2020年九年级数学上册课时作业 一元二次方程 根的判别式(含答案)

合集下载

【湘教版】九年级数学上册:2.3《一元二次方程根的判别式》教案新部编本(含答案)

【湘教版】九年级数学上册:2.3《一元二次方程根的判别式》教案新部编本(含答案)

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校2.3一元二次方程根的判别式教学目标【知识与技能】能运用根的判别式,判别方程根的情况和进行有关的推理论证.【过程与方法】经历思考、探究过程,发展总结归纳能力,能有条理地、清晰地阐述自己的观点.【情感态度】积极参与数学活动,对其产生好奇心和求知欲.【教学重点】能运用根的判别式,判别方程根的情况和进行有关的推理论证.【教学难点】从具体题目来推出一元二次方程ax 2+bx+c=0(a ≠0)的b 2-4ac 的情况与根的情况的关系.教学过程一、情景导入,初步认知同学们,我们已经学会了怎么解一元二次方程,对吗?那么,现在老师这儿还有一手绝活,就是:我随便拿到一个一元二次方程的题目,我不用具体地去解它,就能很快知道它的根的大致情况,不信呀!同学们可以随便地出两个题考考我.【教学说明】这样设计,能马上激发学生的学习兴趣和求知欲,为后面发现结论创造一个最佳的心理状态.二、思考探究,获取新知1.问题:什么是求根公式?它有什么作用?2.观察求根公式2b x a±=-回答下列问题: (1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)有几个根?(2)当b 2-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有几个根?(3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)有几个根?3.综上所知,一元二次方程ax 2+bx+c=0(a ≠0)的根的情况是由b 2-4ac 来判断的.【归纳结论】我们把b 2-4ac 叫做一元二次方程的根的判别式,通常用符号“Δ”表示.即:Δ=b 2-4ac⑴当Δ=b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等实数根即12b x a =-,22b x a=-. ⑵当Δ=b 2-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根.⑶当Δ=b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.4.不解方程判定下列方程的根的情况.(1)3x 2+4x-3=0(2)4x 2=12x-9(3)7y=5(y 2+1)解:(1)因为Δ=b 2-4ac=42-4×3×(-3)=52>0所以,原方程有两个不相等的实数根.(2)将原方程化为一般形式,得4x 2-12x+9=0因为Δ=b 2-4ac=(-12)2-4×4×9=0所以,原方程有两个相等的实数根.(3)将原方程化为一般形式,得5y 2-7y+5=0因为Δ=b 2-4ac=(-7)2-4×5×5=-51<0所以,原方程没有实数根.【教学说明】学生从具体到抽象的观察、分析与概括能力并使学生从感性认识上升到理性认识,真正体验自己发现结论的成功乐趣.三、运用新知,深化理解1.已知方程x 2+px+q=0有两个相等的实根,则p 与q 的关系是.【答案】 p 2-4q=02.若方程x 2+px+q=0的两个根是-2和3,则p ,q 的值分别为.【答案】 -1,-63.判断下列方程是否有解:(1)5x2-2=6x(2)3x2+2x+1=0解析:演算或口算出b2-4ac,从而判断是否有根解:(1)有(2)没有4.不解方程,判定方程根的情况.(1)16x2+8x=-3(2)9x2+6x+1=0(3)2x2-9x+8=0(4)x2-7x-18=0分析:不解方程,判定根的情况,只需用b2-4ac的值大于0、小于0、等于0的情况进行分析即可.解:(1)化为16x2+8x+3=0这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0所以,方程没有实数根.(2)a=9,b=6,c=1,b2-4ac=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b2-4ac=(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b2-4ac=(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.5.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0∴a<-2∵ax+3>0即ax>-3,∴x<-3/a∴所求不等式的解集为x<-3/a6.已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.分析:(1)判断一元二次方程根的情况,只要看根的判别式Δ=b2-4ac的值的符号即可判断:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.解:(1)∵当m=3时,Δ=b2-4ac=22-4×3=-8<0,∴原方程无实数根.(2)当m=-3时,原方程变为x2+2x-3=0,∵(x-1)(x+3)=0,∴x-1=0,x+3=0.∴x1=1,x2=-3.7.已知一元二次方程x2+px+q+1=0的一根为2.(1)求q关于p的关系式;(2)求证:抛物线y=x2+px+q与x轴有两个交点.分析:(1)根据一元二次方程的解的定义,把x=2代入已知方程即可求得q关于p的关系式;(2)由关于x的方程x2+px+q=0的根的判别式的符号来证明抛物线y=x2+px+q与x轴有两个交点.解:(1)∵一元二次方程x2+px+q+1=0的一根为2,∴4+2p+q+1=0,即q=-2p-5;(2)证明:令x2+px+q=0.则Δ=p2-4q=p2-4(-2p-5)=(p+4)2+4>0,即Δ>0,所以,关于x的方程x2+px+q=0有两个不相等的实数根.即抛物线y=x2+px+q与x轴有两个交点.【教学说明】使学生能及时巩固本节课所学知识,培养学生自觉学习的习惯,同时对学有余力的学生留出自由的发展空间.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.3”中第1、2、3题.教学反思本节课的教学坚持从学生实际出发,以学生为主体,注重对新理念的贯彻和教学方法的使用;在突破难点时,多种方法并用,注意培养自学能力;坚持当堂训练,例题、练习的设计针对性强,重点突出,对方法的总结言简意赅;学生能够积极、主动的参与,充分经历了知识的形成、发展与应用的过程,在这个过程中掌握了知识,形成了技能,发展了思维;教学效果很好!。

