太阳能固体吸附式制冷空调原理及前景
太阳能吸收式制冷的工作原理

太阳能吸收式制冷的工作原理太阳能吸收式制冷技术是一种利用太阳能光热转换为冷量的热力学过程,实现低温制冷的能源技术。
它是一种基于物质传递的过程,通过在吸热器表面使用太阳能,使液态生成气体,并从吸附器中输出热量,从而向外界提供低温的制冷。
太阳能吸收式制冷系统通常由吸热器、发生器、冷凝器和蒸发器等几个主要部分组成。
其中吸热器是负责接收太阳能的装置,发生器是产生制冷剂氨的装置,冷凝器和蒸发器则是实现制冷过程的关键装置。
机理上,从湿空气中吸取水分后,氨与水在发生器中混合反应,生成氨水混合物;然后将氨水混合物流入蒸发器膨胀,使其蒸发变相。
过程中液态氨沿着管子进入冷凝器,在与空气接触后迅速冷却,并排出高温的水蒸气。
最后经由吸热器,吸收新鲜空气中的热量,开始新一轮的制冷扫尾。
太阳能吸收式制冷的工作原理基于物质传递,是一种非机械的制冷方式。
相比于机械制冷技术,太阳能吸收式制冷技术无需电力,不会产生噪音和震动,环保无污染。
此外,太阳能吸收制冷技术并不利用化石燃料,它所依赖的太阳能也是一种无限的自然资源。
因此,太阳能吸收制冷技术越来越受到人们的青睐。
然而,太阳能吸收式制冷技术也存在着一些局限性。
其中之一就是制冷新鲜的氨混合溶液必须具有较高的精细度和纯度,这就需要进行较长时间的气液分离过程,加之氨水长期与空气相接触,容易出现分解。
此外,该技术的制冷效率受到气温、气湿度和太阳辐射等外界因素的影响,需要在设计时考虑合理的运作范围。
因此,在应用该技术时,需要对设备进行有效的维护和管理。
总体来说,太阳能吸收式制冷技术是一项可持续、无噪音、环保的制冷技术。
尽管存在着一些局限性,但是,随着技术的不断发展,太阳能吸收式制冷技术必将应用于更广泛的领域,为人类创造更加绿色的生活环境。
太阳能固体吸附式制冷的技术分析及其进展

() 2 冷却吸附
晚上 , 环境温度降低 , 吸附床被
环境空气冷却, 吸附剂开始吸附制冷剂蒸汽, 系统 中
制冷剂 蒸汽压 力下 降 , 当压 下 降 至 蒸 发 温度 下 的 勺
饱和压力时 , 储存在蒸发器 中的液态制冷剂开始蒸 发制冷, 产生 的蒸汽继续被吸附床吸附, 直至吸附结 束, 完成一个吸附制冷循环。
附式制 冷 系统 以太 阳能驱动 的吸 附床代 替 了蒸气压 缩 式制 冷系统 中 的压 缩 机 , 统 主要 由 四大 部件 即 系 吸附床 ( 集热 器 )冷凝器 、 发器 、 、 蒸 节流 阀等 构成 , 如 图 1 示 。其 操 作 过程 是 间歇 式 的 , 为受 热 解 吸 所 分
Ab ta t I i p p r t eb c go n d t es s m p icp eo t es lre eg l sr c :n t s a e , h a k r u d a y t r il f oa n ry s i h n h e n h o d—a s r t n r f g r dopi r e— o e i
a in tc n lg r nrd c d. Is tc n lg d d v lpme tae a ay e t e h oo a e ito u e o y t e h oo a e eo y n n r n l z d. Is c re ts oto n s a e t u r n h rc mig r
