C 6. 二、计算题1.2.解:圆轴的扭矩图如土示。

33max 1616dmd m W M P T BC ππτ===33max 416)2(2d md m W M P T AC ππτ===所以轴内 3max max 16dmBCπττ==4442832)2(232d G mld Gml d G ml CA BC BA πππφφφ-=+⨯-=+= 3. 解:计算作用在各轮上的外力偶矩: m N M A .70245005007024== m N M B .6.28095002007024==m N M C .4.42145003007024==传动轴的扭矩图如图示。

(1)分别由强度和刚度条件确定两段的直径 AB 段:mmd d W M P T AB 0.80,10701670241631≥⨯≤==πτmm d dGI M P T AB 6.84,118032108070241801419≥︒≤︒⨯⨯⨯=︒⨯=πππθ所以AB 段的直径mm d 6.841= BC 段:mm d d W M P T BC 4.67,1070164.42142632≥⨯≤==πτmm d d GI M P T BC 5.74,11803210804.42141802429≥︒≤︒⨯⨯⨯=︒⨯=πππθ所以BC 段的直径mm d 5.742=(2)若AB 、BC 两段设计为相同直径,则mm d 6.84=(3)主动轮A 置于从动轮B 、C 之间较合理,这样可降低轴内的最大扭矩。

4.解:由薄壁圆筒扭转切应力计算公式(20Dr =)得横截面上的应力为: MPa t r M e 713.59008.01.02103022320=⨯⨯⨯==ππτ 由切应力互等定理的薄壁圆筒纵向截面上的应力也是59.713MPa 。

则两铆钉间纵向截面上有切应力所引起的剪力为:ts F Q τ=。

由铆钉的剪切强度条件:[]τ≤AF Q ,即 []τπτ42d ts F Q ≤=代入数据:6261060402.0008.010713.59⨯⨯⨯≤⨯⨯⨯πs得 mm s 4.39≤ 由挤压强度条件(Q bs F F =):[]bs bsbsA F σ≤,即 []bs bs td ts F στ≤= 代入数据:661016002.0008.0008.010713.59⨯⨯⨯≤⨯⨯⨯s 得 mm s 38.53≤ 所以铆钉的间距mm s 4.39≤。

5. b /a6.解:由于AB 、CD 两杆的截面尺寸相同,故PCD PAB I I =,而CD AB G G 3=。

设F P 力分解为F AB 、F CD 分别作用在AB 、CD 两杆上,两杆发生扭矩变形,扭矩分别为: a F M a F M CD TCD AB TAB ==,此题为一静不定问题。

静力关系: P CD AB F F F =+ 变形几何关系: DC BA φφ= 物理关系: PAB AB AB PAB AB TAB BA I G alF IG l M ==φ PCDCD CD PCD CD TCD DC I G al F I G l M ==φ联解得: P CD P AB F F F F 41,43==弯 曲 内 力一、概念题1. A 。

相关文档
最新文档