人教版九年级数学上册 21.2.2.1 一元二次方程的根的判别式 同步练习题(含答案,教师版)

人教版九年级数学上册 21.2.2.1 一元二次方程的根的判别式 同步练习题(含答案,教师版)

人教版九年级数学上册第21 章21.2.2.1 一元二次方程的根的判别式 同步练习题一、选择题1.一元二次方程x 2-2x =0根的判别式的值为(A)A .4B .2C .0D .-42.一元二次方程4x 2-2x -1=0的根的情况为(B)A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.下列一元二次方程没有实数根的是(B)A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=04.若方程x 2+kx +1=0有两个相等的实数根,则k 的值是(C)A .-2B .2C .±2 D.125.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0有两个不相等的实数根,则k 的取值范围为(A)A .k >-14B .k >4C .k <-1D .k <4 6.若关于x 的方程x 2-x +a =0有实数根,则a 的值可以是(D)A .2B .1C .0.5D .0.257.若关于x 的方程kx 2-x -34=0有实数根,则实数k 的取值范围是(C) A .k =0 B .k ≥-13且k ≠0 C .k ≥-13 D .k >-138.已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是(B)A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断9.若关于x 的一元二次方程(k +1)x 2-2x +1=0有两个实数根,则k 的取值范围是(D)A .k ≥0B .k ≤0C .k <0且k ≠-1D .k ≤0且k ≠-110.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是(B)二、填空题11.关于x 的方程x 2+2x -(m -2)=0的根的判别式Δ=4m -4,若方程有两个不相等的实数根,则m>1;若方程有两个相等的实数根,则m =1;若方程没有实数根,则m<1.12.已知关于x 的方程x 2+(1-m)x +m 24=0有两个不相等的实数根,则m 的最大整数值是0. 13.关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是m>14. 14.若关于x 的方程x 2-6x +m +1=0有两个相等的实数根,则m 的值是8.15.若|b -1|+a -4=0,且一元二次方程kx 2+ax +b =0有实数根,则k 的取值范围是k ≤4且k ≠0.三、解答题16.不解方程,判断下列一元二次方程的根的情况:(1)9x 2+6x +1=0;解:∵a =9,b =6,c =1,∴Δ=b 2-4ac =36-4×9×1=0.∴此方程有两个相等的实数根.(2)16x 2+8x =-3;解:化为一般形式为16x 2+8x +3=0.∵a =16,b =8,c =3,∴Δ=b 2-4ac =64-4×16×3=-128<0.∴此方程没有实数根.(3)3(x 2-1)-5x =0.解:化为一般形式为3x 2-5x -3=0.∵a =3,b =-5,c =-3,∴Δ=(-5)2-4×3×(-3)=25+36=61>0.∴此方程有两个不相等的实数根.17.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,求k 的最小整数值.解:因为原方程有两个不相等的实数根,所以Δ>0,即(-2)2-4k ·(-1)>0,解得k>-1.所以k 的最小整数值是0.以上解答是否正确?若不正确,请指出错误并给出正确答案.解:不正确.错误原因:∵当k =0时,原方程不是一元二次方程,∴k ≠0.∴k 的最小整数值为1.18.已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一个根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.解:(1)∵1为原方程的一个根,∴1+a +a -2=0.∴a =12.将a =12代入方程,得x 2+12x -32=0. 解得x 1=1,x 2=-32. ∴a 的值为12,方程的另一个根为-32. (2)证明:∵在x 2+ax +a -2=0中,Δ=a 2-4a +8=(a -2)2+4>0,∴不论a 取何实数,该方程都有两个不相等的实数根.19.已知关于x 的一元二次方程(a +c)x 2+2bx +(a -c)=0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.解:(1)△ABC 是等腰三角形.理由:∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0.∴a +c -2b +a -c =0.∴2a -2b =0.∴a =b.∴△ABC 是等腰三角形.(2)△ABC 是直角三角形.理由:∵方程有两个相等的实数根,∴Δ=(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0.∴a 2=b 2+c 2.∴△ABC 是直角三角形.20.已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一个根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根. 解:(1)∵1为原方程的一个根,∴1+a +a -2=0.∴a =12.代入方程,得x 2+12x -32=0. 解得x 1=1,x 2=-32. ∴a 的值为12,方程的另一个根为-32. (2)证明:∵在x 2+ax +a -2=0中,Δ=a 2-4a +8=(a -2)2+4>0,∴不论a 取何实数,该方程都有两个不相等的实数根.。

专题:一元二次方程根的判别式(含答案)(20201101103145)

专题:一元二次方程根的判别式(含答案)(20201101103145)