g n r i d,a d te r s ac i cin i c n r d e ea z l e n e e rh d r t o f me . h e o s i
太阳能吸收式制冷的工作原理

太阳能吸收式制冷的工作原理太阳能吸收式制冷是一种环保、高效的新型制冷技术,它利用太阳能来产生冷量,不需要任何化学制剂,不会产生任何污染物,成为了未来制冷技术的重要发展方向。
太阳能吸收式制冷的工作原理是基于热力学循环原理的。
该制冷系统由吸收器、蒸发器、冷凝器、膨胀阀等组成。
太阳能板将太阳能转换成热能,将其传输到吸收器内,吸收器内装有吸收剂和溶剂,吸收剂在热能作用下从溶液中释放出来,然后被吸收器中的吸附剂吸附。
接下来,吸收剂在吸附剂的作用下形成一个混合物,这个混合物被输送到蒸发器内,通过蒸发器内的蒸发器加热器将其加热。
吸收剂在蒸发器加热的过程中蒸发,形成蒸汽,吸收剂在蒸发过程中吸收了周围的热量,降低了蒸发器内的温度。
然后,蒸汽进入冷凝器,与外界的环境进行热交换,冷凝成液体,释放出吸收剂吸收时所吸收的热量。
经过冷凝器后的液体吸收剂被输送回吸收器,重新与溶剂混合。
膨胀阀将液体吸收剂膨胀后,压力降低,温度降低,液体吸收剂成为雾状物进入蒸发器内,从而形成一个完整的循环。
太阳能吸收式制冷的优点是基于太阳能的制冷技术,具有环保、高效、安全等优点。
而且,该制冷系统在操作过程中不需要任何化学制剂,不会产生任何污染物,避免了对环境的污染,符合可持续发展的要求。
太阳能吸收式制冷的缺点是需要较高的太阳能利用率,对太阳能板的质量和制造工艺有很高的要求。
同时,该制冷系统的体积较大,需要安装在较为宽敞的空间内,不适合小型家用制冷设备。
太阳能吸收式制冷是一种环保、高效的新型制冷技术,具有很高的技术含量和发展潜力。
其工作原理基于热力学循环原理,利用太阳能将吸收剂与溶剂混合,形成混合物,再通过蒸发、冷凝、膨胀等过程,实现制冷。
太阳能吸附式制冷原理

太阳能吸附式制冷原理
太阳能吸附式制冷(Solar adsorption refrigeration)是一种利用
太阳能来驱动制冷过程的技术。
其原理如下:
1. 吸附剂选择:选择具有较强吸附特性的物质作为吸附剂。
常见的吸附剂包括硅胶、活性炭等。
2. 吸附过程:当太阳能照射到吸附剂上时,吸附剂吸附传统冷却剂(如氨或水)中的蒸汽分子。
吸附剂在吸附过程中释放出一定的吸附热,导致吸附剂温度升高。
3. 脱附过程:当太阳能逐渐减弱或停止供应时,吸附剂温度下降,将吸附的蒸汽分子释放出来。
这个过程叫做脱附。
脱附过程中吸附剂吸收环境中的热量,使其温度降低。
4. 冷却效果:通过吸附剂吸附和脱附的交替进行,制冷剂中的蒸汽分子被不断吸附和释放,从而使制冷剂的温度降低,达到制冷效果。
这个过程是一个循环过程。
太阳能吸附式制冷技术利用太阳能提供的热能来驱动吸附剂的吸附和脱附过程,无需额外的电力或化石燃料。
它具有环保、可再生能源的特点,适用于一些无电或电力供应不稳定的地区。
空调吸附式制冷技术分析及应用

空调吸附式制冷技术分析及应用我国目前很重视分体式空调的制冷技术,在很多高等院校都设有专业。
而吸附制冷系统采用非氟氯烃类物质作为制冷剂,具有节能、环保、结构简单、无噪音、运行稳定可靠等突出优点,因此受到了国内外制冷界人士越来越多的关注。
本文就吸附制冷的工作原理及吸附制冷技术的研究进展进行简述。
标签:吸附制冷;空调应用吸附制冷的基本原理是:多孔固体吸附剂对某种制冷剂气体具有吸附作用,吸附能力随吸附剂温度的不同而不同。
