解一元二次方程(根的判别式)

合集下载

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。

当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。

判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。

正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。

举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。

对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。

对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。

对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。

解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。

对判别式进行变形的基本方法有因式分解、配方法等。

在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。

当Δ≥0时,方程有实数根,反之也成立。

例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。

解一元二次方程——一元二次方程的根的判别式

解一元二次方程——一元二次方程的根的判别式
或方程有实数根;
2
当 − 4 < 0 时,方程没有实数根.
课后作业
1 利用判别式判断下列方程的根的情况.
3
2
2
1 2 − 3 − = 0,
2
3 − 4 2 + 9 = 0,
2
9
2
2 16 − 24 + = 0,
2
2
4 3 + 10 = 2 + 8.
2 在不解方程的情况下,判断关于 的一元二次方程
3 + 2 = − 2 2 − 1 +
2
4 + 2 2�� + 6 = 0.
9

2
3 + 2 = − 2 2 − 1 +
9

2
2
解: 化方程为 4 − 12 + 9 = 0.
= 4, = −12, = 9.
2
= − 4
2
= (−12) − 4 × 4 × 9

+ = 0.
移项,得
2

=−

.

2

+



=−

.

配方,得
2

+



+

2

+
2
2
2


=− +
2
− 4
=
.
2
4
2

,
2
2

+
2
2
− 4
=
.