一元二次方程根的判别式姓名♦课前预习1. _________________________________________________________________________________ 一元二次方程ax2+bx+c=0 (0)的根的情况可用b2—4ac?来判定,?b2—4ac?叫做______________________ ,通常用符号“△”为表示. (1) b2—4ac>0 方程__________ ; (2) b2—4ac=0 方程 _________ ; (3) b2—4ac<0 方程 _________ .2•使用根的判别式之前应先把方程化为一元二次方程的____________ 形式.♦互动课堂【例1】不解方程,判别下列方程根的情况:(1) x2—5x+3=0 ; (2) X2+2..2X+2=0 ; (3) 3x2+2=4x ; (4) mx2+ ( m+n) x+n=0 ( m 工0, m 工n).【例2】若关于x的方程(m2—1) x2— 2 (m+2) x+1=0有实数根,求m的取值范围.【例3】已知关于x的一元二次方程x2—( 2k+1 ) x+4 ( k—丄)=0. (1)求证:无论k取什么实数2值,这个方程总有实数根;(2)如果等腰厶ABC有一边长a=4,另两条边长b, c恰好是这个方程的两个实数根,求△ ABC的周长.【例4】已知关于x的方程x — 2 (m+1) x+m2=0. (1)当m取何值时,方程有两个实数根?(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.♦跟进课堂1 .方程2x2+3x —4=0的根的判别式△ = _______ .2. _______________________________________________________________________ 已知关于x的一元二次方程mx2—10x+5=0有实数根,则m的取值范围是____________________________ .3. 如果方程x2—2x —m+3=0有两个相等的实数根,则m的值为_________ ,此时方程的根为_________ .4 .若关于x的一元二次方程kx2+2x —仁0没有实数根,则k的取值范围是___________ .5 .若关于x的一元二次方程mx2—2 ( 3m—1) x+9m —1=0有两个实数根,则实数m?的取值范围是6 .下列一元二次方程中,没有实数根的是( ).A . x2+2x —仁0 B. X2+2T3X+3=0 C . x2+T2x+ 仁0 D. —x2+x+2=07.如果方程2x( kx —4) —x2—6=0有实数根,则k的最小整数是().A. — 1 B . 0 C . 1 D . 2 &下列一元二次方程中,有实数根的方程是( ).A . x2—x+仁0B . x2—2x+3=0C . x2+x —仁0D . x2+4=09. 如果关于x的一元二次方程kx2—6x+9=0有两个不相等的实数根,那么k的取值范围是( ).A . k<1B . k z 0C . k<1 且k 工0D . k>110 .关于x的方程x2+ (3m —1) x+2m2—m=0的根的情况是( ).A .有两个实数根B.有两个相等的实数根C.有两个不相等的实数根 D .没有实数根♦课外作业1. 在下列方程中,有实数根的是( )(A) X2+3X+仁0 ( B) 4x—1=-1 (C) X2+2X+3=0( D) 上=丄x 1 x 12. 关于x的一元二次方程x2+ kx—仁0的根的情况是A、有两个不相等的同号实数根B、有两个不相等的异号实数根C、有两个相等的实数根D、没有实数根3. 关于x的一元二次方程(a—1)x2+ x + a2+ 3a—4 = 0有一个实数根是x = 0.贝V a的值为( ).A、1 或—4B、1C、—4D、—1 或44. ___________________________________________________________________________ 若关于x的一元二次方程x23x m 0有实数根,则m的取值范围是___________________________________5. 若0是关于x的方程(m-2 ) x2+3x+m2- 2m- 8=0的解,求实数m的值,并讨论此方程解的情况.6•不解方程,试判定下列方程根的情况.(1) 2+5x=3x2(2) x2- (1+2) X+、..3+4=0(3 )x2-2kx+ (2k-1) =0 (x 为未知数)7.关于x的一元二次方程mx2—( 3m—1) x+2m —仁0,其根的判别式的值为1,求m?的值及该方程的解.&已知a、b、c分别是△ ABC的三边长,当m>0时,关于x的一元二次方程 c (x2+m) +b (x2—m) —2 . m ax=0有两个相等的实数根,试判断厶ABC的形状.9.等腰△ ABC中,BC=8 , AB、AC的长是关于x的方程x2—10x+m=0的两根,求m的值.10. 如果关于x的方程mx2— 2 ( m+2) x+m+5=0没有实数根,试判断关于x的方程(m —?5) x2— 2 (m—1) x+m=0的根的情况.11. 已知关于x的方程(n—1) x2+mx+1=0 ①有两个相等的实数根.(1)求证:关于y的方程m2y2—2my —m2—2n2+3=0 ②必有两个不相等的实数根;(2)如果方程①的一个根是一1,求方程②的根.212.若关于x的一元二次方程(a 2)x22ax a 1 式子表示). 0没有实数解,求ax 3 0的解集(用含a的13. 要建一个面积为150m2的长方形养鸡场,为了节约材料,?鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.1)求鸡场的长与宽各是多少?( 2)题中墙的长度a对解题有什么作用.*14.若a, b, c, d都是实数,且ab=2(c+ d),求证:关于x的方程x2+ ax+ c=0, x2+ bx+ d=0中至少有一个方程有实数根.答案:1 . 411 口2. m W 5 且m^ 03. 2, x1=x2=14. k< —15. m W - 且m 丰06. C7. B8. ?C ?9. C 10. A11. m=2 , x i=1 , x2= 12. Rt △ 13. m=25 或16214. 当m=5时方程有一个实根;当m>4且m^ 5时,方程有两个不等实根.15. 略。

2022年北师大版数学《一元二次方程的根的判别式》配套精品练习(附答案)

2022年北师大版数学《一元二次方程的根的判别式》配套精品练习(附答案)