周期性的冷却和加热吸附剂,使之交替吸附和解吸。
解吸时,释放出制冷剂气体,并在冷凝器内凝为液体;吸附时,蒸发器中的制冷剂液体蒸发,产生冷量。
1.空调吸附制冷技术概述吸附制冷吸附研究主要包括工质对性能、吸附床的传热传质性能和系统循环与结构等几个方面的工作,无论哪一个方面的研究都是以化工和热工理论为基础的,例如传热机理、传质机理等等,限于篇幅,本文从技术发展的角度来概括吸附制冷的研究进展。
1.1吸附工质对性能研究吸附制冷技术能否得到工业应用很大程度上取决于所选用的工质对,工质对的热力性质对系统性能系数、初投资等影响很大,要根据实际热源的温度选择合适的工质对。
从20世纪80年代初到90年代中期,研究人员为吸附工质对的筛选做了大量的工作,逐渐优化出了几大体系的工质对。
按吸附剂分类的吸附工质对可分为:硅胶体系、沸石分子筛体系、活性炭体系(物理吸附)和金属氯化物体系(化学体系)。
由于化学吸附在经过多次循环后吸附剂会发生变性,因而对几种物理吸附类吸附体系的研究较多。
近几年来,研究人员在吸附工质对方面的研究始终没有停止,从理论和实验两个方面对各种工质对的工作特性进行了广泛的研究。
综合考虑强化吸附剂的传热传质性能,开发出较为理想的、环保型吸附工质对,从根本上改变吸附制冷工业化过程中所面临的实际困难,是推动固体吸附式制冷工业技术早日工业化的关键。
1.2系统循环与结构的研究从工作原理来看,吸附制冷循环可分为间歇型和连续型,间歇型表示制冷是间歇进行的,往往采用一台吸附器;连续型则采用二台或二台以上的吸附器交替运行,可保障连续吸附制冷。
(完整word版)太阳能固体吸附式制冷空调原理及前景

太阳能固体吸附式制冷空调原理及前景一.前言随着人们生活水平的大幅提高,空调器已逐渐成为家庭必备的家用电器,另一方面,大范围地使用传统制冷方式已经给环境造成了极大的破坏。
首先是臭氧层空洞问题。
传统制冷机广泛采用氯氟烃类制冷剂简称CFC,HCFC,它们会催化分解臭氧,削弱对紫外线的阻挡,威胁人类健康;其次,每年常规高能耗的制冷需求占用国家电力消耗的比例迅速增加,引起电力紧张,各地兴建各类发电站,火力占主要,大量烧煤增排CO2增强温室效应,引起全球升温;再次,能源短缺已然成为世界性的问题,普通空调器的普及显然是不利与于能源节约的,近几年来夏季我国各地特别是沿海停电现象严重,拉电限电十分普遍。
基于以上的问题,人们已经逐渐认识到可持续发展的重要性,同时也积极开发对能源有效利用和保护环境的新技术。
太阳能固体吸附式制冷技术作为一种以太阳能为能源并且对环境无破坏作用的新型技术备受关注。
国外于二十世纪六七十年代就开始了对吸附式循环的研究。
国内的研究开始于八十年代初,严爱珍等人曾在1982年对吸附式制冷作过研究,使用的工质是沸石分子筛-水和沸石分子筛-乙醇。
1992年巴黎国际吸附式制冷会议带动了该技术的研究,在接下来的国际会议上均有上百篇论文发表,该项技术得到不断发展。
二. 工作原理固体吸附式制冷技术的原理包括吸附和脱附两个过程。
1.脱附.左图是脱附过程的简单模型图。
吸附床内充满了吸附剂,吸附有制冷剂,冷凝器与冷却系统相连,一般冷却介质为水。
工作时,太阳能集热器对吸附床加热,制冷剂获得能量克服吸附剂的吸引力从吸附剂表面脱附,进入右边管道,系统压力增加,C1导通,C2关闭。
当压力与冷凝器中对应温度下的饱和压力相等时,制冷剂开始液化冷凝,最终制冷剂凝结在蒸发器中,脱附过程结束。
