二次函数图像与abc的关系
二次函数图像与abc符号关系课件

目 录
• 二次函数的基本概念 • 二次函数的图像分析 • 二次函数的abc符号变化对图像的影响 • 实际应用举例 • 总结与思考
01
二次函数的基本概念
二次函数的一般形式
总结词
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a, b, c$是常数,且$a neq 0$。
于负半轴。
对二次函数图像与abc符号关系的深入思考
a符号与开口大小的关系
虽然a决定了开口方向,但a的绝对值大小也会影响开口的大小。当|a|越大,开口越宽; 当|a|越小,开口越窄。
b符号与对称性的关系
b的符号和大小决定了抛物线的对称性。当b=0时,抛物线关于y轴对称;当b≠0时,抛物 线关于x=−b/2a对称。
详细描述
在二次函数的一般形式$f(x) = ax^2 + bx + c$中,$a, b, c$分别被称为二次项系数、一次项系数和常数项。它 们的符号决定了函数的开口方向、顶点位置等性质。例如,当$a > 0$时,函数图像开口向上;当$a < 0$时,函 数图像开口向下。
二次函数的开口方向与abc符号的关系
04
实际应用举例
利用二次函数解决实际问题
总结词
通过理解二次函数的图像和abc符 号关系,可以解决一些实际问题 。
详细描述
二次函数图像的开口方向、顶点 位置和对称轴等特性,可以帮助 我们解决一些实际问题,例如最 值问题、面积问题等。
二次函数在数学建模中的应用
总结词
二次函数是数学建模中常用的函数之 一,可以用来描述一些实际问题中的 数量关系。
05
总结与思考
二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。
一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。
二次函数与abc的关系题

二次函数与abc的关系题
二次函数一般形式为:y = ax^2 + bx + c
其中,a、b、c为常数。
与a,b,c的关系如下:
1. 当a>0时,二次函数的图像开口向上,对应的抛物线的开口朝上;
2. 当a<0时,二次函数的图像开口向下,对应的抛物线的开口朝下;
3. b决定了二次函数图像的偏移量,即左右平移或镜像;
- 当b > 0时,二次函数图像向左平移;
- 当b < 0时,二次函数图像向右平移;
4. c决定了二次函数图像的上下平移;
- 当c > 0时,二次函数图像向上平移;
- 当c < 0时,二次函数图像向下平移。
总结起来,a决定了抛物线的形状(开口向上或向下),b决定了抛物线的平移方向和程度,c决定了抛物线的上下平移。
二次函数系数abc与图像的关系

二次函数系数a、b、c与图象的关系知识归纳:1.a的作用:决定开口方向和开口大小2.a与b的作用:左同右异(对称轴的位置)3.c的作用:与y轴交点的位置。
4.b2-4ac的作用:与x轴交点的个数。
5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c),(-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。
针对训练:1.判断下列各图中的a、b、c及△的符号。
(1)a___0;b___0;c___0;△__0.(2)a___0; b___0; c___0;△__0.(3)a___0; b___0; c___0;△__0.(4)a___0; b___0; c___0;△__0.(5)a___0; b___0; c___0;△__0.2.二次函数y=ax2+bx+c的图象如图,用(>,<,=)填空:a___0; b___0; c___0; a+b+c__0; a-b+c__0.3.二次函数y=ax 2+bx+c 的图象如图1所示,则下列关于a 、b 、c 间的关系判断正确的是( )A.ab<0B.bc<0C.a+b+c>0D.a -b+c<04.二次函数y=ax 2+bx+c 图象如图,则点 A (b 2-4ac ,-b a)在第 象限.5.已知a <0,b>0,c >0,那么抛物线y=ax 2+bx+c 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知二次函数y=ax 2+bx+c 的图像如图所示,判断下列各式的符号: (1)a ; (2)b ; (3)c ; (4)a+b+c ; (5)a-b+c ;(6)b 2-4ac ; (7)4ac-b 2; (8)2a+b ; (9)2a-b7.练习:填空(1)函数y=ax 2+bx+c (a≠0)的函数值恒为正的条件: ,恒为负的条件: .(2)已知抛物线y=ax 2+bx+c 的图象在x 轴的下方,则方程ax 2+bx+c=0的解得情况为: .(3)二次函数y=ax 2+bx+c 中,ac <0,则抛物线与x 轴有 交点。
二次函数与abc的关系总结

