《自行车里的数学》教学案例分析
《自行车里的数学》教学设计及反思

《自行车里的数学》教学设计及反思《自行车里的数学》教学设计及反思教材分析:综合应用《自行车里的数学》是学校数学六班级下下册中在第三单元“比例”之后支配的。
旨在让同学运用所学的圆、排列组合、比例等学问解决实际问题。
通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经受“提出问题分析问题建立数学模型求解解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思索方法,并加深对所学学问及其相互关系的理解。
《自行车里的数学》主要讨论两个问题:一般自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
教学理念:数学是对客观世界数量关系和空间关系的一种抽象。
可以说生活中到处有数学。
《数学课程标准》中指出:“数学教学是数学活动,老师要紧密联系同学的生活环境,从同学的阅历和已有的学问动身,创设生动的数学情境。
” 在新一轮课程改革的实施过程中,“数同学活化”问题受到越来越多的训练工的关注和确定。
《数学课程标准》明确要求“使同学感受数学与生活的亲密联系,从同学已有的生活阅历动身,让同学亲历数学过程。
”在生活中,数学无处不在,小到日常购物,大到航空航天工程等数据的处理。
同学学习数学是“运用所学的数学学问和方法解决一些简洁的实际问题的,必要的日常生活的工具。
”引导同学把所学学问联系,运用于生活实际,可以促进同学的探究意识和创新意识的形成,培育同学初步的实践力量。
新课程标准数学教材突出了数学与实际生活的联系,很多教学内容都建立了形象的生活情境,以关心同学更好地学习数学,应用数学。
《自行车里的数学》就是让同学运用所学的圆、排列组合、比例等学问来解决生活中常见的有关自行车里的实际问题。
在传授数学学问和训练数学力量的过程中,老师要自然而然地注入生活内容,引导同学学会运用所学学问为自己生活服务。
这样的设计,不仅贴近同学的生活水平,符合同学的需要心理,而且也给同学留有一些瑕想和期盼,使他们将数学学问和实际生活联系得更紧密。
自行车里的数学教学设计4篇

自行车里的数学教学设计自行车里的数学教学设计4篇作为一名为他人授业解惑的教育工作者,通常需要准备好一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的自行车里的数学教学设计,仅供参考,大家一起来看看吧。
自行车里的数学教学设计1综合应用自行车里的数学是在第三单元比例之后安排的。
旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。
通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历提出问题分析问题建立数学模型求解解释与应用的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
自行车里的数学主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车能变化出多少种速度。
一、研究普通自行车的速度与内在结构的关系这一部分由以下4个环节组成。
1.提出问题。
教材通过呈现学生的熟悉两种不同型号自行车的图片,直接提问蹬一圈,能走多远,引出学生对自行车里的数学问题的研究。
2.分析问题。
教材分两步呈现。
首先,呈现了学生探讨如何解决问题的场面,提出了两种方案。
一,通过直接测量来解决问题,但误差较大。
二,通过车轮的周长乘上后齿轮转的圈数来计算蹬一圈车子走的距离。
接下来,呈现了学生探讨如何解决第二个方案中的关键问题前齿轮转一圈,后齿轮转几圈的过程。
学生想到如果只凭观察是数不清的,要通过更精确的方法找出答案。
学生根据链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿,判断出:前齿轮转的圈数前齿轮的齿数=后齿轮转的圈数后齿轮的齿数,解决了这个关键问题,从而理清了解决问题的思路。
3.建立数学模型、收集数据并求解。
首先,学生根据分析问题得到解题思路,建立数学模型:蹬一圈自行车走的距离=车轮的周长(前齿轮的齿数∶后齿轮的齿数)。
接下来,学生分组收集所需要的数据,再代入数学模型,求出答案。
人教版六年级数学综合实践《自行车中的数学》教学设计与反思

《自行车中的数学》教学设计教学目标:1.理解并掌握自行车“蹬一圈走多远”的计算方法,探索变速自行车的速度与其内在结构的关系2.引领学生经历“提出问题一一分析问题一一建立数学模型一一解释并应用”基本过程,获得应用数学解决实际问题的思考方法。
3.在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的意识教学重难点:1.探索普通自行车的速度与其内在结构的关系。
2.弄清变速自行车能变化出多少种速度。
教学准备:多媒体课件教学过程一、情境导入出示自行车图片,师生对话引入课题。