在这个过程中,太阳能集热器供能Q1,冷凝器放热Q4由冷却水排除到系统之外。
2.吸附.右图是吸附过程的简单模型图。
冷却系统对吸附床进行冷却,温度下降,吸附剂开始吸附制冷剂,左边管道内压力降低,C2导通,C1关闭,蒸发器中的制冷剂因压力瞬间降低而蒸发吸热,达到制冷效果,制冷剂达到吸附床,吸附过程结束。
吸附式制冷的工作原理

吸附式制冷的工作原理一、引言吸附式制冷是一种新型的制冷技术,它具有无霜结、无噪音、无振动等优点,因此在空调、冰箱等领域得到了广泛应用。
本文将详细介绍吸附式制冷的工作原理。
二、吸附式制冷的基本原理1. 吸附剂的选择吸附式制冷系统中,吸附剂是起关键作用的物质。
一般来说,吸附剂应该具有以下特点:高吸收能力、低解吸能力、化学稳定性好等。
常见的吸附剂有硅胶、分子筛等。
2. 吸附与解吸过程在吸附式制冷系统中,通过控制压力和温度来实现气体在固体表面上的吸附和解吸过程。
当压力升高时,气体会被固体表面上的孔隙所吸收;当压力下降时,气体会从固体表面上脱离出来,这个过程叫做解吸。
3. 热量传递在制冷过程中,热量需要被传递到外部环境中去。
吸附式制冷系统中,热量传递主要通过两种方式:一是通过吸附剂和气体之间的热传导;二是通过吸附剂和外部环境之间的热传导。
三、吸附式制冷的工作流程1. 吸附过程在吸附过程中,吸附剂会从低压区域向高压区域移动,同时吸收气体。
当气体被完全吸收后,压力达到最高点。
2. 膨胀过程在膨胀过程中,气体会从高压区域向低压区域移动,同时释放出来。
这个过程需要消耗一定的能量。
3. 冷却过程在冷却过程中,气体会被冷却到低温状态。
此时,气体的温度会比外界环境低很多。
4. 解吸过程在解吸过程中,低温下的气体会被重新释放出来,并且被带回到高压区域。
这个过程需要消耗一定的能量。
四、总结综上所述,吸附式制冷技术是一种新型的制冷技术,在空调、冰箱等领域得到了广泛应用。
吸附式制冷的基本原理是通过控制压力和温度来实现气体在固体表面上的吸附和解吸过程,同时通过热量传递实现制冷效果。
了解吸附式制冷的工作原理,对于我们更好地使用这种新型技术具有重要意义。
浅议太阳能在制冷空调中的应用

浅议太阳能在制冷空调中的应用随着环保意识的不断增强,太阳能作为一种可再生能源,受到了越来越广泛的关注。
近年来,太阳能在制冷空调领域的应用也逐步被发掘和推广。
本文将介绍太阳能在制冷空调中的基本原理、应用现状以及未来发展方向。
太阳能在制冷空调中的基本原理制冷空调的工作原理制冷空调是通过物理变化来实现降温的,其工作原理主要包括三个方面:压缩、冷凝、膨胀。
具体而言,制冷空调将室内空气吸入机器内部,经过过滤净化后,通过压缩使其温度升高。
随后,热气到达冷凝器后通过换热过程得以降温,变成液态冷媒。
液态冷媒通过膨胀阀进入蒸发器在室内蒸发,带走热量,从而达到降温的目的。
太阳能制冷空调的基本原理太阳能制冷空调的基本原理是将太阳能转化为热能,通过吸收热能提供制冷所需的驱动力,实现制冷的过程。
太阳能制冷空调主要分为两种类型:吸收式和压缩式。
•吸收式太阳能制冷空调吸收式太阳能制冷空调采用吸收剂、蒸发剂和冷凝器组成的循环系统,利用太阳能将水加热,使其蒸发成水蒸气。
水蒸气在吸收剂及蒸发剂之间交换吸收热量,使得吸收剂中的压力升高,传导热量到蒸发器中,实现制冷的目的。
•压缩式太阳能制冷空调压缩式太阳能制冷空调采用太阳能板直接提供热源,经过压缩机的压缩、冷凝、膨胀,使得制冷剂在室外机和室内机之间循环运行,并在室内机内部完成冷凝、蒸发过程,从而实现空调制冷的目的。