二次函数与abc的关系总结在数学中,二次函数是一个具有以下形式的函数:$f(x) = ax^2 + bx + c$。
其中,$a$、$b$和$c$是常数。
二次函数在数学分析、物理学、经济学等领域中都有广泛的应用。
本文将总结二次函数与$a$、$b$和$c$之间的关系。
关系一:二次函数的图像开口方向与$a$的正负有关。
当$a>0$时,二次函数的图像开口向上;当$a<0$时,二次函数的图像开口向下。
这是因为当$a>0$时,$f(x) = ax^2 + bx + c$关于$y$轴对称,所以图像开口向上;当$a<0$时,$f(x) = ax^2 + bx + c$关于$y$轴对称,所以图像开口向下。
关系二:二次函数的图像是否与$x$轴相交与$c$的正负有关。
当$c>0$时,二次函数的图像与$x$轴有两个交点;当$c=0$时,二次函数的图像与$x$轴有一个交点(相切);当$c<0$时,二次函数的图像与$x$轴没有交点。
关系三:二次函数的顶点坐标与$a$和$b$有关。
对于二次函数$f(x) = ax^2 + bx + c$,它的顶点的$x$坐标为$x =\frac{-b}{2a}$,$y$坐标为$y = f(\frac{-b}{2a})$。
根据$a$和$b$的不同取值,顶点可以位于$y$轴的上方或下方,并且根据$a$的正负可以确定顶点的凹凸性质。
当$a>0$时,顶点位于图像的下方(凹);当$a<0$时,顶点位于图像的上方(凸)。
综上所述,二次函数与$a$、$b$和$c$之间存在着紧密的关系。
通过对$a$、$b$和$c$的取值进行分析,可以推断出二次函数的图像特征、对称性以及与$x$轴的交点情况等。
这种关系在数学中具有重要的意义,对于解题和应用中的问题分析都起到了重要的作用。
了解和掌握这些关系,有助于提高对二次函数性质的理解和应用能力。
在实际应用中,二次函数与$a$、$b$和$c$的关系也有着重要的应用。
二次函数的图像与字母a、b、c的关系

课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。
教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。
3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
二次函数与abc的关系

二次函数的图像及其性质
二次函数的图像是一条抛物线,具有开口方向、曲率、对称性等特点。通过研究图像性质,我们可以更深入地 理解二次函数。
二次函数的应用实例
通过实际应用例子,我们可以看到二次函数在各个领域的具体应用,如物理、 经济、工程等。
解决实际问题时如何运用二次 函数
在解决实际问题时,我们可以运用二次函数的特性和公式,进行建模和求解, 从而得到准确的结果。
水平方向伸缩对二次函数的影 响
水平方向伸缩是改变二次函数图像形态的一种变换。通过伸缩,我们可以调 整二次函数图像在x轴上的宽度。
竖直方向伸缩对二次函数的影响
竖直方向伸缩是改变二次函数图像形态的一种变换。通过伸缩,我们可以调整二次函数图像在y轴上的高度。
二次函数与三角函数的关系
二次函数与三角函数之间存在一定的关联性,通过研究二次函数与三角函数 的关系,我们可以发现它们在数学中的互相影响。
二次函数的单调区间
二次函数的单调区间是指函数在该区间内的增减情况。通过研究单调区间, 我们可以了解二次函数的增减趋势。
二次函数的交点
二次函数可以与其他函数、直线或曲线相交,通过求解交点,我们可以获得二次函数与其他图形的交点坐标。
二次函数的点坐标
二次函数的点坐标是指函数图像上的特定点的横纵坐标值。通过求解点坐标, 我们可以了解二次函数的具体图像。
二次函数与abc的关系
在这个演示中,我们将探讨二次函数及其与参数a、b和c之间的关系。通过深 入研究这些关系,我们将揭示二次函数的各种特征和应用。
二次函数的一般式
二次函数的一般式定义了二次函数的基本形式,为y = axa、b和c是常数。
定义二次函数中的a、b和c
a表示二次函数的二次项系数,决定二次函数图像的开口方向和曲率。b表示二次函数的一次项系数,决定二 次函数图像的位置和斜率。c表示二次函数的常数项,决定二次函数图像与y轴的交点。
二次函数中各项系数abc与图像的关系