九年级数学一元二次方程的解法根的判别式

九年级数学一元二次方程的解法根的判别式
(3)没有实数根 你能得出什么结论? 可以发现b2-4ac的符号决定着方程的解。
概括总结
由此可以发现一元二次方程ax2+bx+c = 0 (a≠0)的根的情况可由b2-4ac来判定 当b2-4ac>0时,方程有两个不相等的实数根 当b2-4ac = 0时,方程有两个相等的实数根 当b2-4ac < 0时,方程没有实数根 我们把b2-4ac叫做一元二次方程ax2+bx+c = 0 (a≠0)的根的判别式。 若已知一个一元二次方程的根的情况,是否能得到 判别式的值的符号呢?
3.方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式 子是( ) D A.b2-4ac>0 B. b2-4ac<0 C. b2-4ac≤0 D. b2-4ac≥0
典型例题
例1不解方程,判断下列方程根的情况: (1)-x2+ 2 6 x-6=0 (2)x2+4x=2 (3)4x2+1=-3x (4)x2-2mx+4(m-1)=0 解(1)∵b2-4ac=24-4×(-1)×(-6)=0 ∴该方程有两个相等的实数根
归纳总结
一元二次方程的根的情况与系数的关系?
b2-4ac叫做一元二次方程根的判别式。利用根的 判别式可以在不解方程的情况下判断一元二次方程 的根的情况;反过来由方程的根的情况也可以得知 b2-4ac的符号,进而得出方程中未知字母的取值 情况。
!诸人要从自己の夫君那里花银子买首饰,而且她の夫君竟然还是家财万贯の雍亲王爷,这要是让外人晓得咯,还不被人笑掉咯大牙?爷不是最讲脸面の人 吗?怎么这壹次居然不管不顾起来咯!而且这各按照市价公事公办,也就意味着他苏总管不用送给年侧福晋壹各顺水人情,不需要打任何折扣,而且王爷の那 番吩咐甚至是在向他暗示,壹分钱都不要少收咯侧福晋,但是明眼人谁都看得出来,那物件肯定是哪各官员、门客,或是幕僚呈送上来の贡礼。王爷壹分钱没 花,还从侧福晋那里收咯银子回来,这不是无本万利吗?爷可真会做买卖!遥想当年,王爷在户部主事,向达官显贵们追讨官府欠银の时候确实没有心慈手软 过,连十小格都没能逃过他の火眼金睛和围追堵截,被逼入死胡同の十小格最终壹气之下,跑到大街上摆摊变卖家产以示抗议。那场沸沸扬扬の讨债最终闹到 皇上那里,还是由皇上替十小格说咯好话,王爷才算是罢手不予追究。现在倒好,王爷居然发展到直接经营空手套白狼の营生上来咯,挣の还是自己府里の诸 人の银子,这,这可真是旷世奇谈!不过,王爷倒也确实是对得起“铁面无私”这几各字の评语,亲兄弟、明算帐,夫妻俩、账算明。不管将来会被众人如何 耻笑,王爷已经吩咐咯の事情,苏培盛只有不折不扣地执行。壹从书院回来,苏总管赶快将采办太监鲁小七叫咯来,大致口头描述咯那套首饰の质地、做工、 款式、大小,然后问他大概值好些两银子。鲁小七听完之后,万般为难、磨磨叽叽地开口说道:“总管,小の没看到那物件,真不好胡乱开价。”第壹卷 第 414章 五千鲁小七可是比猴子都精の壹各机灵鬼,当然咯,傻笨之人也当不咯采办の差事。鲁小七也听说咯王爷要向年侧福晋收银子の事情,现在苏培盛向他 问来那件首饰の价格,立即猜测到苏总管这是在向他寻价呢。苏培盛本身就是壹各老滑头,壹见鲁小七居然敢跟他耍滑头,心中暗笑,这小子简直就是小巫见 大巫,不知死活,于是没好气儿地说道:“你想投靠山也得认清主子不是!那院主子是给咯你金山银山,还是许咯你飞黄腾达?不就是娘家有点儿势力嘛,那 还不壹样都是爷の奴才!你可真是越活越缩抽咯,分不清哪各主子才是你の主子!”苏培盛可真是猜错咯!鲁小七跟水清没有壹点儿交情,他怎么可能会去偏 帮水清,他只是不想惹火上身,要离这趟浑水远远の。可是,他想躲也没有用,苏培盛怎么可能放过他!被逼到死胡同里の鲁小七,无可奈何之下只得战战兢 兢地开口道:“小の确实没有见过,这是实话,苏总管您也是晓得の。不过,假设按照您刚才大致说の那各样子,小の估摸着,最少也得五千两银子 吧。”“五千两?”苏培盛倒吸咯壹口冷气!继而开始嘬起咯牙花子。虽然他看着那套首饰の时候也是不小地吃咯壹惊,也承认那确实是各稀罕物件,但是壹 听到这各价格,还真是大大地出乎咯他の意料:怪不得爷会向年侧福晋讨要银子呢,确实是价值不菲,不过,话又说回来咯,爷怎么会跟诸人计较银子?而且 数目这么大の银子,爷对诸人,不,是爷对年侧福晋可真是没有壹点情面可讲呢。鲁小七壹见苏总管直皱眉头,就晓得这事儿要坏。他刚刚就是担心,不管他 说啥啊价钱,苏培盛都会联想到他有办差吃差价の巨大嫌疑。以往苏总管不怎么查账,只要账面上大致说得过去也就睁壹眼闭壹眼不太计较。可是当他听苏培 盛描述咯那件首饰の样式之后,也是极为震惊,那件首饰少说也要五千两,可是这各价格,任谁都不敢相信。由于不相信,导致苏培盛自然而然地凭空猜测他 在采办の过程中使咯暗收回扣、低进高出之类の手段。果不其然,鲁小七の担心非常有道理,现在苏总管壹副震惊和难以置信の神情,将他搞得苦不堪言。这 壹次他真の是据实相告,可是他平时办差の时候确实没少干低进高出、终饱私囊の勾当。假设因为今天の事情牵扯出来以往の损公肥私,他可真是小命不久矣。 壹想到这里,鲁小七忙不迭地调动起他那三寸不烂之舌,小心翼翼地解释道:“总管,先不说别の,光是您说の那上面镶の东珠和七彩宝石,就得值上各两三 千两银子,另外这首饰可是足金呢!照您说の那各尺寸、那各份量,也得有各两千两银子,还有工费呢,这还不算商家赚の银子呢,所以,小の说五千两,绝 对是没有多说,而且是只少不多!”第壹卷 第415章 天价苏培盛可没有闲功夫听这鲁小七の喋喋不休,挥挥手就打发走咯小太监。只剩他壹各人の时候,苏 培盛可是彻底地为难咯!五千两,真不是壹各小数目!记得侧福晋刚嫁进府里来の第壹各月就被罚咯月银,然后因为交不上来罚银,拖咯几各月,用每月の例 钱补交上来。连区区三、五百两の银子交得都那么困难,现在这令人瞋目惊舌の五千两还不要咯她の命?要说爷呢,这回可是真够狠の!壹出手可就是五千 两!原本爷也不是这样の壹各人呢,对诸人不但慷慨大方,而且怜香惜玉,怎么对年侧福晋就能这么不留情面,竟然下得去狠手?噢,对咯,估计爷对侧福晋 坏咯他和年仆役の好事,心存不满,特意选咯这么各最贵重の东西做贺礼,好好借这各机会变相地惩治壹番侧福晋,以解心头之气和夺妻之恨。可是这夺妻之 恨应该算到二十三爷の头上,跟侧福晋有啥啊关系!再怎么惩治侧福晋,就是罚她壹各五十万两,也换不回来那婉然仆役。倒是侧福晋,这回估计是要被爷罚 得倾家 ; .au/ 悉尼驾照翻译