太阳能制冷空调的应用现状目前,太阳能制冷空调的应用还处于起步阶段,不过在一些开发中国家,尤其是一些沿海地区,已经开始得到广泛推广。
例如,在印度、巴基斯坦等国家,太阳能制冷空调已经成为一种广泛使用的清洁能源。
在中国,太阳能制冷空调的应用也逐步得到了推广。
在某些地区,利用太阳能制冷空调可以减少能源消耗,降低空调运行成本,同时也为环境保护作出了贡献。
太阳能制冷空调的未来发展方向随着环保意识的不断提高,太阳能制冷空调在未来将有更为广阔的应用空间。
对于太阳能制冷空调的发展,以下几点是值得注意的:•技术创新技术创新是太阳能制冷空调发展过程中重要的推动力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能固体吸附式制冷空调原理及前景一.前言随着人们生活水平的大幅提高,空调器已逐渐成为家庭必备的家用电器,另一方面,大范围地使用传统制冷方式已经给环境造成了极大的破坏。
首先是臭氧层空洞问题。
传统制冷机广泛采用氯氟烃类制冷剂简称CFC,HCFC,它们会催化分解臭氧,削弱对紫外线的阻挡,威胁人类健康;其次,每年常规高能耗的制冷需求占用国家电力消耗的比例迅速增加,引起电力紧张,各地兴建各类发电站,火力占主要,大量烧煤增排CO2增强温室效应,引起全球升温;再次,能源短缺已然成为世界性的问题,普通空调器的普及显然是不利与于能源节约的,近几年来夏季我国各地特别是沿海停电现象严重,拉电限电十分普遍。
基于以上的问题,人们已经逐渐认识到可持续发展的重要性,同时也积极开发对能源有效利用和保护环境的新技术。
太阳能固体吸附式制冷技术作为一种以太阳能为能源并且对环境无破坏作用的新型技术备受关注。
国外于二十世纪六七十年代就开始了对吸附式循环的研究。
国内的研究开始于八十年代初,严爱珍等人曾在1982年对吸附式制冷作过研究,使用的工质是沸石分子筛-水和沸石分子筛-乙醇。
1992年巴黎国际吸附式制冷会议带动了该技术的研究,在接下来的国际会议上均有上百篇论文发表,该项技术得到不断发展。
二. 工作原理固体吸附式制冷技术的原理包括吸附和脱附两个过程。
1.脱附.左图是脱附过程的简单模型图。
吸附床内充满了吸附剂,吸附有制冷剂,冷凝器与冷却系统相连,一般冷却介质为水。
工作时,太阳能集热器对吸附床加热,制冷剂获得能量克服吸附剂的吸引力从吸附剂表面脱附,进入右边管道,系统压力增加,C1导通,C2关闭。
当压力与冷凝器中对应温度下的饱和压力相等时,制冷剂开始液化冷凝,最终制冷剂凝结在蒸发器中,脱附过程结束。
在这个过程中,太阳能集热器供能Q1,冷凝器放热Q4由冷却水排除到系统之外。
2.吸附.右图是吸附过程的简单模型图。
冷却系统对吸附床进行冷却,温度下降,吸附剂开始吸附制冷剂,左边管道内压力降低,C2导通,C1关闭,蒸发器中的制冷剂因压力瞬间降低而蒸发吸热,达到制冷效果,制冷剂达到吸附床,吸附过程结束。
在此过程中,吸附床放热Q2,被冷却水排除到系统之外,蒸发器从环境中吸收Q3的热量。
以上只是最简单的模型图,由上可知单台吸附床工作时制冷是间歇式的,不能连续制冷,要达到连续制冷的效果,必须使用两台或两台以上的吸附床,交错运行,制冷的循环就连续了。
三. 优点和缺点要了解吸附式制冷技术的优点和缺点,有必要将其与吸收式制冷技术进行比较,由于两者是十分相近的制冷方式,但是在产业化方面,吸收式制冷技术明显优于吸附式制冷技术,通过比较可能会获得有用信息。
