分数乘法知识点归类总结

合集下载

小学数学期中分数乘法考点总结

小学数学期中分数乘法考点总结

小学数学期中分数乘法考点总结小学数学中,分数乘法是一个重要的考点。

以下是分数乘法的总结:1. 分数乘法的计算方法:分数的乘法是将分子之间相乘,分母之间相乘,然后简化得到最简分数。

即:$\\frac{a}{b} \\times \\frac{c}{d} = \\frac{a \\times c}{b \\times d}$。

2. 分数乘法的性质:分数乘法满足交换律和结合律。

- 交换律:$\\frac{a}{b} \\times \\frac{c}{d} = \\frac{c}{d} \\times \\frac{a}{b}$。

- 结合律:$\\left(\\frac{a}{b} \\times \\frac{c}{d}\\right) \\times \\frac{e}{f} =\\frac{a}{b} \\times \\left(\\frac{c}{d} \\times \\frac{e}{f}\\right)$。

3. 简化分数:分数乘法的结果可以通过简化分数得到最简分数。

最简分数是指当分子和分母没有公共因数时的分数形式。

例如:$\\frac{4}{6} \\times \\frac{2}{3} = \\frac{8}{18}$,可以简化为最简分数$\\frac{4}{9}$。

4. 分数乘以整数:分数乘以一个整数,可以将整数看作分母为1的分数,然后按照分数乘法的规则进行计算。

例如:$\\frac{3}{4} \\times 5 = \\frac{3}{4} \\times \\frac{5}{1} = \\frac{3\\times 5}{4 \\times 1} = \\frac{15}{4}$。

5. 分数乘法应用:分数乘法在解决实际问题中经常用到。

例如:求物品的售价、比例的乘法等。

确保理解了以上的知识点,可以更好地应对分数乘法的考试题目。

同时,多做习题和练习,加深对分数乘法的理解和运用。

分数的乘法与除法综合知识点

分数的乘法与除法综合知识点

分数的乘法与除法综合知识点在数学中,分数是一个重要的概念,而分数的乘法和除法是我们在运算中经常遇到的。

本文将综合介绍分数的乘法和除法的相关知识点,帮助大家更好地理解和运用。

一、分数的乘法1. 分数乘法的定义分数的乘法是指将两个分数进行相乘的运算。

一般形式为:a/b *c/d = ac/bd。

其中,a和c为分子,b和d为分母。

2. 分数乘法的性质分数乘法具有交换律和结合律。

- 交换律:a/b * c/d = c/d * a/b- 结合律:(a/b) * (c/d) * (e/f) = a/b * (c/d * e/f)3. 分数乘法的简化在进行分数乘法时,我们可以先对分子和分母进行简化,以得到最简分数。

例如:2/4 * 3/5 = 6/20 = 3/104. 分数乘法的应用分数的乘法在生活中有很多实际应用,比如:计算食材的配料比例、计算时间的速度比例等等。

二、分数的除法1. 分数除法的定义分数的除法是指将两个分数进行相除的运算。

一般形式为:(a/b) ÷(c/d) = ad/bc。

其中,a和c为分子,b和d为分母。

2. 分数除法的性质分数除法没有交换律和结合律。

3. 分数除法的简化与乘法类似,我们可以对分子和分母进行简化,得到最简分数。

例如:(6/15) ÷ (2/5) = 6/15 * 5/2 = 30/30 = 14. 分数除法的应用分数的除法同样在生活中有很多实际应用,例如:计算比例关系、计算速度等。

三、分数的乘法与除法的综合应用1. 分数的乘除混合运算在实际运算中,分数的乘除可以与其他数学运算混合进行,需要根据运算符合适地运用优先级规则。

例如:3/4 + (2/5 ÷ 1/2) = 3/4 + 4/5 = (15/20) + (16/20) = 31/20 = 111/202. 分数的乘除在解决实际问题中的应用通过将分数的乘除与实际情境相结合,我们可以解决一些实际问题,例如:计算商品的折扣、计算食材的总量等。

第1单元《分数乘法》知识点归纳

第1单元《分数乘法》知识点归纳

第一单元《分数乘法》知识点归纳一、分数乘法的意义:1:分数与整数相乘:分数乘整数的意义是求几个相同加数的和的简便运算。

2.整数乘分数的意义:整数乘分数的意义是求一个数的几分之几是多少。

3.分数乘分数的意义分数乘分数的意义是求一个分数的几分之几是多少。

二、分数乘法的计算方法:1.分数与整数相乘的计算方法:用分数的分子和整数相乘的积作分子,分母不变。

计算时,应该先约分再计算。

计算结果要约成最简分数。

2. 分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。

(结果要求是最简分数。

)带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.分数与小数相乘的计算方法分数乘小数,可统一成分数乘分数,按照分数乘分数的方法计算;也可以统一成小数乘小数,按照小数乘小数的方法计算。