第1课时一元二次方程的根的判别式基础题知识点1利用根的判别式判别根的情况1.一元二次方程x2-4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.无实数根2.(自贡中考)一元二次方程x2-4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.(云南中考)下列一元二次方程中,没有实数根的是()A.4x2-5x+2=0 B.x2-6x+9=0C.5x2-4x-1=0 D.3x2-4x+1=04.(苏州中考)下列关于x的方程有实数根的是()A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=05.不解方程,判定下列一元二次方程根的情况:(1)9x2+6x+1=0;(2)16x2+8x=-3;(3)3(x2-1)-5x=0.6.(泰州中考)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.知识点2 利用根的判别式确定字母的取值7.(温州中考)若关于x 的一元二次方程4x 2-4x +c =0有两个相等的实数根,则c 的值是( )A .-1B .1C .-4D .48.(益阳中考)一元二次方程x 2-2x +m =0总有实数根,则m 应满足的条件是( )A .m >1B .m =1C .m <1D .m ≤19.(东莞中考)若关于x 的方程x 2+x -a +94=0有两个不相等的实数根,则实数a 的取值范围是( ) A .a ≥2 B .a ≤2C .a >2D .a <210.(龙口期中)当k 为何值时,关于x 的一元二次方程x 2-(2k -1)x =-k 2+2k +3.(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实根.中档题11.(内江中考)若关于x 的一元二次方程(k -1)x 2+2x -2=0有不相等实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 12.(贵港中考)若关于x 的一元二次方程(a -1)x 2-2x +2=0有实数根,则整数a 的最大值为( )A .-1B .0C .1D .213.(泸州中考)若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是( )14.(烟台中考)等腰三角形三边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,则n 的值为( )A .9B .10C.9或10D.8或1015.关于x的方程(a-5)x2-4x-1=0有实数根,则a满足的条件是________.16.(贺州中考)已知关于x的方程x2+(1-m)x+m24=0有两个不相等的实数根,则m的最大整数值是________.17.(福州中考)已知关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,求m的值.18.(汕尾中考)已知关于x的方程x2+ax+a-2=0.(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.综合题19.(自贡中考)用配方法解关于x的一元二次方程ax2+bx+c=0.参考答案基础题1.B 2.D 3.A 4.C5.(1)∵a=9,b=6,c=1,∴Δ=b2-4ac=36-36=0.∴此方程有两个相等的实数根.(2)化为16x2+8x+3=0.∵a=16,b=8,c=3,∴Δ=b2-4ac=64-4×16×3=-128<0.∴此方程没有实数根.(3)化为一般形式为:3x 2-5x -3=0.∵a =3,b =-5,c =-3,∴Δ=(-5)2-4×3×(-3)=25+36=61>0.∴此方程有两个不相等的实数根.6.(1)∵b 2-4ac =(2m)2-4×1×(m 2-1)=4>0,∴方程有两个不相等的实数根.(2)将x =3代入原方程,得9+6m +m 2-1=0,解得m 1=-2,m 2=-4.∴m 的值为-2或-4.7.B 8.D 9.C10.原方程整理为x 2-(2k -1)x +k 2-2k -3=0,Δ=(2k -1)2-4(k 2-2k -3)=4k +13.(1)当Δ>0时,方程有两个不相等的实数根,即4k +13>0,解得k>-134. (2)当Δ=0时,方程有两个相等的实数根,即4k +13=0,解得k =-134. (3)当Δ<0时,方程没有实数根,即4k +13<0,解得k<-134. 中档题11.C 12.B 13.B 14.B 15.a ≥1 16.017.∵关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,∴Δ=(2m -1)2-4×1×4=0.∴2m -1=±4.∴m =52或m =-32. 18.(1)∵1为原方程的一个根,∴1+a +a -2=0.∴a =12.代入方程得:x 2+12x -321=1,x 2=-32.∴a 的值为12,方程的另一个根为-32.(2)证明:在x 2+ax +a -2=0中,Δ=a 2-4a +8=(a -2)2+4>0,∴不论a 取何实数,该方程都有两个不相等的实数根.综合题19.∵关于x 的方程ax 2+bx +c =0是一元二次方程,∴a ≠0,∴由原方程,得x 2+b a x =-c a ,等式的两边都加上(b 2a)2,得x 2+b a x +(b 2a )2=-c a +(b 2a )2,配方,得(x +b 2a )2=-4ac -b 24a 2,当b 2-4ac>0时,开方,得:x +b 2a =±b 2-4ac 2a,解得x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a ,当b 2-4ac =0时,解得x 1=x 2=-b 2a;当b 2-4ac<0时,原方程无实数根.《第1章 特殊平行四边形》一、选择题1.下列给出的条件中,不能判断四边形ABCD 是平行四边形的是( )A .AB ∥CD ,AD=BC B .∠A=∠C ,∠B=∠D C .AB ∥CD ,AD ∥BC D .AB=CD ,AD=BC2.下列说法中,错误的是( )A .平行四边形的对角线互相平分B .对角线互相平分的四边形是平行四边形C .菱形的对角线互相垂直D .对角线互相垂直的四边形是菱形3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )A.50° B.55° C.60° D.65°4.如图,▱ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为()A.8.3 B.9.65.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米6.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.119.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2 B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE 的和最小,则这个最小值为()A.2 B.3 C. D.二、填空题11.(5分)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm2.12.(5分)如图,在矩形ABCD中,AC、BD相交于点O且AC=8,如果∠AOD=60°,那么AD= .13.(5分)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于.14.(5分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.三、解答题(15题12分,16题12分,17题16分)15.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.16.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.17.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.《第1章特殊平行四边形》参考答案与试题解析一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC【考点】平行四边形的判定.【分析】直接根据平行四边形的判定定理判断即可.【解答】解:平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断,平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B能判断;平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D能判定;平行四边形判定定理3,对角线互相平分的四边形是平行四边形;平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;故选A.【点评】此题是平行四边形的判定,解本题的关键是掌握和灵活运用平行四边形的5个判断方法.2.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【考点】菱形的判定与性质;平行四边形的判定与性质.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ABC均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形,故选:D.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°【考点】翻折变换(折叠问题).【专题】数形结合.【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.故选:A.【点评】本题考查了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.4.