两者既有相同之处也有相异之处,下面先从原理,工质的环保,能量来源三方面简单讲述相同之处:1.原理上,吸附式制冷与吸收式制冷是两个循环特性十分相近的制冷方式,其制冷原理为:制冷剂在低压(相对)下蒸发,从环境中吸热制冷,两者都是利用物质的吸附(吸收)作用,吸附(吸收)制冷剂蒸气,所释放的吸附(吸收)热被冷却介质排除于系统之外,经加热后制冷剂蒸气重新从吸附(吸收)剂中脱附(发生)而出,经冷凝器凝结为冷剂液,并进入蒸发器蒸发,如此循环往复。
2.工质的环保上,吸收式制冷的吸收剂一般为流动性良好的液体介质,常用的有氨-水,溴化锂水溶液等制冷工质。
吸附式制冷的吸附剂一般为固体介质,常使用分子筛-水活性炭-甲醇,活性炭-氨制冷工质对等,这些工质都是天然工质,大部分对环境无害,比较环保。
3.能量的来源上,两者都可利用热能,特别是低品位的热能驱动,所以太阳能是个不错的选择,无污染,制冷系统本身仅需要极少的电量,因此也省电。
这两种制冷方式为节省能源提供了可行的技术手段。
当然两者还有其他相同之处,列述三项。
以下从安全性,传质差别,蒸气通道和制冷量四方面简述相异之处:1.安全性上,在溴化锂吸收式制冷机中,若溶液温度低于其结晶饱和温度,溴化锂将从溶液中析出而结晶,从而堵塞系统管路或热交器,使运行中断,有安全隐患。
而吸附式制冷中不存在溶液结晶的问题,比较安全。
2.传质差别上,吸收式制冷机中采用液体工质,液体内部同时存在导热和对流的传热方式且以对流为主,换热系数大,传热效果好。
吸附式制冷机中吸附剂为固体,其内部传热只能采用导热方式,并用吸附剂的导热系数一般都很小,所以其换热能力远不如液体。
3.蒸气通道上,吸收式制冷循环是一个连续的制冷过程,发生器与冷凝器,吸收器与蒸发器之间,气流的通道的截面面积比较大,对制冷剂蒸气的阻力很小,制冷剂蒸气在流动中的压力损失对整个制冷过程影响不大.但是在吸附式制冷系统中,由于工作的间歇性,往往需要多台吸附床同时工作,这个过程中需要进行管路切换,制冷剂蒸气管路阻力较大,对制冷量较大的机组影响很大,降低制冷效果。
4.制冷量上,目前吸收式制冷机的制冷量小则几十千瓦,大则数千千瓦,民用性相对比较差,比较适用于企事业单位和大型的场所;由于不同功率机组的配件成本相差不大,成本主要花在传热管的耗材上,机组制冷量越大,单位制冷量的制造价格越低。
目前吸附式制冷机受制造工艺的限制,制冷量较小,一般只有数千瓦至上百千瓦,如果将来技术过关的话,前景是很不错的.通过以上的简单比较可以知道太阳能吸附式制冷技术有许多优点:一.吸附式制冷所使用的制冷剂是对环境相对友好的物质(甲醇,氨,水等)不采用氯氟烃类制冷剂那样会破坏臭氧层的物质,值得开发;二.吸附式制冷可采用太阳能驱动,不仅对电力的紧张供应可起到减缓作用,而且不污染环境;三.安全性能高,无运动部件,适用广。
当然该技术也有不足之处:一.固体吸附剂导热性能差,传热效果远不如液体,因此脱附和吸附的时间长;二.单位质量的吸附剂的制冷功率与吸收式相比是比较小的,要达到一定的制冷效果制冷机的尺寸就造得较大。
三.吸附式制冷存在间歇性,要实现制冷的连续性,必须使用二台或多台吸附床,通过多台吸附床加热/冷却运行状态的切换,实施不断供冷,在制冷过程中需要进行管路切换产生较大的阻力,影响制冷机的制冷量,降低制冷功率。
另外,太阳能固体吸附式制冷技术还有能有效利用低品位热源,噪声低,寿命长等优点。