当分数不能化成有限小数时,则最好统一成分数乘分数三、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。

一个数(0除外)乘1,积等于这个数。

一个数(0除外)乘大于1(带分数)的数,积大于这个数。

四、分数混合运算的运算顺序与整数的运算顺序相同:1、整数加法的交换律结合律,对分数乘法同样适用。

加法交换律:a+b=b+a 加法结合律:(a+b )+c=a+(b+c )加法的交换律、结合律往往混合运用:三个或三个以上的数相加可以任意的交换加数的位置,可以任意的把其中两个加数结合在一起。

2、整数乘法的交换律、交换律和分配律,对分数乘法同样适用。

乘法交换律: a ×b = b ×a乘法结合律:(a ×b )×c = a ×(b ×c )乘法分配律:(a+b )×c = ac+bc乘法交换律和结合律往往混合运用:三个或三个以上的数相乘可以任意的交换因数的位置,也可以任意的把其中两个因数结合在一起五、分数乘法的解决问题已知单位“1”的量用乘法1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

分数乘法知识点总结

分数乘法知识点总结

分数乘法知识点总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数乘法知识点总结分数乘法知识点总结一、分数乘法(一)分数乘法的意义1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少1/3×5表示求5个1/3的和是多少2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

小学数学知识归纳分数的乘法运算

小学数学知识归纳分数的乘法运算

小学数学知识归纳分数的乘法运算分数的乘法运算是小学数学中的一个重要知识点,它建立在对分数的理解和掌握的基础上。

通过对分数的乘法运算的学习,可以帮助学生深入理解数学概念,并且在实际生活中灵活运用。

一、分数的乘法运算基本概念在进行分数的乘法运算之前,我们首先需要了解分数的基本概念。

分数由分子和分母组成,分子表示被分割的部分的数量,分母表示一个整体被分割成的份数。

根据分数的定义,我们可以得出分数的乘法运算规则。

二、分数的乘法运算法则1.相乘法则:分数与分数相乘,先将分子相乘,再将分母相乘,得到的积即为乘法的结果。

例如:1/2 × 3/4 = (1 × 3) / (2 × 4) = 3/82.约分法则:乘法运算后的结果可能是一个既约分数,需要通过约分化简为最简分数形式。

例如:2/3 × 4/5 = (2 × 4) / (3 × 5) = 8/15,分数8/15已经是最简分数。

三、分数的乘法运算例题分析接下来,我们通过几个例题来进一步理解分数的乘法运算。

例题1:计算 2/3 × 5/6解题步骤:1. 将分子相乘:2 × 5 = 102. 将分母相乘:3 × 6 = 183. 化简分数:10/18 = 5/9答案:2/3 × 5/6 = 5/9例题2:计算 4/5 × 1/8解题步骤:1. 将分子相乘:4 × 1 = 42. 将分母相乘:5 × 8 = 403. 化简分数:4/40 = 1/10答案:4/5 × 1/8 = 1/10通过以上例题可以看出,分数的乘法运算并不复杂,只需要掌握好乘法运算法则,并注意化简分数即可。

四、分数乘法在实际问题中的应用分数的乘法运算在我们的日常生活和实际问题中都可以得到应用。

例如:1. 假设一辆汽车每小时行驶3/4英里,那么2小时后行驶的总里程是多少?解题思路:汽车每小时行驶3/4英里,2小时后行驶的总里程为 (3/4) × 2 = 3/2 英里,即1 1/2 英里。

分数乘法知识点和题型(全面)(精编文档).doc

分数乘法知识点和题型(全面)(精编文档).doc

【最新整理,下载后即可编辑】《分数的乘法》一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 1、98×5表示( )。

2、83+83+83=( )×( )=( )83+83+83+83=( )×( )=( )=( )3、24个32是多少?145吨的7倍是多少吨?2、分数乘分数是求一个数的几分之几是多少。

例如:1、98×43表示的意义是( )。

2、125吨的32是多少吨?3、一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。

(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)例如:1、72×353×6214×9103×51611×122、52米=( )厘米32时=( )分107千克=算式: 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

例如:152×853914×28134532×281565×2512 2110×533、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

例如:32×14383×1542625×15136313×3914 85×52(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

例如:65×2 ○65 8×117○854×1 ○5443×53 ○5387×56 ○87×65(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