如图,▱ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为()A.8.3 B.9.6【考点】平行四边形的性质.【分析】根据平行四边形的中心对称性,可知EF把平行四边形分成两个相等的部分,先求平行四边形的周长,再求EF的长,即可求出四边形BCEF的周长.【解答】解:根据平行四边形的中心对称性得:OF=OE=1.3,∵▱ABCD的周长=(4+3)×2=14∴四边形BCEF的周长=×▱ABCD的周长+2.6=9.6.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.平行四边形是中心对称图形.5.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米【考点】菱形的性质.【专题】应用题.【分析】由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA==3(米),则AC=2OA=6米,故选A.【点评】此题考查了勾股定理,菱形的性质,以及等边三角形的判定与性质,熟练掌握菱形的性质是解本题的关键.6.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm【考点】矩形的性质.【分析】根据已知条件以及矩形性质证△ABE为等腰三角形得到AB=AE,注意“长和宽分别为15cm和10cm”说明有2种情况,需要分类讨论.【解答】解:如图,∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.故选B.【点评】此题考查了矩形的性质与等腰三角形的判定与性质.注意出现角平分线,出现平行线时,一般出现等腰三角形,需注意等腰三角形相等边的不同.7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD【考点】矩形的判定.【分析】由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.【点评】此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.8.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11【考点】三角形中位线定理;勾股定理.【专题】计算题.【分析】根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.【解答】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×+3)=11.故选D.【点评】本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.9.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2 B.3 C.D.1+【考点】旋转的性质.【专题】压轴题.【分析】当AB绕点A逆时针旋转45度后,刚回落在正方形对角线AC上,可求三角形与边长的差B′C,再根据等腰直角三角形的性质,勾股定理可求B′O,OD,从而可求四边形AB′OD的周长.【解答】解:连接B′C,∵旋转角∠BAB′=45°,∠BAC=45°,∴B′在对角线AC上,∵AB=AB′=1,用勾股定理得AC=,∴B′C=﹣1,在等腰Rt△OB′C中,OB′=B′C=﹣1,在直角三角形OB′C中,由勾股定理得OC=(﹣1)=2﹣,∴OD=1﹣OC=﹣1∴四边形AB′OD的周长是:2AD+OB′+OD=2+﹣1+﹣1=2.故选A.【点评】本题考查了正方形的性质,旋转的性质,特殊三角形边长的求法.连接B′C构造等腰Rt△OB′C是解题的关键.10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE 的和最小,则这个最小值为()A.2 B.3 C. D.【考点】轴对称-最短路线问题;正方形的性质.【专题】几何图形问题.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE 的边,BE=AB,由正方形ABCD的面积为4,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为4,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.∴所求最小值为2.故选:A.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.二、填空题11.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是 3 cm2.【考点】菱形的性质.【分析】由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).故答案为:3.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线乘积的一半.12.如图,在矩形ABCD中,AC、BD相交于点O且AC=8,如果∠AOD=60°,那么AD= 4 .【考点】矩形的性质.【分析】根据矩形的对角线互相平分且相等可得OA=OD=AC,然后判断出△AOD是等边三角形,根据等边三角形的三边都相等解答即可.【解答】解:在矩形ABCD中,OA=OD=AC=×8=4,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=4.故答案为:4.【点评】本题考查了矩形的对角线互相平分且相等的性质,等边三角形的判定与性质,比较简单,熟记性质是解题的关键.13.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】由菱形的四边相等求出边长,再根据对角线互相垂直得出∠AOD=90°,然后根据直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;故答案为:3.5.【点评】本题考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解决问题的关键.14.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,=()n﹣1.∴第n个正方形的边长an故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.三、解答题(15题12分,16题12分,17题16分)15.(2010•株洲)如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.【考点】平行四边形的性质.【专题】计算题;证明题.【分析】(1)根据DE是∠ADC的角平分线得到∠1=∠2,再根据平行四边形的性质得到∠1=∠3,所以∠2=∠3,根据等角对等边即可得证;(2)先根据BE=CE结合CD=CE得到△ABE是等腰三角形,求出∠BAE的度数,再根据平行四边形邻角互补得到∠BAD=100°,所以∠DAE可求.【解答】(1)证明:如图,在平行四边形ABCD中,∵AD∥BC∴∠1=∠3又∵∠1=∠2,∴∠2=∠3,∴CD=CE;(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,又∵CD=CE,BE=CE,∴AB=BE,∴∠BAE=∠BEA.∵∠B=80°,∴∠BAE=50°,∴∠DAE=180°﹣50°﹣80°=50°.【点评】(1)由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解;(2)根据“BE=CE”得出AB=BE是解决问题的关键.16.(2015•乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.【考点】翻折变换(折叠问题);全等三角形的判定与性质.【分析】(1)由AD∥BC,知∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,所以∠DBC=∠BDF,得BE=DE,即可用AAS 证△DCE≌△BFE;(2)在Rt△BCD中,CD=2,∠ADB=∠DBC=30°,知BC=2,在Rt△BCD中,CD=2,∠EDC=30°,知CE=,所以BE=BC﹣EC=.【解答】解:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=2,在Rt△ECD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴(2EC)2﹣EC2=CD2,∴CE=,∴BE=BC﹣EC=.【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.17.(2016春•历下区期末)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】四边形综合题.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)证明:如图1,∵BE平分∠DBC,OD是正方形ABCD的对角线,∴∠EBC=∠DBC=22.5°,由(1)知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理),∴∠BGF=90°;在△DBG和△FBG中,,∴△DBG≌△FBG(ASA),∴BD=BF,DG=FG(全等三角形的对应边相等),∵BD==,∴BF=,∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1,①当BH=BP时,则BP=﹣1,∵∠PBC=45°,设P(x,x),∴2x2=(﹣1)2,解得x=1﹣或﹣1+,∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P(,),综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。

