二次函数系数abc与图像的关系精选练习题

合集下载

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数系数abc与图像的关系

二次函数系数abc与图像的关系

二次函数系数a、b、c与图象的关系知识归纳:1.a的作用:决定开口方向和开口大小2.a与b的作用:左同右异(对称轴的位置)3.c的作用:与y轴交点的位置。

4.b2-4ac的作用:与x轴交点的个数。

5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c),(-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。

针对训练:1.判断下列各图中的a、b、c及△的符号。

(1)a___0;b___0;c___0;△__0.(2)a___0; b___0; c___0;△__0.(3)a___0; b___0; c___0;△__0.(4)a___0; b___0; c___0;△__0.(5)a___0; b___0; c___0;△__0.2.二次函数y=ax2+bx+c的图象如图,用(>,<,=)填空:a___0; b___0; c___0; a+b+c__0; a-b+c__0.3.二次函数y=ax 2+bx+c 的图象如图1所示,则下列关于a 、b 、c 间的关系判断正确的是( )A.ab<0B.bc<0C.a+b+c>0D.a -b+c<04.二次函数y=ax 2+bx+c 图象如图,则点 A (b 2-4ac ,-b a)在第 象限.5.已知a <0,b>0,c >0,那么抛物线y=ax 2+bx+c 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知二次函数y=ax 2+bx+c 的图像如图所示,判断下列各式的符号: (1)a ; (2)b ; (3)c ; (4)a+b+c ; (5)a-b+c ;(6)b 2-4ac ; (7)4ac-b 2; (8)2a+b ; (9)2a-b7.练习:填空(1)函数y=ax 2+bx+c (a≠0)的函数值恒为正的条件: ,恒为负的条件: .(2)已知抛物线y=ax 2+bx+c 的图象在x 轴的下方,则方程ax 2+bx+c=0的解得情况为: .(3)二次函数y=ax 2+bx+c 中,ac <0,则抛物线与x 轴有 交点。

中考数学总复习《二次函数图像与系数的关系》练习题及答案

中考数学总复习《二次函数图像与系数的关系》练习题及答案

中考数学总复习《二次函数图像与系数的关系》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③abc>0;④4a-2b+c<0;⑤c-a>1其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤2.已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是()A.ac>0B.b>0C.a+c<0D.a+b+c=03.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④方程ax2+bx+c﹣3=0有两个不相等的实数根;⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是().A.1个B.2个C.3个D.4个4.在平面直角坐标系xOy中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),则a的取值范围是()A.a<0B.-3<a<0C.a<−32D.−92<a<−325.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是A.B.C.D.6.已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.-2B.-1C.1D.27.对于二次函数y=﹣(x+1)2﹣3,下列结论正确的是()A.函数图象的顶点坐标是(﹣1,﹣3)B.当x>﹣1时,y随x的增大而增大C.当x=﹣1时,y有最小值为﹣3D.图象的对称轴是直线x=18.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…-5-4-3-2-10…y…40-2-204…A.抛物线的开口向下B.当时,y随x的增大而增大C.二次函数的最小值是D.抛物线的对称轴是直线9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.当x≥1时,y随x的增大而增大C.c<0D.当﹣1<x<3时,y>010.如图,在同一平面直角坐标系中,函数y=ax+2(a≠0)与y=−ax2−2x(a≠0)的图象可能是().A.B.C.D.11.已知二次函数y=﹣(x+k)2+h,当x>﹣2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥﹣2B.k≤﹣2C.k≥2D.k≤212.已知:二次函数y=ax2+bx+c的图象如图,则下列答案正确的是()A.a>0,b>0,c>0,△<0B.a<0,b>0,c<0,△>0C.a>0,b<0,c<0,△>0D.a<0,b<0,c>0,△<0二、填空题13.二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下6个结论:①abc>0;②a﹣b+c>0;③4a+2b+c>0;④2a<3b;⑤x<1时,y随x的增大而增大;⑥a+b<m(am+b)(m为实数且m≠1)其中正确的结论有(填上所有正确结论的序号)14.已知二次函数y=ax2+bx+c的图象如图所示,则由此可得a0,b0,c 0.(填“<”或“>”)15.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限;乙:当x<2时,y随x的增大而减小.丙:函数的图象与坐标轴只有两个交点.已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数.16.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.17.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有。