一元二次方程根的判别式

一元二次方程根的判别式


练习1 选择题 B) 有两个相等的实数根 D)无法确定
1 不解方程,判断方程0.2x2-5=1.5x的根的情况是( A )
A )有两个不相等的实数根 C) 没有实数根
2 . 若关于的一元二次方程(k-1)x2+2kx+k+3=0有实数根 则k的取值范围是( A)k ≤1.5 D)k≥1.5 B)k ﹤1.5
C
) C) k ≤1.5 且k≠1
例3 求证:不论m取何值,关于x的一元二次方程 9x2-(m+7)x+m-3=0都有两个不相等的实数根 证明:⊿=[-(m+7)]2-4×9×(m-3) =m2+14m+49-36m+108 =m2-22m+157 =(m-11)2+36 ∵不论m取何值,均有(m-11)2≥0
三、证明 若关于x的一元二次方程x2+2x-m+1=0没有实数 根,求证:关于y的方程y2+my+12m=1一定有两个不 相等的实数根。
提示:将y2+my+12m=1化为一般形式 y2+my+12m-1=0
4m 8
练习:
若关于x的一元二次方程(m-1)x2-2mx+m=0 有两个实数根,则m的取值范围是 ( D )
A )m ﹥0 m ﹥ 0 且m≠1 B)m≥0 D m ≥0且m≠1 C
解:由题意,得 m-1≠0① ⊿=(-2m)2-4(m-1)m≥0② 解之得,m﹥0且m≠1,故应选D
练一练
2、求出 b 4ac 的值,
2
特别注意:当 b2 4ac 0 时,方程无实数解;
当b 4ac 0时, 一元二次方程才有实数 Nhomakorabea.2

一元二次方程的根的判别式

一元二次方程的根的判别式

例3:不解方程,判别关于 x 的方程
x2 2 2kx k 2 0的根的情况.
分析:a 1 b 2 2k c k 2
解:
Байду номын сангаас
2
2k
2
41 k2
系数含有 字母的方

8k 2 4k 2 4k 2
∵Q k 2 0,4k 2 0,即 0,
方程有两个实数根.
不解方程,判别关x 于 x 的方程
例1:按要求完成下列表格:
方程
2y2 2 4y
Δ的值
0 0
根的 情况
有两个相等 的实数根
2(x2 1) x 0 2x2 3x 1 0
15 0
没有实数根
17 0
有两个不相 等的实数根
让我们一起学习例题
例2 : 不解方程,判别方程 4 y2 1 4 y
的根的情况.
解:4 y2 4 y 1 0 a 4,b 4, c 1 (4)2 4 41 0
当 b 2 4 ac >0 ,方程有两个不相等的实数根; 当b 2 4 ac =0 ,方程有两个相等的实数根; 当b 2 4 ac <0 ,方程没有实数根;
反过来,对于方程ax2 bx c 0a 0 ,
如果方程有两个不相等的实数根,那么b2 4ac 0; 如果方程有两个相等的实数根,那么 b2 4ac 0; 如果方程没有实数根,那么 b2 4ac 0.
2) 5t 2 7t 5 0
3) 4x2 20x 25 0
2.求证:方程 (m2 1)x2 2mx (m2 4) 0 没有实数根.
1.已知关于 x 的方程 x2 (2k 1)x k 2 1 0
有两个不相等的实数根,试确定的取值。

第五讲 公式法解一元二次方程和根的判别1

第五讲 公式法解一元二次方程和根的判别1

第五讲公式法解一元二次方程和根的判别式一、求根公式法:1.一般地,对于一元二次方程a+bx+c=0(a≠0),当时,它有两个实数根为这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做求根公式法。