知识点总结:分数乘法

知识点总结:分数乘法

六年级上册数学第二单元分数乘法知识点总结(一)分数乘法的意义。

1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。

例如:23 ×3,表示:3个 23 相加是多少,还表示 23的3倍是多少。

2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512 ,表示:6的512是多少。

27 ×78 ,表示:27 的78是多少。

3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。

例如:512 ×123 ,表示:512 的123倍是多少。

(二)、分数乘法的计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(分母和整数约分)(2)约分是用整数和下面的分母约掉最大公因数。

(计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。

第一单元 分数乘法知识点总结

第一单元 分数乘法知识点总结

第一单元分数乘法知识点总结一、分数乘法计算方法1、分数乘整数的意义:就是求几个相同加数的和的简便运算。

例如:310×5表示求5个310的和是多少?2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

注意:(1)为了计算简便,能约分的要先约分,用整数和分数的分母约分,和分子相乘。

(2)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、一个数乘分数意义是:求这个数的几分之几是多少。

例如: 5×310表示5的310是多少。

25×310表示25的310是多少。

4、求这个数的几分之几(或几倍)是多少都用乘法计算:一个数×几几(或几倍)。

5、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

6、分数乘小数的计算方法:(1)如果小数是分数分母的倍数时,可以先约分,然后再乘。

(2)如果不能约分,将小数化成最简分数,然后按照分数乘分数的方法计算。

7、分数乘法混合运算的顺序和整数乘法混合运算的顺序的相同。

有括号8、交换律、结合律和分配律,对分数乘法同样适用。

乘法交换律: ab = ba 乘法结合律: ( ab ) c = a (bc)乘法分配律:(a + b)×c = a c + b ca c +bc =(a + b)×c9、一个数(0除外)乘以一个真分数,所得的积小于它本身。

10、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

11、一个数(0除外)乘以一个带分数,所得的积大于它本身。

二、分数应用题一般解题步骤。

1、找出含有分率的关键句。

2、找出单位“1”的量(以后称为“标准量”),单位“1”是已知的,用乘法;单位“1”是未知的,用除法。

A、找单位“1”的方法:从含有分数的关键句中找,注意“的”字前,“是、比、相当于、占、等于”词后的量B、当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数乘法知识点归类总结
分数乘法知识点归类总结
一、分数乘法
(一)、分数乘法的意义:
1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

例如:598⨯表示求5个9
8的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如:4398⨯表示求98的4
3是多少? (二) 、分数乘法的运算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了简便计算,能约分的要先约分,再计算。

注:当带分数进行乘法计算时,要先把带分
数化成假分数再进行计算。

练习一、分数与整数相乘:
=⨯412
5 =⨯13
626 =⨯51511
练习二、分数和分数相乘:(注意:能约分的先约分,再计算)
=⨯4352 =⨯8776 =⨯15
895 (三)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小
于这个数。

一个数(0除外)乘1,积等于这个数。

练习三、比较大小。

465⨯Ο65 329⨯Ο932⨯ 2183⨯Ο8
3 (四)、分数混合运算的运算顺序和整数的运算顺
序相同。

练习四、分数乘、加、减混合。

=⎪⎭⎫ ⎝⎛⨯72-6350167 =⨯⨯1416
1554
=+⨯14365 =⨯+15
412532
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a
乘法结合律:( a × b )×c = a × ( b × c )
乘法分配律:( a + b )×c = a × c + b ×c
练习五、分数乘、加、减简便运算。

=⨯⨯52671513 =⨯⎪⎭
⎫ ⎝⎛+24121185 =⨯⨯141817149 =⨯⎪⎭
⎫ ⎝⎛3694-65 =⨯989799 =⨯⨯15257-152512
二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、画线段图:
(1)两个量的关系:画两条线段图;
(2)部分和整体的关系:画一条线段图。

2、找单位“1”: 在句中几分之几的前面; 或 “占”、“是”、“比”的后面。

3、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。

4、已知一个数比另一个数多(或少)几分之几,求这个数是多少?
(1)单位“1”的量加或减单位“1”的量×另一个数比单位“1”的量多(或少)的几分之几=另一个数
(2)单位“1”的量×(1加或减另一个数比单位“1”
的量多(或少)的几分之几)=另一个数
5、写数量关系式技巧:
(1)“的”相当于“×”
(2)“占”、“是”、“比”相当于“÷”
(3)几分之几前是“的”:
(4)单位“1”的量×几分之几=几分之几对应量
(5)几分之几前是“多或少”的意思:单位“1”的量×(1加或减几分之几)=几分之几对应量
练习六、看图列式计算。

练习七、解决问题。

1、甲乙两地相距420千米,一辆汽车行驶了全程的 75,
行驶了多少千米?
2、一个果园占地20公顷,其中的
52种苹果树,41种梨树,苹果树和梨树各种了多少公顷?
6、希望小学三年级有学生216人,四年级人数比三年级
2,四年级有学生多少人?

9。

相关文档
最新文档