二次函数系数a、b、c与图像的关系填空题专题练习(含答案).doc

二次函数系数a、b、c与图像的关系填空题专题练习(含答案).doc

二次函数系数a 、b 、c 与图像的关系填空题专题练习1、二次函数y=-x2+bx+c 的图象如图所示,试确定b 、c 的符号;b ____________ 0, c ________ 0.(填不等号)5、已知函数y 二ax"+bx+c 的图象如图所示,则下列结论中:®abc>0;②b 二2。

;③a+b+c<0;④a-b+c>0.正 确的是 _________ •0; (4) b 2-4ac_ 0.如图,已知抛物线y 二ax'+bx+c(aH0)经过原点和点(-2, 0),则2a -3b0.(填 >、V 或二) 象限.0; (3)c则直线y=abx+c 不过第6、已知如图,抛物线y=ax2+bx+c与x轴交于点A(—1, 0)和点B,化简:如夕★如护的结杲为:①c;②b;③b—a;④a —b + 2c.其中正确的有________________ .7、二次函数y=-x2+bx + c的图象如图,则一次函数y=bx+c的图象不经过第_______________ 象限.8、若二次函数x2+bx+c的图象如图,则ac 0 (“V” “>”或“二”)9、已知二次函数y二ax'+bx+c(aH0)的图象如图所示,则在下列代数式:①ac;②a+b+c;③4a-2b+c;④2a+b;⑤圧-4ac中,值大于0的序号为__________________10、如图是二次函数y=ax2 + bx + c(a^0)的图象的一部分,给出下列命题:①a+b + c二0;②b>2a;③ax2+bx+c=0 的两根分别为一3 和1:④a—2b+c>0.其中正确的命题是 ______________ ・(只要求填写正确命题的序号)有以下结论:①abc>0;②a - b+c<0;③2d二b;④4a+2b+c>0;⑤若点(・2, y()和(・3, y2)在该图象上,则yi>y2.其中正确的结论是 ______________ (填入正确结论的序号).12、如图是二次函数ypx'+bx+c 的部分图像,在下列四个结论中正确的是 _________________① 不等式 ax 2+bx+c>0 的解集是-l<x<5;②a-b+c>0;③b 2-4ac>0;④4a+b<0.下列结论:①4a+b 二0;②9a+c>3b ;③8a+7b+2c>0;④当x>・1时,y 的值随x 值的增大而增大.其中正确的结论有 ______________________ (填序号)14>二次函数y=ax^+bx+c (aHO )的图象如图所示,下列结论:①2a+b 二0;②a+c>b ;③抛物线与 x 轴的另一个交点为(3, 0);④abc>0.其中正确的结论是 _____________________ (填写序号).15、如图是二次函数y=ax 2+bx+c 图彖的一部分,图彖过点A ( - 3, 0),对称轴为直线X 二・1,给 出四个结论:①b 2>4ac ;②2a+b 二0;③a+b+c>0;④若点B ( - 2. 5, yj , C ( - 0. 5, y 2)为函数图象上的两 点,则yi<y2.其中正确结论是 __________________ ・图象过点(-1, 0),对称轴为直线x=2,16、如图,是二次函数y=ax2+bx+c (aHO)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c二0④ax'+bx+c二0的两根分别为・3和1;⑤8a+c>0. 其中正确的命题是____________________________ ・17>二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2 - 4ac>0;④a+b+c<0;⑤la・2b+c<0,其中正确的个数是______________________ .y八18、如图,抛物线y=ax2+bx+c的对称轴是x=-l.且过点(0.5, 0),有下列结论:①abc>0;②a-2b+4c=0;③25a・ 10b+4c=0;④3b+2c>0;⑤a - b^m (am - b);其中所有正确的结论是___________________ .(填写正确结论的序号)19、己知二次函数y=ax2+bx+c (aHO)的图象如图所示,纟合出以下结论: ®b2>4ac;②abc>0③2a-b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是___________ .(填正确结论的序号)x=l20、在二次函数y=ax2+bx+c的图彖如图所示,下列说法中:①b‘・4ac<0;②2占>0;③abc>0;®a-b-c>0,说法正确的是(填序号).21>已知二次函数y=ax2+bx+c (aHO)的图象如图所示,有下列5个结论:①c二0;②该抛物线的对称轴是直线x二・1;③当x=l时,y=2a;④am2+bm+a>0 (mH - 1);⑤设A (100, yi) , B (・100, y2)在该抛物线上,则yi>y2.