(必考题)初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)

(必考题)初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ). A .()40012900x += B .()40021900x ⨯+=C .()24001900x += D .()()240040014001900x x ++++=3.用配方法转化方程2210x x +-=时,结果正确的是( )A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=4.方程2240x x --=经过配方后,其结果正确的是( ) A .()215x -=B .()217x -=C .()214x -=D .()215x +=5.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=6.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有且只有一个实数根 D .没有实数根7.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( ) A .12B .16C .l2或16D .158.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( )日 一 二 三 四 五 六图1图2A .17B .18C .19D .209.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( ) A .a <-2 B .a >-2C .-2<a <0D .-2≤a <010.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根11.下列方程中是关于x 的一元二次方程的是( ) A .210x x+= B .ax 2+bx +c =0 C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)2 12.方程23x x =的根是( ) A .3x =B .0x =C .123,0x x =-=D .123,0x x ==13.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( ) A .x (40-x )=75 B .x (20-x )=75C .x (x +40)=75D .x (x +20)=7 14.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 15.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2二、填空题16.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.17.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.18.一元二次方程(x +2)(x ﹣3)=0的解是:_____. 19.写出有一个根为1的一元二次方程是______.20.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____. 21.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____. 22.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____. 23.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.24.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____25.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________26.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.三、解答题27.解方程:y(y-1)+2y-2=0.28.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值. 对于代数式2ax bx c ++,若存在实数n ,当x=n 时,代数式的值也等于n ,则称n 为这个代数式的不变值. 例如:对于代数式2x ,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值. 在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A=0. (1)代数式22x -的不变值是________,A=________. (2)已知代数式231x bx -+,若A=0,求b 的值.29.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值. 30.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.。

2.3 一元二次方程根的判别式(课件)2024-2025学年湘教版数学九年级上册

2.3 一元二次方程根的判别式(课件)2024-2025学年湘教版数学九年级上册
第二章 一元二次方程
2.3 一元二次方程根的判别式
学习目标
1 课时讲解 一元二次方程根的判别式
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 一元二次方程根的判别式
知1-讲
1. 定义:我们把b2-4ac叫作一元二次方程ax2+bx+c=0 (a ≠ 0)的根的判别式,记作“Δ”,即Δ=b2-4ac.
确定a,b,c后再计算;使用一元二次方程根的判别 式的前提是二次项系数不为0.
知1-练
例1 [中考·河南] 关于x的一元二次方程x2+mx-8=0 的根 的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根
知1-练
解题秘方:由根的判别式与 0 的大小关系判断一元二次方 程根的情况.
感悟新知
知1-练
例2 [中考·锦州] 若关于 x 的一元二次方程 kx2-2x+3 = 0
有两个实数根,则 k 的取值范围是( )
A.
k

1 3
C. k < 13且 k ≠ 0
B.
kHale Waihona Puke ≤1 3D.
k

1 3

k

0
感悟新知
解题秘方:根据根的情况与根的判别式的关系, 知1-练 列等式或不等式进行求解 .
解:∵ 关于 x 的一元二次方程 kx2 - 2x + 3 = 0, ∴ k ≠ 0. ∵方程有两个实数根,

Δ
=(-
2)
2

4k×
3

0,解得
k

1 3

∴ k 的取值范围是 答案:D

【湘教版】九年级数学上册:2.3一元二次方程根的判别式课时作业(含答案)

【湘教版】九年级数学上册:2.3一元二次方程根的判别式课时作业(含答案)

