北斗卫星系统(BDS)差分定位性能研究

合集下载

北斗卫星导航系统(BDS)定位原理及其应用

北斗卫星导航系统(BDS)定位原理及其应用

覆盖范围
北斗一号
北斗二号
2007年4月14日,我国发射了第一颗北斗二号卫星,这颗 卫星采用与GPS相似的体制,即“无源定位”服务,也叫 RNSS(Radio Navigation Satellite Service)卫星无线电导 航服务,理论上,采用该种体制的卫星导航系统,用户数 量是无限制的。
第五步,中心站将计算出来的坐标数据经过卫星发送往用户机,用 户机再经过卫星向中心站发送一个回执,结束一次定位作业。
定位原理
北斗一号
“双星定位”:以2颗
在轨卫星的已知坐标为圆心 ,各以测定的卫星至用户终 端的距离为半径,形成2个 球面,用户终端将位于这2 个球面交线的圆弧上。
地面中心站配有电子高程地 图,提供一个以地心为球心 、以球心至地球表面高度为 半径的非均匀球面。用数学 方法求解圆弧与地球表面的 交点即可获得用户的位置。
第三步,中心站在接收到经卫星中转的应答信号后,根据信号的时 间延迟,计算出测距信号经过中心站——卫星——用户机——卫星—— 中心站的传递时间,并由此得出中心站——卫星——用户机的距离,由 于中心站——卫星的距离已知,由此可得用户机与卫星的距离;
第四步,根据用上述方法得到的用户机与两颗卫星的距离数据,在 中心站储存的数字地图上进行搜索,寻找符合距离条件的点,该点坐标 即是所求的坐标;
北斗一号 4星
北斗二号 23星
中地球轨道(Medium Earth Orbit,MEO)卫星、
地球同步轨道(Geostationay Orbit,GEO)卫星
倾斜地球同步轨道(Inclind Geosynchronous Orbit, IGSO)卫星
GEO和IGSO卫星在亚太地区 可视时间长,能有效增加 观测卫星数

北斗三号空间信号测距误差评估与对比分析

北斗三号空间信号测距误差评估与对比分析

摘要:北斗三号作为我国自主建设的全球卫星导航系统,其本身性能水平以及与其他卫星导航系统的性能对比情况,对后续推广应用具有重要影响。

为此,本文以空间信号测距误差(signal-in-space range error,SISRE)作为系统关键性能指标,以GFZ提供的多系统精密轨道钟差作为标准,给出了卫星轨道、卫星钟差、SISRE的比对评估方法,并以2020年1—3月共3个月的实测数据,验证了北斗三号相对北斗二号的精度改进情况,并重点分析了北斗三号与GPS、Galileo、GLONASS之间的性能对比关系。

结果表明:无论是卫星轨道还是卫星钟差,北斗三号的精度水平相对北斗二号都有了明显提高;北斗三号卫星轨道在R、T、N方向精度分别达到0.07、0.30、0.26 m,在4个全球系统中处于最优水平;卫星钟差精度达到1.83 ns,基本与GPS系统持平,优于GLONASS,但还略差于Galileo;在空间信号测距误差方面,如果仅考虑轨道误差,北斗三号SISRE(orb)平均达到0.08 m,紧随其后,Galileo达到0.26 m,GPS达到0.57 m,GLONASS达到0.98 m。

如果综合考虑轨道和钟差误差,北斗三号SISRE 平均达到0.50 m,稍逊于Galileo的0.38 m,略优于GPS的0.58 m,明显好于GLONASS的2.35 m。

关键词:北斗三号广播星历空间信号测距误差卫星钟差精度评估Evaluation and comparative analysis of BDS-3 signal-in-space range errorAbstract: BDS-3 is a global satellite navigation system independently built by China. Its performance level and performance comparison with other satellite navigation systems have an important impact on the follow-up promotion and application. In this paper, the signal in space range error (SISRE) is used as a key performance index of the system. Taking the multi-system precise orbit and clock offsetprovided by GFZ as the standard, the comparison and evaluation method of satellite orbit, satellite clock offset and SISRE is given. Based on the measured data of three months from January to March 2020, the accuracy improvement of BDS-3 relative to BDS-2 is verified, and the performance comparison between BDS-3, GPS, Galileo and GLONASS is analyzed emphatically. The results show that the accuracy level of BDS-3 is significantly higher than that of BDS-2 both in satellite orbit and in satellite clock offset. The orbit accuracy of BDS-3 in the R, T and N direction is 0.07 m, 0.30 m and 0.26 m respectively, which is at the optimal level among the four global systems. The satellite clock offset accuracy is 1.83 ns, which is basically the same as that of GPS, superior to GLONASS, but slightly worse than Galileo. In terms of the signal in space range error, if only orbit error is considered, BDS-3 SISRE(orb) is averagely 0.08 m. Next, Galileo SISRE(orb) is 0.26 m, GPS SISRE(orb) is 0.57 m, and GLONASS SISRE(orb) is 0.98 m. If the orbit and clock error are considered comprehensively, the average SISRE of BDS-3 is 0.50 m, which is slightly lower than 0.38 m of Galileo, better than 0.58 m of GPS, and significantly better than 2.35 m of GLONASS.Key words: BDS-3broadcast ephemeris signal-in-space range error satellite clockoffset accuracy evaluation北斗卫星导航系统(BeiDou navigation satellite system, BDS)按照“三步走”战略稳步推进[1-2]。