其中正确的结论有・(写出所有正确结论的序号)22、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,则下列结论:①a+b+c<0;②a - b+c<0;③b+2a<0;④abc>0,其屮正确的是_________________ (填编号)23、如图是二次函数y=ax2+bx+c (aHO)图彖的一部分,现有下列结论:①abc<0;②b?・4ac+5> 0;③2a+b<0;④a-b+c<0;⑤抛物线y=ax2+bx+c (a^O)与x轴的另一个点坐标为(・1, 0), 其屮正确的是(把所有正确结论的序号都填在横线上)y八24、己知实数m, n满足m - n2=l,则代数式n/+2n2+4ni - 1的最小值等于_____________ •25、如图所示,己知二次函数y二ax'+bx+c的图象经过(-1, 0)和(0, -1)两点,则化简代数式_ 乎 + 4 + + 乎 _ 4 二 _______________ .\26如图,抛物线y二ax'+bx+c与x轴交于点A (・1, 0),顶点坐标为(1, n),与y轴的交点在(0, 2)、(0, 3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③_2④3WnW4中,正确的是_______________27、已知二次函数y二ax'+bx+c的图象如图所示,有以下结论:①a+b+cVO;②a - b+c> 1;③abc>0;④4a - 2b+c<0;其中正确的结论是 ______________28、已知二次函数ypx'+bx+c的图象如图所示,它与x轴的两个交点分别为(-1, 0) , (3, 0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有___________________________ .29、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①bV0;②4a+2b+c<0; (3)a・b+c>0;④(a+c) 2<b2.其中正确的是___________________ (把所有正确结论的序号都填在横线上).30^己知二次函数y二ax'+bx + c的图象如图所示,则下列结论:①c二2;②b2—4ac<0;③当x=l时,y的最小值为a+b+c中,正确的有___________________31、已知二次函数y=ax'+bx+c(a^O)的图像如图所示,(1)给出三个结论:①『-4眈>0;②c>0;③b>0,其中正确结论的序号是: ___________ ・(2)给出三个结论:①9a+3b+c〈0:②2c>3b;③8a+c>0,其中正确结论的序号是:________________32、已知抛物线y=ax2+bx+c(a^0)经过点(一1, 0),且顶点在第一象限.有下•列三个结论:①a<0;②a+b+c>0;③一2a >0.其中止确的结论有______________ .丄33>如图,抛物线yi=a (x+2) 2 - 3与2 (x・3) ?+1交于点A(l, 3),过点A作x轴的平行线, 分别交两条抛物线于点B, C.则以下结论:①无论x取何值,y2的值总是正数;②沪1;③当x=0 时,y2 - yi=4④2AB=3AC.34、如图,抛物线"曲"窈-3与卩飞“耳+1交于点八(],3),过点A作x轴的平行_2线,分别交两条抛物线于点B,C.则以下结论:①无论x収何值,乃的值总是正数;②■亍;③当x二0时,y2-yi二6;④AB+AC二10;⑤刃时乃°,其中正确结论的个数是: ________________ .35>函数y二x'+bx+c与y二x的图象如图所示,有以下结论:①b'-4c>0;②3b+c+6=0;③当lVx< 3时,x2+ (b - 1) x+c<0;④JQ+C? = 3迥.其屮正确的有 _______________ .36、如图抛物线y=ax2+bx+c与只轴的一个交点A在点(-2, 0)和(-1, 0)之间(包括这两个点), 定点C是矩形DEFG上(包括边界和内部)的一个动点,贝9:(1)_____________ abc 0(填或“〉”;(2)___________________________ 8的取值范围是.1、答案为:V >;2、答案为:(1)> (2)< (3)> (4)>;3、答案为:>;4、答案为:四;5、答案为:①③④.6、答案为:①③④;7、答案为:四;8、答案为:<;9、答案为:10、答案为11、答案为12、答案为13、答案为14、答案为15、答案为16、答案为17、答案为18、答案为19、答案为20、答案为21、答案为22、答案为23、答案为24、答案为25、答案为26、答案为27、答案为28、答案为29、答案为30、答案为31、答案为32、答案为33、答案为34、答案为35、答案为①②⑤;①③;②④.①③;①③;①④.①④.①③④⑤.3.①③⑤.①②⑤;②③④.①②④⑤.②③.②、④.2a;①③.①③.©:①③④.①③;①;①③①②③;①④.①②④⑤,②③④;参考答案36、答案为:<。