二、学习准备1.观察并思考:自行车里蕴藏道哪些有趣的知识呢?预设1:车架是三角形,这利用了三角形具有稳定性的特点;预设2:车轮是圆形的,车轴装在圆心的位置,这里利用了同一圆的半径都相等;预设3……2.讨论:自行车是怎样向前行进的呢?(引导学生得出:脚踏板带动前齿轮,前齿轮带动后齿轮,后齿轮又带动后轮转动。
)3.王老师骑着一辆车轮半径为30cm的自行车,从家到学校车轮刚好转了100圈,你能算出王老师家到学校有多远吗?三、探究普通自行车的速度与内在结构的关系。
1.提出问题:一辆自行车,脚踏板蹬一圈。
能走多远?引出学生对自行车里的数学的研究。
2.学生讨论如何解决问题3.方案一:直接测量。
学生讨论得出直接测量的方法,并根据实际条件进行测量,然后根据测量结果得出:测量的方法误差较大,不太准确。
4.方案二:计算的方法(1)思考:要计算自行车蹬一圈能走多远?该怎样计算呢?需要知道哪些信息呢?引导学生通过讨论得出:蹬一圈的路程=车轮转动的圈数×车轮的周长。
(2)探究车轮转动的圈数与什么有关?有什么关系?(学生先独立思考,然后小组内交流。
)学生展示:预设1:车轮转动的圈数与前后齿轮有关。
预设2:前齿轮转动几个齿,后齿轮也转动几个齿,也就是说“前齿轮转动的总齿数=后齿轮转动的总齿数”。
预设3:根据以上分析我得出:前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数,从而得出:后齿轮转动圈数=后齿轮齿数前齿轮齿数1× 预设4:得出了后齿轮转动的圈数,也就知道了车轮转动的圈数,接下来用“车轮转动的圈数×车轮的周长”就得出了自行车蹬一圈所走的路程。
六年级下册数学《自行车里的数学》教案(1)

六年级下册数学《自行车里的数学》教案一、教学内容本节课选自六年级下册数学教材第七章《圆的周长和面积》中的第三节《自行车里的数学》。
详细内容包括:认识自行车轮圈与轮胎的关系,理解自行车行驶中轮圈与轮胎的配合计算,掌握圆的周长在实际问题中的应用。
二、教学目标1. 让学生了解自行车轮圈与轮胎的关系,理解圆的周长在实际问题中的应用。
2. 培养学生运用数学知识解决实际问题的能力,提高学生的数学思维。
3. 培养学生的合作意识,提高学生的团队协作能力。
三、教学难点与重点重点:圆的周长在实际问题中的应用。
难点:自行车轮圈与轮胎的配合计算。
四、教具与学具准备教具:自行车一辆,轮圈和轮胎模型,计算器。
学具:圆规,直尺,铅笔,橡皮,练习本。
五、教学过程1. 实践情景引入利用自行车实物,引导学生观察自行车轮圈和轮胎的关系,提出问题:“自行车轮圈和轮胎是如何配合的?它们之间存在什么样的数学关系?”2. 例题讲解(1)展示自行车轮圈和轮胎模型,引导学生计算轮圈和轮胎的周长。
(2)讲解计算方法,引导学生运用圆的周长公式进行计算。
3. 随堂练习(1)让学生计算自行车轮圈和轮胎的周长。
(2)讨论:如何通过改变轮圈或轮胎的大小来调整自行车的速度?4. 知识拓展引导学生思考:除了自行车轮圈和轮胎,生活中还有哪些地方用到了圆的周长?(2)强调圆的周长在实际问题中的应用。
六、板书设计1. 自行车里的数学2. 内容:(1)自行车轮圈和轮胎的关系(2)圆的周长公式:C = πd(3)计算自行车轮圈和轮胎的周长七、作业设计1. 作业题目:(1)计算自行车轮圈和轮胎的周长。
(2)如果自行车轮胎的直径为60厘米,求自行车行驶1公里时,轮胎转动的圈数。
2. 答案:(1)C = πd,其中d为轮圈直径。
(2)轮胎转动的圈数= 1000 / (π × 0.6) ≈ 515.92(圈)八、课后反思及拓展延伸1. 反思:本节课学生能否理解自行车轮圈和轮胎的关系,以及圆的周长在实际问题中的应用?2. 拓展延伸:引导学生思考如何利用数学知识解决生活中的其他问题,如计算车轮行驶的距离、速度等。
六年级数学下册教学设计《 自行车里的数学》21-人教版

六年级数学下册教学设计《自行车里的数学》21-人教版一. 教材分析《自行车里的数学》是人教版六年级数学下册的一章节,主要内容包括自行车各部分名称和尺寸、自行车零件的计算、自行车的制作和维修等。
本节课通过生活中的自行车实例,让学生理解和掌握体积、面积、周长等概念及其计算方法,培养学生解决实际问题的能力。
二. 学情分析六年级的学生已经掌握了基本的数学运算能力和一定的空间想象力。
但对于自行车的各部分名称和尺寸、零件计算等可能较为陌生。
因此,在教学过程中,教师需要结合生活实际,引导学生理解和掌握相关概念和方法。
三. 教学目标1.知识与技能:使学生理解和掌握自行车各部分名称和尺寸、零件计算、体积、面积、周长等概念及计算方法。
2.过程与方法:培养学生解决实际问题的能力,提高空间想象力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的紧密联系。
四. 教学重难点1.重点:自行车各部分名称和尺寸、零件计算、体积、面积、周长的计算方法。
2.难点:自行车零件的实际应用和空间想象力培养。
五. 教学方法1.情境教学法:通过生活中的自行车实例,引导学生理解和掌握相关概念和方法。