2.利用公式法解一元二次方程的一般步骤:(1)先把方程化为一般形式,即a+bx+c=0(a≠0)的形式;(2)正确地确定方程各项的系数a,b,c的值(注意正负号);(3)当-4ac<0时,方程没有实数根,就不需要解了(负数开方没有意义);(4)当-4ac≥0时,将a,b,c的值代入求根公式,求出方程的两个根。

二、一元二次方程的几种解法的联系及其特点:1.直接开平方法:适用于解形如=m(p≠0,m≥0)的方程,是配方法的基础。

2.配方法:是解一元二次方程通用的方法,是公式法法基础,没有配方法就没有公式法。

3.公式法:是解一元二次方程通用的方法,是解一元二次方程重要的方法。

4.因式分解法:是解一元二次方程比较简单的方法,但只适用于左边易因式分解而右边为0的一元二次方程。

(各种方法各有各的特点,具体选择解法根据方程特征)三、一元二次方程根的判别式:1.-4ac叫做一元二次方程a+bx+c=0(a≠0)的根的判别式,通常用符合“△”来表示,即△=2.一元二次方程a+bx+c=0(a≠0)的根的情况与△的关系:△>0 <=>△=0 <=>△<0 <=>△≥0 <=>例1.用公式法解方程:变式1:用公式法解方程:3+5x-2=0变式2:解关于x的方程:-m(3x-2m+n)-=0例2.选择适当的方法解下列方程:(1)7(=28 (2)-2y-399=0(3)2+1=2x (4)+3(2x+1)+2=0变式1:解方程:-y=-例3.不解方程,判断下列方程根的情况:(1)2+3x-4=0 (2)3+2=2x (3)+1= (4)a+bx=0(a≠0) (5)a+c=0(a≠0)变式1:关于X的方程+m(x+1)+x=0一定有实数根吗?为什么?例4.已知关于X的方程k-4kx+k-5=0有两个相等的实数根,求K的值并解这个方程。

公式法解一元二次方程(根的判别式).

公式法解一元二次方程(根的判别式).
b 4ac b 2 4ac 0
2
ax bx c 0(a 0)中
2
例3.K为何值时,关于X的 方程X2-4X+K+1=0 有两个实数根?
解:△=(-4)2-4(k+1) =16-4k-4 = 12-4k ∵原方程有两个实数根 ∴△≥0 即:12-4k≥0 ∴k≤3时,原方程有两个实数根。
课时训练
4.关于 x 的方程 k2x2+(2k-1)x+1=0有实数根,则 k的范围 k≤1/4 是__________. 5. 若关于 x 的一元二次方程 mx2-2x+1=0 有实数根,则 m 的取值范围是 (D ) A.m<1 B. m<1且m≠0 C.m≤1 D. m≤1且m≠0 6.已知关于x的一元二次方程x2+2x+k=0有实数根,则k 的取值范围是 (A ) A.k≤1 B.k≥1 C.k<1 D.k>1
2 2
m 2且m 1
试一试:
1.已知关于X的一元二次方程
2
kx (2k 1) x k 0
当K取什么值时,方程有两个不相等的实数根? 2.已知关于X的方程 kx2 (2k 1) x k 0 当K取什么值时,方程有实数根?
课时x+4=0的根的情况 是 ( D ) A.有一个实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根 2.方程x2-3x+1=0的根的情况是( A ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 没有实数根 D.只有一个实数根 3.下列一元二次方程中,有实数根的是 ( C ) A.x2-x+1=0 C.x2+x-1=0 B.x2-2x+3=0 D.x2+4=0

22.2.4一元二次方程根的判别式

22.2.4一元二次方程根的判别式

a、b、c 的值.
的值,确定 的符号.
3、判别根的情况,得出结论.
练习
(1)不解方程,判别关于 的方程 x
. x 2 2kx 的根的情况 k 0
2 2
分析:a 1 b 2 2k
ck 2 2 解: 2 2k 4 1 k
2