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a 、b 、c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边;b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式∆=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,∣ 若y > 0,则a + b + c >0;∣ 若y < 时0,则a + b + c < 0当x = -1时,∣ 若y > 0,则a - b + c >0;∣ 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

反之,给我们相应的二次函数图象,我们可以得到其系数a,b,c 以及它们组合成的一些关系结构(例如对称轴−b 2a ; 判别式b 2−4ac ; y =a +b +c ……等等)的符号二、经典例题讲解例1 已知二次函数()02≠++=a c b a χχγ的图像如图,则a 、b 、c 满足( ) A .a < 0,b < 0,c > 0 ;B .a < 0,b < 0,c < 0 ;C . a < 0,b > 0,c > 0 ;D .a > 0,b < 0,c > 0 ;例2(2015呼和浩特)如图,四个二次函数的图像中分别对应的是: ∣2χγa =∣2χγb =∣2χγc =∣2χγd =,则a , b , c , d 的大小关系是 .A .a > b > c > dB .a > b > d > cC .b > a > c > dD .b > a > d > c例3已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ;②abc >0;③2a+b=0;④a+b+c >0;⑤4a-2b+c <0,则正确的结论是( )A 、①②③④B 、②④⑤C 、②③④D 、①④⑤y xO x y O ① ② ④ ③练习1. (2015•重庆)已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A 、a >0B 、b <0C 、c <0D 、a+b+c >02.(2015•文山州)已知二次函数y=ax 2+bx+c 的图象如图所示,则a ,b ,c 满足( )A 、a <0,b <0,c >0,b 2- 4ac >0B 、a <0,b <0,c <0,b 2- 4ac >0C 、a <0,b >0,c >0,b 2- 4ac >0D 、a >0,b <0,c >0,b 2- 4ac >03.(2015•泸州)已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论:①abc <0,②b 2- 4ac >0,③a-b+c=0,④a+b+c >0,其中正确结论的个数是( )A 、1B 、2C 、3D 、44.(2015•仙游县二模)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论: ①a+b+c <0; ②a ﹣b+c <0; ③b+2a <0; ④abc >0.\其中所有正确结论的序号是( )A . ③④B . ②③C . ①④D . ①②③y x O5.(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤6.(2015•黔南州)如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0B、x>1时,y随x的增大而增大C、a+b+c>0D、方程ax2+bx+c=0的根是x1=-1,x2=3能力提升1.已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,有下列5个结论:①abc<0;②a-b+c>0;③2a+b=0;④b2- 4ac>0;⑤a+b+c>m(am+b)+c(m>1的实数),其中正确的结论有()A.1个B.2个C.3个D.4个2.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个3.(2015•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2- 4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A、1B、2C、3D、44. 如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标为x1、x2,其中-2<x1<-1,0<x2<1,下列结论:①abc>0;②4a-2b+c<0;③2a-b>0;④b2+8a>4ac,正确的结论是。

二次函数系数abc与图像的关系精选练习题

二次函数系数abc与图像的关系精选练习题

二次函数系数a、b、c与图像的关系知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.42.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.45.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<37.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011?重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>011、(2011?雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤12、(2011?孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c <0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象开口向下,∴a<0;故本选项正确;②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c <0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考点:二次函数图象与系数的关系.分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。

二次函数的图像与系数a、b、c的关系经典习题

二次函数的图像与系数a、b、c的关系经典习题

A B CD yOx yO x yO x yO x yO x 一、二次函数图像与系数a 、b 、c 、关系1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫⎪⎝⎭,在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A 、240b ac ->B 、0a >C 、0c >D 、02ba-< 4、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A 、ab <0 B 、bc <0 C 、a +b +c >0 D 、a -b +c <05、 二次函数c bx ax y ++=2,图象如图所示,则反比例函数xab y =的图象的两个分支分别在第 象限。