2.实践教学法:让学生亲自动手操作,提高解决实际问题的能力。
3.小组合作学习:培养学生团队合作精神,共同探讨和解决问题。
六. 教学准备1.准备自行车图片、视频等教学素材。
2.准备相关练习题和拓展题目。
3.准备黑板、粉笔等教学工具。
七. 教学过程导入(5分钟)教师展示自行车图片或视频,引导学生关注自行车各部分名称和尺寸。
提问:“你们知道自行车有哪些部分吗?它们各自有什么作用?”让学生回答,从而引出本节课的主题。
呈现(10分钟)教师讲解自行车各部分的名称和尺寸,如车轮、车架、链条等,并介绍相关计算方法。
例如,车轮的直径、周长和面积的计算方法。
同时,展示自行车零件的实物图片,让学生更好地理解和掌握。
操练(10分钟)教师给出一些自行车零件的计算题目,如计算车轮的周长、面积等。
人教版数学六年级下册第26课自行车里的数学教案与反思推荐3篇

人教版数学六年级下册第26课自行车里的数学教案与反思推荐3篇〖人教版数学六年级下册第26课自行车里的数学教案与反思第【1】篇〗学习内容:人教版小学数学教材六年级下册第67页。
学习目标:1.运用所学的圆、比例等知识解决问题。
2.了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
3.通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。
4.经历解决问题的基本过程,了解数学与生活的密切关系。
学习重点:运用所学的比例或与其相关的知识解决自行车中的数学问题。
学习难点:运用所学的比例或与其相关的知识解决自行车中的数学问题。
学习准备:课件等。
学习过程:环节预设教师活动学生活动设计意图一、情境导入“你知道哪些自行车的种类?”出示各种自行车的学生积极思考、回答问题。
先给出学生一个熟悉的生活场景,便于学生理解。
二、新知讲授(一)揭示课题1.说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2.自行车里会有数学问题吗?想一想。
(二)研究普通自行车的速度与内在结构的关系1.提出问题:两种自行车,各蹬一圈。
能走多远?引出学生对自行车里的数学的研究。
2.分析问题(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数3.建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)(2)分组收集所需要的数据,带入上述模式,求出答案。
4.汇报结果。
各小组展示并解释本组的研究过程和结果,在比较结果。
(三)研究变速自行车能组合出多少种速度1.提出问题:变速自行车能组合出多少种速度?(1)了解变速自行车的结构。
(有2个前齿轮,6个后齿轮。
人教版数学六年级下册《 自行车里的数学》教案2

人教版数学六年级下册《自行车里的数学》教案2一. 教材分析《自行车里的数学》是人教版数学六年级下册的一篇课题,通过生活中常见的自行车为载体,让学生在学习中发现和探索数学问题,提高学生运用数学知识解决实际问题的能力。
本课题主要包括自行车的结构、尺寸、比例等方面的知识,以及自行车运动中的速度、时间、路程等概念。
二. 学情分析六年级的学生已经具备了一定的数学基础,对平面几何、立体几何、计量单位等知识有一定的了解。
但自行车相关的数学问题较为复杂,需要学生运用已学的数学知识进行综合分析。
因此,在教学过程中,教师需要关注学生的学习情况,及时给予引导和帮助。
三. 教学目标1.让学生了解自行车的基本结构和相关尺寸,认识自行车运动中的速度、时间、路程等概念。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生团队合作、沟通交流的能力。
四. 教学重难点1.自行车的结构、尺寸、比例等方面的知识。
2.自行车运动中的速度、时间、路程等概念及其运用。
五. 教学方法1.情境教学法:通过展示自行车图片、实物等,引导学生了解自行车的结构和尺寸。
2.小组合作法:让学生分组讨论自行车相关问题,培养团队合作精神。
3.实例教学法:以实际自行车运动为例,讲解速度、时间、路程等概念。
4.引导发现法:教师引导学生发现自行车中的数学问题,培养学生探索精神。
六. 教学准备1.准备自行车图片、实物等教学资源。
2.准备相关数学知识资料,以便在教学中给予学生引导。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用自行车图片、实物等,引导学生关注自行车中的数学问题,激发学生学习兴趣。
2.呈现(10分钟)展示自行车结构、尺寸、比例等方面的知识,让学生初步了解自行车的相关数学问题。
3.操练(10分钟)让学生分组讨论自行车相关问题,如自行车的比例、尺寸等。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)以实际自行车运动为例,讲解速度、时间、路程等概念。
人教新课标六年级数学下册《自行车里的数学》教案