二次函数中各项系数a ;b ;c 与图像的关系一、首先就y=ax 2+bx+ca≠0中的a ;b ;c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大;抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号;说明02<-ab ;则对称轴在y 轴的左边; b 与a 异号;说明−b 2b >0;则对称轴在y 轴的右边;特别的;b = 0;对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点0;cc > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的;c = 0;抛物线过原点.4 a;b;c 共同决定判别式?=b 2−4bb 的符号进而决定图象与x 轴的交点b 2−4bb >0 与x 轴两个交点b 2−4bb =0 与x 轴一个交点b 2−4bb <0 与x 轴没有交点5 几种特殊情况:x=1时;y=a + b + c ;x= -1时;y=a - b + c .当x = 1时;① 若y > 0;则a + b + c >0;② 若y < 时0;则a + b + c < 0当x = -1时;① 若y > 0;则a - b + c >0;② 若y < 0;则a - b + c < 0.扩:x=2; y=4a + 2b + c ;x= -2; y=4a -2b + c ; x=3; y=9a +3 b + c ;x= -3; y=9a -3b + c ..一.选择题共8小题1.已知二次函数y=ax 2+bx+c 的图象大致如图所示;则下列关系式中成立的是A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+ca ≠0的图象如图所示;那么下列不等式成立的是A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+ca ≠0的图象如图所示;有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+ca ≠0的图象如图所示;对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0;其中正确的个数是A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+ca ≠0的图象如图;给出下列四个结论::①a <0;②b >0;③b 2﹣4ac>0;④a+b+c <0;其中结论正确的个数有A .1个B .2个C .3个D .4个6.如图所示;抛物线y=ax 2+bx+c 的顶点为﹣1;3;以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c ﹣b=3;④a+3=c;其中正确的个数A .1B .2C .3D .47.如图是二次函数y=ax 2+bx+c 图象的一部分;图象过点A ﹣3;0;对称轴为直线x=﹣1;下列给出四个结论中;正确结论的个数是 个①c >0;②若点B ﹣;y 1、C ﹣;y 2为函数图象上的两点;则y 1<y 2;③2a ﹣b=0; ④<0;⑤4a ﹣2b+c >0.A .2B .3C .4D .58.二次函数y=ax 2+bx+c 的图象如图所示;以下结论:①abc >0;②4ac <b 2;③2a+b >0;④当x <时;y 随x 的增大而减小;⑤a+b+c >0.其中正确的有A .5个B .4个C .3个D .2个二.填空题共4小题9.如图;抛物线y=ax 2+bx+ca ≠0的对称轴为直线x=1;与x 轴的一个交点坐标为﹣1;0;其部分图象如图所示;下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1;x 2=3;③3a+c >0;④当y >0时;x 的取值范围是﹣1≤x <3;⑤当x <0时;y 随x 增大而增大; 其中结论正确有 .10.一抛物线和抛物线y=﹣2x 2的形状、开口方向完全相同;顶点坐标是﹣1;3;则该抛物线的解析式为 .11.抛物线y=ax 2+12x ﹣19顶点横坐标是3;则a= .12.将二次函数y=x 2+6x+5化为y=ax ﹣h 2+k 的形式为 .三.解答题共7小题13.已知:抛物线y=﹣x 2+bx+c 经过点B ﹣1;0和点C2;3.1求此抛物线的表达式;2如果此抛物线沿y 轴平移一次后过点﹣2;1;试确定这次平移的方向和距离.14.函数y=m+2是关于x 的二次函数;求:1满足条件的m 值;2m 为何值时;抛物线有最低点 求出这个最低点.这时;当x 为何值时;y 随x的增大而增大3m 为何值时;函数有最大值 最大值是多少 这时;当x 为何值时;y 随x 的增大而减小.15.已知二次函数的图象经过0;0﹣1;﹣1;1;9三点.1求这个函数的解析式;2求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是1;﹣4;且经过点0;﹣3;求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.1将y=x2﹣4x+5化成y=a x﹣h2+k的形式;2指出该二次函数图象的对称轴和顶点坐标;3当x取何值时;y随x的增大而增大18.如图;二次函数的图象的顶点坐标为1;;现将等腰直角三角板直角顶点放在原点O;一个锐角顶点A在此二次函数的图象上;而另一个锐角顶点B在第二象限;且点A的坐标为2;1.1求该二次函数的表达式;2判断点B是否在此二次函数的图象上;并说明理由.19.已知二次函数y=ax﹣h2;当x=4时有最大值;且此函数的图象经过点1;﹣3.1求此二次函数的解析式;2当x为何值时;y随x的增大而增大。