2.3 一元二次方程根的判别式一.选择题1.一元二次方程”一必+4 = 0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定2.下列方程中,没有实数根的是()A. 2x=0B. 2*—1=0C. F—2x+l = 0D. F—2x+2 = 03.若关于x的方程”+2x—a=0有两个相等的实数根,则a的值为()A. — 1B. 1C. —4D. 4二填空)4.关于%的一元二次方程(日一1)£+ (Za+l)x+ a=0有两个不相等的实数根,则&的取值范围是__________ .5.在△/应'中,BC=2, AB=2 AC=b,且关于x的方程r一4*+5=0有两个相等的实数根,则力C边上的中线长为 _________ .6.己知关于*的方程^-{a+2)x+a-2b=0的根的判别式等于0,且*=*是方程的根,则a+b的值为_____________ .三•解答题7.己知关丁- x的方程半/一 (加一2)x+力=0.(1)若方程有两个不相等的实数根,求也的取值范围;(2)若方程有两个相等的实数根,求也的值;(3)若方程无实数根,求刃的取值范围.8.己知关于x的一元二次方程”一6/+&=0有两个实数根.(1)求&的取值范围;(2)如果k取符合条件的最大整数,且一元二次方程=0与^+mx~l= 0有一个相同的根,求常数也的值.9.己知关于x的方程(2也+1)*+加(加+1) =0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2刃一1)?+(3+也)(3 —加)+7刃一5的值(要求先化简再求值).10存在性问题探究己知口=/一2*+1, y?=2x— k.(1)当&=一1时,是否存在实数必使得乃+北=0?如果存在,请求出x的值;如果不存在,请说明理由.(2)对给定的实数k,是否存在实数心使% =砂?如果存在,请确定&的取值范围;如果不存在,请说明理由.参考答案1•[解析]B T 4 =方'一4眈=(―4):—4X 1X4 = 0,・:方程£ 一4*+4 = 0有两个相等的实数根.故选B.2.[解析]D & /=F-4ac=(-2)'-4XlX0 = 4>0,方程有两个不相等的实数根,所以力选项不符合题意;B. 4=方;一4眈=(一2)2-4XlX(-l)=8>0,方程有两个不相等的实数根,所以万选项不符合题意;C力=方:一4ac= (―2)' —4X 1X1=0,方程有两个相等的实数根,所以C选项不符合题意;ZZ 4=F — 4ac=( — 2)7 — 4X1X2 = —4V0,方程没有实数根,所以0选项符合题意.故选〃3.[解析]力•・•方程^+2x-a=0有两个相等的实数根,・・・4 =F—4ac=2:—4X IX ( — a) =4 + 4曰=0,解得耳=一1.故选A.4.[答案]a>—令且自H1O[解析]•・•关于x的一元二次方程@一1)扌+(2日+1)%+日=0有两个不相等的实数根,・•.&—1H0, 4 =(2a+1):—4a(a— 1) >0, 解得&>—£且&HL故答案为&>—*且aHl.5.[答案]2[解析]•・•关于x的方程F—4x+方=0有两个相等的实数根,A = 16 —4Z?=0,:・AC= b=4.•:BC=2, AB=2书,\BC+A^ = AC, :・、ABC是直角三角形,M是斜边,・・・M边上的中线长=#C=2.故答案为2.6.[答案][解析]由题意可得力=[一@+2)『一4X(曰一2方)=0,即才+ 8方+4 = 0①.再将尸扌代入原方程得2日一8方一3 = 0②.①+②得才+52日+1 = 0,解得金=必=一1.把日=—1代入②中,可得b=—§,则1 Q 1 Q卄* 一节.故答案为一节.7.解:F—4ac=[―(刃一2)4X#力=—4血+4.(1)因为原方程有两个不相等的实数根,所以一4刃+4>0,解得冰1.(2)因为原方程有两个相等的实数根,所以一4刃+4 = 0,解得刃=1.(3)因为原方程无实数根,所以一4刃+4〈0,解得刃>1.8.解:(1)・・・方'一4眈=(一6尸一4*1><&=36—4&鼻0, A^9.(2) •・•&取符合条件的最大整数且辰9,k=g.当k=9时,方程F—6x+9 = 0的根为Xi = x:=3.把x=3代入方程Z+财一1 = 0得9 + 3加一1=0,89.解:(1)证明:丁关于*的一元二次方程(2刃+l)x+/Z7(2Z7 + 1)=0,・;力=S — 4&c= [—(2加+1)]:—4刃(血+1) =1>0,・•・方程总有两个不相等的实数根.(2)•・・/= 0是此方程的一个根,・••把x=0代入方程中得到加(也+1) =0.T (2加一1):+ (3+/Z?)(3 —ZZ7)+7刃一5 = 4力一4刃+1 + 9—力 + 7刃一5 = 3^+3/z?+5 = 3/Z7(/z?+1) +5.把zz?(/z?+l) =0 代入3zz?(/z?+l) +5,得3也(加+l)+5 = 3X0 + 5 = 5.故代数式(2/z?—I)2+ (3+/Z?)(3—加)+7刃一5的值为5.10解:(1)不存在.理由如下:当 &=一1 时,令乃+乃=0,得 /一2*+l+2x+l=0,整理,得”+2 = 0.因为4=F-4ac=0-4X2<0,所以方程没有实数根,即不存在实数”使得乃+乃=0.(2)存在.令yi = ky2,则f-2*+l=W(2x—&), 整理得(2 + 2Q*+l+左=0.因为4=F —4ac=[—(2 + 2幻]'一4(1 + /)=8〃, 所以当时,方程有实数根.即对给定的实数A,存在实数%使乃=幻勺此时&的取值范围是 5.。

2.3一元二次方程根的判别式(新湘教版九年级数学上)

2.3一元二次方程根的判别式(新湘教版九年级数学上)