四. 前景展望作为一种新兴的环保能源利用技术,太阳能固体吸附式制冷技术是符合当前能源、环境协调发展的总趋势的。
对其未来的展望可从以下四方面来论述:一.技术。
对吸附式制冷的研究是在Faraday 发现氯化银吸附氨产生的制冷现象以后,报道最早的吸附式系统是在20世纪20年代;吸附式制冷技术真正得到发展是在20世纪70年代,能源危机为吸附式制冷提供了契机,因为吸附式制冷系统可利用低品位的热源驱动,节能,而且没有臭氧层问题和温室效应。
近20年来,不断有来自美,法,日,英,德等过对固体吸附式制冷的研究报道,从吸附工质对性能,吸附床的研究及结构等方面推动了吸附式制冷的发展。
现在已经生产出了产品:以下是德国Freiburg 示范应用的太阳能吸附空调二.成本。
如其他一切新兴科学技术一样,吸附式制冷技术需要投入大量的科研经费,这势必会增加产品的成本,也就提高了产品的市场价格,使新生的技术难以竞争。
为此,政制冷机组性能 性能指标 单位 制冷量8.5 kW 冷冻水出水温度 10 ºC 冷冻水流量 1.5 t/h 冷却水进口温度 32 ºC 冷却水流量 5 t/h 热水进口温度 85 ºC 热水流量 3.6 t/hCOP0.4 冷冻水系统工作压力 0.6 MPa 冷却水系统工作压力 0.6 MPa 热水系统工作压力 0.6 MPa 运行重量 1.5t2Φ-220V-50Hz ☐ 能够在55-85oC 热源温度下有效工作;☐ 适合太阳能以及其它低品位热能应用; ☐ 目前已小批量生产府是可以有作为的,一通过政府的方向性的调控引导群众购买新兴的吸附式制冷空调,增强其市场竞争力,二通过国家财政来支持吸附式制冷技术的研究,国外这方面做得不错,给企业补贴我国也应该对该技术在经济上有所支持。
在法律上,2006年我国颁布了《可再生能源法》使各项工作有法可依。
另外就是企业积极参与市场竞争,竞争可以驱动企业不断提高生产效率,降低成本,学会在市场中生存。
要把太阳能吸附式制冷空调得到大范围的普及,是需要多方面共同努力才能完成的。
一政府应该重视。
吸附式制冷作为一种新的尚不成熟技术,需要政府的直接支持才能发展,得到发展才能谈普及。
这是一种有利于国家发展的技术,是可持续发展的。
二群众应该支持。
太阳能吸附式制冷空调是一种节能无污染的新产品,可以提高生活水平。
群众应该改变旧的观念,积极接受新的知识,提高环保意识和可持续发展的意识,支持对环境有利对自己和子孙未来有利的科学技术。
三科学应该发展。
科学是第一生产力,因此必须积极发展科技,太阳能吸附式制冷技术必将造福人类四.应用。
如何将太阳能空调应用也是个很重要的问题。
实现太阳能利用与建筑的一体化是目前研究的热点。
要实现太阳能空调的大范围应用是涉及到多方面的问题:法律,城市规划,能耗,成本等。
下图是上海交通大学的零能耗建筑:五. 结束语太阳能固体吸附式制冷空调还处于起步阶段,技术工艺等尚不成熟,市场条件不具备,但是其环保的效应和对能源紧缺的当今时代的适应性是传统空调不可比拟的。
关键是如何解决存在的缺点,比如:如何改进吸附剂的传热性能。
因此,应加大以下三方面的研究:(1).强化吸附剂的吸附性能,开发新型吸附剂,增大制冷量。
(2).强化传热,提高吸附剂的传热性能和单位吸附剂的制冷功率,减小制冷机的尺寸。
(3).研究新的热循环,开发吸附吸收相结合的新型制冷机。
相信在在政府和社会的大力支持下,太阳能固体吸附式制冷空调一定能得到长足的发展,走进千家万户。