6、已知反比例函数xky =的图象如图所示,则二次函数222k x kx y +-=的图象大致为( )7、二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )8、函数y=ax 2+bx +c 和y=ax +b 在同一坐标系中,如图所示,则正确的是( )9、在同一直角坐标系内,二次函数y=ax 2+(a +c )x +c 与一次函数y=ax +c 的大致图象,有且只有一个是正确的,正确的是( )10、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )11、在同一坐标系中,函数y=ax 2+bx 与y=xb的图象大致是图中的( )12、已知a <0,b >0,c >0,那么抛物线y =ax 2+bx +c 的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 13、已知二次函数y =ax 2+bx +c 的图象如图1所示,则a ,b ,c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限15、已知二次函数2y ax bx c =++(其中000a b c >><,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.以上说法正确的个数为( )A .0 B .1 C .2 D .3二、⊿的符号的判定例1、下图中⊿0<的是( )(A ) (B ) (C ) (D ) (图3)练习:不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0;B.a>0, △<0;C.a<0, △<0;D.a<0, △<0 三、含a 、b 的代数式符号的判定例1、抛物线y=x 2+2x-4的对称轴是直线( ).A.x=-2B.x=2C.x=-1D.x=1Oy x Oy x y x O y x O ..C A y xOy–1 3 3O xP1 -1O x =1yxy–1 3 3O xP 1 练习:二次函数)1)(3(2-+-=x x y 的图象的对称轴是直线________________.例2、二次函数2(0)y ax bx c a =++≠的图象如图3所示,则①20a b +>②20a b +<③02ba-<④20a b -<⑤20a b ->中正确的有________________________.(请写出序号即可)图4 图5练习:1、二次函数2(0)y ax bx c a =++≠的图象如图4所示,则下列说法不正确的是( ) A .240b ac ->B .0a >C .0c >D .02ba-< 例1、如图5,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则cb a +-的值为 ( )A. 0 B. -1 C. 1 D. 2练习:已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A )第一或第二象限; (B )第三或第四象限;(C )第一或第四象限; (D )第二或第三象限例2已知二次函数c bx ax y ++=2的图象如图所示,那么下列判断正确的是( )(A)abc >0 (B )ac b 42->0(C)2a+b >0 (D )c b a +-24<0练习:1、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个 B .2个 C .3个 D .4个2、抛物线y=ax 2+bx+c 的图象如图6,OA=OC ,则( )(A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是图4 图5 图6图2y 0 1x-1 图1O xy-11作业:1、若二次函数c bx ax y ++=2中,a <0,b >0,c <0,042>-ac b ,则此二次函数图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )3、二次函数c bx ax y ++=2的图象如图1所示,则下列结论中,正确的个数是( )①0<++c b a ;②0>+-c b a ;③0>abc ;④a b 2= (A )4(B )3(C )2 (D )14、已知二次函数c bx ax y ++=2的图象如图2所示,那么下列判断不正确的是( ) (A)abc >0; (B )ac b 42->0;(C)2a+b >0; (D )c b a +-24<05、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,b a +2,c b a ++这四个式子中, 值为正数的有( )A .4个 B .3个 C .2个 D .1个6、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A .ab <0 B .bc <0 C .a +b +c >0 D .a -b +c <07、(2008年安徽省)如图为二次函数y=ax 2+bx +c 的图象,在下列说法中:① ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ② a +b +c >0 ④当x >1时,y 随x 的增大而增大。