系数含有 字母的方 程
8k 4k 4k
22.2.4 一元二次方程根的判别式
用公式法求下列方程的根:
用公式法解 一元二次方程 的一般步骤:
1)2 x 2 x 2 0
1 2 2) x x 1 0 4
确定a , b , c 的值
4ac 2)计算 b 2 的值
b 2 4ac 0
b b 2 4ac x 2a
已知a,b,c是ABC的三边,判 断cx2 +2 a-b x+c=0方程的根的 情况.
1.求判别式时,应该先将方程化为一般形式.
2.应用判别式解决有关问题时,前提条件为 “方程是一元二次方程”,即二次项系数不为0.
作业:课时优化
解:当方程时一元二次方程时:
△=(-6)2-4k ≥ 0 且k≠0 ∴k≤9 且 k≠0 当方程时一元一次方程时: k= 0 方程-6x+1=0也有实根
综上:k ≤9 方程有实根
(5) 若关于x的方程 (1-2k)x2- 2 k+1 x=1有两个不等
实根,求k的取值范围?
例3.求证:不论m取何值,关于x的一元二次 方程9x2-(m+7)x+m-3=0都有两个不相等的 实数根.
证明:⊿=[-(m+7)]2-4×9×(m-3)
=m2+14m+49-36m+108 =m2-22m+157 =(m-11)2+36 ∵不论m取何值,均有(m-11)2≥0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四课时
解一元二次方程(根的判别式)
学习目标:
1、熟练使用公式法解一元二次方程。

2、会用ac b 42
-的值来判断一元二次方程。

授课内容:
1、用公式法法解下列方程:
(1)0222=--x x (2)0122=+-x x (3)0222=+-x x .
2、观察上述方程的根,方程(1)两个实数根________,方程(2)两实数根________, 方程(3)_______________。

那么方程根出现不同情况是由什么来判断的呢?
3,结论:一元二次方程)0(02
≠=++a c bx ax 的根的情况可由ac b 42-来判定: 当__________时,方程有两个不相等的实数根;
当__________时,方程有两个相等的实数根;
当__________时,,方程没有实数根。

我们把ac b 42-叫做一元二次方程)0(02
≠=++a c bx ax 的根的判别式 说明:(1)可以不解方程求ac b 42
-的值来判别方程的根的情况。

(2)上述结论反过来也成立。

例题讲解
例1、不解方程,判别方程根的情况:
(1)0132=-+x x (2)0962
=+-x x
(3)04322=+-y y (4)x x 5252=+
变式:求证:不论x 取何值时,关于x 的一元二次方程012
=--kx x 总有两个不相等的实
数根。

例2、k 取什么值时,关于x 的方程022)2(22=-++-k x k x 有两个相等的实数根?有
两个不等的实数根?无实数根?
变式1:已知关于0232
=-+-k x x 有实数根,求k 的取值范围。

例3、已知关于x 的方程220kx +-=有两个不相等的实数根.........,求k 的取值范围。

变式:关于x 的方程..2
(2)2(1)10k x k x k ---++=有实数根,求k 的取值范围。

课堂练习:
1,已知关于x 的方程222(41)210x k x k -++-=,K 取什么值时

1、方程有两个不相等的实数根; ○
2、方程有两个相等的实数根; ○
3、方程无实数根;
2,试说明关于x 的方程222(1)2(4)0m
x mx m +-++=无实数根。

随堂练习
1、下列方程中,没有实数根的是__________________。

(填序号)
①0252=+-x x ②013232
=+-x x ③0122=+--x x ④04322=+-x x 2、方程0122
=--mx x 根的情况是___________________________。

3、若关于x 的方程240x x a ++=有两个相等的实数根,则=a __________。

4、若关于x 的方程222(1)0x k x k --+=有实数根,则k 的取值范围是____________。

5、若关于x 的方程22(1)(1)a x b x -=-有两个相等的实数根,则a 与b 的关系是_________。

6、如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是____________。

7,不解方程,判断下列方程根的情况:
(1)2260x x +-=; (2)242x x +=; (3)x x 3142
-=+
(4)3x 2-x +1 = 3x (5)5(x 2+1)= 7x (6)3x 2-43x =-4 8、当m 为何值时,一元二次方程()()
033222=-+-+m x m x 。

(1)有两个不相等的实数根?
(2)有两个相等的实数根?
(3)没有实数根?
9、求证:关于x 的一元二次方程2253(1)4302
x m x m m --+-+=没有实数根。

10、关于x 的方程2(6)860a x x --+=有实数根,求a 的取值范围。

相关文档
最新文档