当 b 2 4ac =0 时,方程的右边是 0,方程有两个相等的
b 实数根: x1 x2 ; 2a 2
当 b 4ac <0 时,方程的右边是一个负数,因为在实
数范围内,负数没有平方根.所以,方程没有实数根.
思考:究竟是谁决定了一元二次方程根的情况
b 2 4ac
反过来,对于方程 ax bx c 0 a 0 ,
因为△=b2-4ac=(-12)2-4×4×9 =144-144=0
所以,原方程有两个相等的实数根.
(3)将原方程化为一般形式,得
5y2-7y+5=0
因为△=b2-4ac=(-7)2-4×5×5=49-100=-51<0
所以,原方程没有实数根.
练一练
1.不解方程,判别下列方程的根的情况。
1 2 x 5 x 4 0 2 2 7t 5t 2 0 3 x( x 1) 3 2 4 3 y 25 10 3 y
2
总结:
一元二次方程根的判别式
b 4ac
2
一元二次方程
判别式的情况
ax 2 bx c 0a 0
根的情况
两不相等实根
定理与逆定理
b 2 4ac 0
0 0 0
两不相等实根 两相等实根
0 0
两相等实根 无实根
无实根
课堂检测:
1.不解方程,判断方程根的情况: (1)x2+3x-1=0; (2)x2-6x+9=0; (3)2y2-3y+4=0 (4)x2+5= 2 5 x
0 0
有两个相等 的实数根
15 0
没有实数根
17 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级数学上册课时作业
一元二次方程根的判别式
一、选择题
1.若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是( )
A.k<﹣1 B.k>﹣1 C.k<1 D.k>1
2.已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是( )
A.m<2 B.m≤2 C.m<2且m≠1 D.m≤2且m≠1
3.若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()
A.没有实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.无法判断
4.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()
A.﹣1
B.0
C.1
D.3
5.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足( )
A.a≥1
B.a>1且a≠5
C.a≥1且a≠5
D.a≠5
6.若关于x的一元二次方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是( )
A.k<1
B.k≤1
C.k>-1
D.k>1
7.一元二次方程x2+2x+4=0的根的情况是()
A.有一个实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.没有实数

8.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()
A.a≥1
B.a>1且a≠5
C.a≥1且a≠5
D.a≠5
9.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()
A.k>-1
B.k≥-1
C.k≠0
D.k>-1且k≠0
10.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()
A.k=﹣4
B.k=4
C.k≥﹣4
D.k≥4
11.若关于x的方程x2-x+a=0有实根,则a的值可以是( )
A.2
B.1
C.0.5
D.0.2
12.若关于x的方程2x2-ax+a-2=0有两个相等的实根,则a的值是()
A.-4
B.4
C.4或-4
D.2
二、填空题
13.若关于x的一元二次方程ax2﹣x﹣=0(a≠0)有两个不相等的实数根,则点P(a+1,﹣a﹣3)
在第象限.
14.若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.
15.方程x2﹣(k+1)x+k+2=0有两个相等的实数根.则k= .
16.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值
范围是.
17.已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是.
18.如果方程kx2+2x+1=0有实数根,则实数k的取值范围是 .
三、解答题
19.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
20.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x
,x2.
1
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
21.已知:关于x的方程2x2+kx-1=0
⑴求证:方程有两个不相等的实数根;
⑵若方程的一个根是-1,求另一个根及k值.
22.关于x的一元二次方程x2+2(m﹣1)x+m2﹣1=0有两个不相等的实数根x
,x2.
1
(1)求实数m的取值范围;
(2)是否存在实数m,使得x1x2=0成立?如果存在,求出m的值,如果不存在,请说明理由.
23.已知关于x的方程kx2﹣3x+1=0有实数根.
(1)求k的取值范围;
(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.
24.已知关于x的方程(x-3)(x-2)-p2=0.
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.
参考答案
1.答案为:C.
2.答案为:D
3.A.
4.D
5.A
6.A
7.D
8.A.
9.D
10.B
11.D
12.答案为:B.
13.答案为:四.
14.答案为:.
15.答案是:7或﹣1.
16.答案为:k.
17.答案为:a>且a≠0.
18.答案为:k≤1.
19.解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根,
∴b2-4ac=(2m+1)2-4×1×(m2-1)=4m+5>0,解得:m>-1.25;
(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=-3
20.解:(1)∵方程有两个实数根,∴△≥0,∴9﹣4×1×(m﹣1)≥0,解得m≤3.25;
(2)∵x1+x2=﹣3,x1x2=m﹣1,又∵2(x1+x2)+x1x2+10=0,∴2×(﹣3)+m﹣1+10=0,∴m=﹣3.
21.(1)△=k2+8>0;(2)k=1,x=0.5.
22.解:(1)∵方程x2+2(m﹣1)x+m2﹣1=0有两个不相等的实数根x
,x2.
1
∴△=4(m﹣1)2﹣4(m2﹣1)=﹣8m+8>0,∴m<1;
(2)存在实数m,使得x1x2=0成立;
∵x1x2=0,∴m2﹣1=0,解得:m=﹣1或m=1,
∴当m=1时,方程为x2=0,有两个相等的实数根,与题意不符,舍去,∴m=﹣1.
23.解:
(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;
当k≠0时,原方程为一元二次方程,
∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k的取值范围为k≤.
(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.
∵x1+x2+x1x2=4,∴+=4,解得:k=1,
经检验,k=1是分式方程的解,且符合题意.
∴k的值为1.
24. (1)证明:方程整理为x2-5x+6-p2=0,
△=(-5)2-4×1×(6-p2)=1+4p2,
∵4p2≥0,
∴△>0,
∴这个方程总有两个不相等的实数根;
(2)∵x12+x22=3x1x2
∴x12+x22+2x1x2-5 x1x2=0
∴(x1+x2)2-5 x1x2=0
∴25-30+5p2=0
∴p=±1。

相关文档
最新文档