人教新课标六年级数学下册《自行车里的数学》教案一. 教材分析《自行车里的数学》是人教新课标六年级数学下册的一篇课文,通过介绍自行车中的数学知识,让学生了解和掌握一些基本的数学概念和运算方法。
本文主要围绕自行车的车轮周长、速度、时间和路程等概念展开,通过实例让学生理解这些概念之间的关系,并学会运用它们解决实际问题。
二. 学情分析六年级的学生已经掌握了基本的数学运算方法和简单的应用题解题技巧。
但是,对于速度、时间和路程之间的关系的理解还有待提高。
因此,在教学过程中,教师需要注重引导学生理解和掌握这些概念之间的关系,并通过实际例子让学生学会运用它们解决实际问题。
三. 教学目标1.知识与技能:让学生理解自行车中的数学知识,包括车轮周长、速度、时间和路程等概念,并学会运用它们解决实际问题。
2.过程与方法:通过实例分析和小组合作,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学知识的兴趣,培养学生的观察能力和思考能力。
四. 教学重难点1.重点:让学生理解和掌握自行车中的数学知识,包括车轮周长、速度、时间和路程等概念。
2.难点:让学生学会运用这些数学知识解决实际问题。
五. 教学方法1.情境教学法:通过引入自行车的情景,让学生直观地理解和掌握数学知识。
2.实例分析法:通过具体的实例,让学生学会运用数学知识解决实际问题。
3.小组合作法:通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些自行车的图片和实物,用于教学演示。
2.准备一些相关的数学知识材料,供学生阅读和参考。
3.准备一些实际的例子,用于引导学生运用数学知识解决实际问题。
七. 教学过程导入(5分钟)教师通过展示一些自行车的图片和实物,引导学生关注自行车中的数学知识。
提问学生:“你们知道自行车中有哪些数学知识吗?”让学生思考并回答。
呈现(10分钟)教师简要介绍自行车中的数学知识,包括车轮周长、速度、时间和路程等概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自行车里的数学》教学案例分析
一、教材分析:
综合应用《自行车里的数学》是小学数学六年级下下册中在第三单元“比例”之后安排的。
旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。
通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
《自行车里的数学》主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车能变化出多少种速度。
二、教学理念:
数学是对客观世界数量关系和空间关系的一种抽象。
新课程标准数学教材突出了数学与实际生活的联系,许多教学内容都建立了形象的生活情境,以帮助学生更好地学习数学,应用数学。
《自行车里的数学》就是让学生运用所学的圆、排列组合、比例等知识来解决生活中常见的有关自行车里的实际问题。
在传授数学知识和训练数学能力的过程中,教师要自然而然地注入生活内容,引导学生学会运用所学知识为自己生活服务。
这样的设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密。
让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。
三、教学目标:
1、让学生运用所学的圆、排列组合、比例等知识解决实际问题。
2、让让学生了解数学与生活的广泛联系,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
四、教学重难点:
1、普通自行车的速度与其内在结构关系的数学模型;
2、变速自行车的能变化出多少种速度。
五、教学过程
(一)、新课导入:
师:同学们,我们学数学用数学,生活中处处有数学,你看我们这自行车里就有许多数学知识。
今天我们就一起研究自行车里的数学
(二)、新课教学:
1、了解自行车的结构和行进原理
(课前在讲台上摆放3辆自行车,一辆普通自行车,一辆变速自行车,一辆儿童自行车。
)
师:同学们,谁知道自行车是怎么行进的?(教师边说边推动一辆自行车,请学生仔细观察、讨论、回答。
)
生:靠车把推动的。
生:靠车轮流动的。
生:靠脚踏推动齿轮转动,齿轮带动车轮前进的。
师:齿轮是怎样带动车轮的?请同学们仔细观察。
(教师转动脚踏,让学生仔细观察。
)
通过学生观察回答,教师总结提出结论:
①脚趾蹬一圈,前齿轮转一圈,
②链条跟着前齿轮转动,后齿轮跟着链条转动,后轮跟着后齿轮转动。
链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿。
前齿轮转多少齿,后齿轮也转多少齿。
③后齿轮转一圈,车轮转一圈。
[教学时,密切联系学生的生活实际,从学生的生活经验和已有知识出发,引导学生开展观察、操作、推理等活动,获得基本的数学知识和技能。
]
2、研究普通自行车的速度与内在结构的关系
①提出问题
师:我们刚才了解了自行车行进的原理,那么谁知道脚踏蹬一圈,自行车能走多远呢?