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ;b ;c 与图像的关系一、首先就y=ax 2+bx+ca≠0中的a ;b ;c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大;抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号;说明02<-ab ;则对称轴在y 轴的左边; b 与a 异号;说明−b 2b >0;则对称轴在y 轴的右边;特别的;b = 0;对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点0;cc > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的;c = 0;抛物线过原点.4 a;b;c 共同决定判别式?=b 2−4bb 的符号进而决定图象与x 轴的交点b 2−4bb >0 与x 轴两个交点b 2−4bb =0 与x 轴一个交点b 2−4bb <0 与x 轴没有交点5 几种特殊情况:x=1时;y=a + b + c ;x= -1时;y=a - b + c .当x = 1时;① 若y > 0;则a + b + c >0;② 若y < 时0;则a + b + c < 0当x = -1时;① 若y > 0;则a - b + c >0;② 若y < 0;则a - b + c < 0.扩:x=2; y=4a + 2b + c ;x= -2; y=4a -2b + c ; x=3; y=9a +3 b + c ;x= -3; y=9a -3b + c ..一.选择题共8小题1.已知二次函数y=ax 2+bx+c 的图象大致如图所示;则下列关系式中成立的是A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+ca ≠0的图象如图所示;那么下列不等式成立的是A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+ca ≠0的图象如图所示;有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+ca ≠0的图象如图所示;对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0;其中正确的个数是A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+ca ≠0的图象如图;给出下列四个结论::①a <0;②b >0;③b 2﹣4ac>0;④a+b+c <0;其中结论正确的个数有A .1个B .2个C .3个D .4个6.如图所示;抛物线y=ax 2+bx+c 的顶点为﹣1;3;以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c ﹣b=3;④a+3=c;其中正确的个数A .1B .2C .3D .47.如图是二次函数y=ax 2+bx+c 图象的一部分;图象过点A ﹣3;0;对称轴为直线x=﹣1;下列给出四个结论中;正确结论的个数是 个①c >0;②若点B ﹣;y 1、C ﹣;y 2为函数图象上的两点;则y 1<y 2;③2a ﹣b=0; ④<0;⑤4a ﹣2b+c >0.A .2B .3C .4D .58.二次函数y=ax 2+bx+c 的图象如图所示;以下结论:①abc >0;②4ac <b 2;③2a+b >0;④当x <时;y 随x 的增大而减小;⑤a+b+c >0.其中正确的有A .5个B .4个C .3个D .2个二.填空题共4小题9.如图;抛物线y=ax 2+bx+ca ≠0的对称轴为直线x=1;与x 轴的一个交点坐标为﹣1;0;其部分图象如图所示;下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1;x 2=3;③3a+c >0;④当y >0时;x 的取值范围是﹣1≤x <3;⑤当x <0时;y 随x 增大而增大; 其中结论正确有 .10.一抛物线和抛物线y=﹣2x 2的形状、开口方向完全相同;顶点坐标是﹣1;3;则该抛物线的解析式为 .11.抛物线y=ax 2+12x ﹣19顶点横坐标是3;则a= .12.将二次函数y=x 2+6x+5化为y=ax ﹣h 2+k 的形式为 .三.解答题共7小题13.已知:抛物线y=﹣x 2+bx+c 经过点B ﹣1;0和点C2;3.1求此抛物线的表达式;2如果此抛物线沿y 轴平移一次后过点﹣2;1;试确定这次平移的方向和距离.14.函数y=m+2是关于x 的二次函数;求:1满足条件的m 值;2m 为何值时;抛物线有最低点 求出这个最低点.这时;当x 为何值时;y 随x的增大而增大3m 为何值时;函数有最大值 最大值是多少 这时;当x 为何值时;y 随x 的增大而减小.15.已知二次函数的图象经过0;0﹣1;﹣1;1;9三点.1求这个函数的解析式;2求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是1;﹣4;且经过点0;﹣3;求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.1将y=x2﹣4x+5化成y=a x﹣h2+k的形式;2指出该二次函数图象的对称轴和顶点坐标;3当x取何值时;y随x的增大而增大18.如图;二次函数的图象的顶点坐标为1;;现将等腰直角三角板直角顶点放在原点O;一个锐角顶点A在此二次函数的图象上;而另一个锐角顶点B在第二象限;且点A的坐标为2;1.1求该二次函数的表达式;2判断点B是否在此二次函数的图象上;并说明理由.19.已知二次函数y=ax﹣h2;当x=4时有最大值;且此函数的图象经过点1;﹣3.1求此二次函数的解析式;2当x为何值时;y随x的增大而增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数系数a、b、c与图像的关系知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.一.选择题(共9小题)1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4 2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4 5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3 7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>011、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤12、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案一.选择题(共9小题)1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a >0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0 ∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专数形结合.题:分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象开口向下,∴a<0;故本选项正确;②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac >0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c <0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解解:∵函数y=x2+bx+c与x轴无交点,答:∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c<0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考二次函数图象与系数的关系.点:分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m 的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b 2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n ≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a >0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。

相关文档
最新文档