②分析问题
让学生以小组为单位,讨论研究解决问题的立案。
方案1:蹬一圈,量一下就知道了。
方案2:通过车轮的周长乘上后齿轮转的圈数来计算蹬一圈自行车走的距离。
师:怎样知道前齿轮转一圈,后齿轮转多少圈呢?怎么办?(学生再观察、讨论)
③建立数学模型
蹬一圈自行车走的距离=车轮的周长×(前齿轮的齿数∶后齿轮的齿数)
例题1、求解:
⑴如果前齿轮齿数为48,后齿轮齿数为19,车轮直径为71cm,那么蹬一圈能走多少米?
⑵如果前齿轮齿数为26,后齿轮齿数为16,车轮直径为66cm,那么蹬一圈能走多少米?
④汇报交流
师:蹬同样的圈数,哪辆自行车走的最远?对比⑴⑵你发现了什么规律?
总结:蹬一圈自行车走的距离与车轮直径、前、后齿轮的比值有关。
[这个问题让学生以小组为单位,讨论、研究解决问题的方案,使学生充分经历“分析问题—建立数学模型—求解”的解决问题的基本过程。
教师在注意班上同学的不同思路,通过适当的引导,帮助学生建立相应的数学模型。
而在数学教学中,引导学生积极思考,主动与同伴合作,积极与他人交流,也可提高学生运用数学知识解决实际问题的信心。
]
3、研究变速自行车能变化出多少种速度。
师:通过我们刚才的观察、研究,我们了解了自行车蹬一圈所走的路程等于自行车车轮的周长×(前齿轮的齿数∶后齿轮的齿数)。
车轮大小不变时,前后齿轮的齿数的比值越大,蹬一圈自行车走距离就越远,速度也就越快。
而为适应各种需要,人们还发明了变速自行车。
师:老师这辆变速自行车,有2个前齿轮和6个后齿轮,它能变化出多少种速度呢?
学生讨论交流,完成书本第65面的表格,并回报情况。
师:蹬同样的圈数,哪种组合使自行车走的最远?
结论:蹬同样的圈数,前后齿轮的齿数的比值越大,自行车走的最远。
[这是生活中常见问题,通过解决这类问题,可培养学生综合运用所学知识,解决实际问题的能力。
在教学过程中,教师充分利用学生身边的生活现象引入数学知训,会使学生对数学有一种亲近感,感到数学与生活同在,并不神秘。
而且,也会激起学生探求新知的强烈愿望。
]
4、知识拓展:
让学生自己提出一些自行车里的数学问题并解决它。
如,让学生按由远到近(蹬同样的圈数,使车走距离)的顺序,将各种组合排序;如何使这辆变速自行车能变化出12种不同的速度等等。
[这样不仅可以使学生了解数学与生活的广泛联系,还可以培养学生从不同的角度发现实际问题中所包含的数学信息的能力。
]
(三)、归纳总结:
通过今天的学习,我们发现了自行车里运用到我们学过的哪些数学知识?(圆的周长、排列组合、比例等)你明白了什么道理?
[使学生初步认识数学与人类生活的密切联系及对人类历史发展的作用,是人们生活、劳动和学习不可缺少的工具,从而增进对数学的理解和学好数学的信心,达到用数学知识服务于生活的目的。
]。