基于北斗卫星导航系统的RTK 在城市测量中的优势

基于北斗卫星导航系统的RTK 在城市测量中的优势

基于北斗卫星导航系统的RTK 在城市测量中的优势北斗卫星导航系统(BDS)作为我国自主研发并建设的全球卫星导航系统,具有完全自主知识产权和完全自主控制权,已经成为我国重要的国家战略和基础设施。

在城市测量中,基于北斗卫星导航系统的实时动态差分定位技术(RTK)可以大大提高测量精度,具有以下优势:1. 高精度定位技术RTK技术是实时动态差分定位技术的缩写,其核心思想是通过测量移动接收器和一组基准站的距离差异,来计算出接收器的精确位置。

而北斗卫星导航系统具有高精度的定位技术,可以提供更加准确的定位服务。

在城市测量中,由于城市环境复杂,信号容易被阻挡或者反射,导致传统定位技术的精度大打折扣。

而基于北斗卫星导航系统的RTK技术可以通过多基准站建立起基线,有效地解决城市环境下信号多次反射、噪声干扰等问题,提高定位精度。

2. 强大的鲁棒性由于城市环境复杂,传统的测量技术经常面临信号干扰、误差累积等问题,从而导致定位精度下降。

而基于北斗卫星导航系统的RTK技术具有强大的鲁棒性,能够克服这些问题。

基于北斗卫星导航系统的RTK技术可以通过多星定位、动态差分等技术,减小误差的影响,大幅提高定位精度和鲁棒性,在城市测量中表现出色。

3. 高效的数据处理能力基于北斗卫星导航系统的RTK技术能够提供高效的数据处理能力。

在城市测量中,要处理的数据量往往十分庞大,需要进行实时计算,这对数据处理能力提出了很高的要求。

而基于北斗卫星导航系统的RTK技术可以通过高效的算法和优化的数据处理流程,快速处理大量的数据,并实现高精度、实时的定位服务。

4. 广泛的应用场景基于北斗卫星导航系统的RTK技术可以广泛应用于城市测量领域,包括城市规划、建筑物测量、道路测量、隧道测量等。

在城市规划中,基于北斗卫星导航系统的RTK技术可以实现地形测量、建筑物立面测量、道路测量等工作。

在建筑物测量中,基于北斗卫星导航系统的RTK技术可以实现大型建筑物的立面测量、悬挑物的测量、建筑物维修和施工等工作。

开题报告书 北斗卫星导航系统(BDS)数据质量分析及定位精度评价

开题报告书 北斗卫星导航系统(BDS)数据质量分析及定位精度评价
**大学生姓名
学科、专业
研究方向
指导教师
姓名、职称
培养学院
开题报告时间
**大学研究生院制表
重点针对重点针对重点针对现阶段基本星座下现阶段基本星座下现阶段基本星座下33颗地球同步轨道卫星颗地球同步轨道卫星颗地球同步轨道卫星geogeogeo33颗倾斜地球同步轨道卫星颗倾斜地球同步轨道卫星颗倾斜地球同步轨道卫星igsoigsoigso的北斗的北斗的北斗卫星导航系统服务性能进行了仿真分析对比了北斗卫星导航系统卫星导航系统服务性能进行了仿真分析对比了北斗卫星导航系统卫星导航系统服务性能进行了仿真分析对比了北斗卫星导航系统compasscompasscompass与与与gpsgpsgps兼容兼容兼容后在中国地区测量精度的变化后在中国地区测量精度的变化后在中国地区测量精度的变化20112011分析了北斗卫星导航系统分析了北斗卫星导航系统分析了北斗卫星导航系统的组成结构在仿真的组成结构在仿真的组成结构在仿真compasscompasscompass系统星座结构的基础上分析该系统在中国大陆区域内卫星系统星座结构的基础上分析该系统在中国大陆区域内卫星系统星座结构的基础上分析该系统在中国大陆区域内卫星的可见性的可见性的可见性pdoppdoppdop值和定位精度

基于北斗导航定位系统的伪卫星技术研究

基于北斗导航定位系统的伪卫星技术研究

基于北斗导航定位系统的伪卫星技术研究一、本文概述随着科技的飞速发展,全球定位系统(Global Positioning System,GPS)在军事、民用等多个领域发挥了巨大作用。

依赖单一系统的风险逐渐显现,特别是在复杂环境和关键领域,如航空、航海等,多系统融合定位技术成为了研究的热点。

北斗导航定位系统(Beidou Navigation Satellite System,BDS)作为我国自主研发的全球卫星导航系统,其独特的优势和广泛的应用前景,使得基于北斗导航定位系统的伪卫星技术研究显得尤为重要。

伪卫星技术,也称为地面增强系统(Ground Augmented System,GAS),通过在地面设置类似于卫星的信号发射装置,可以增强或补充卫星导航信号,提高定位精度和可用性。

本文旨在深入研究基于北斗导航定位系统的伪卫星技术,分析其工作原理、系统架构、关键技术以及应用场景,为我国在全球导航卫星系统领域的技术创新和应用发展提供参考。

本文将首先介绍北斗导航定位系统的基本原理和发展现状,为后续伪卫星技术的研究奠定基础。

随后,详细阐述伪卫星技术的基本概念和关键技术,包括信号生成、传输、接收和处理等方面。

在此基础上,探讨伪卫星技术在不同应用场景下的优势和挑战,以及未来的发展趋势。

对全文进行总结,并指出需要进一步研究的问题和方向。

通过本文的研究,我们期望能够为北斗导航定位系统的伪卫星技术提供更加全面、深入的理论支持和实际应用指导,推动我国在全球导航卫星系统领域的技术进步和应用创新。

二、北斗导航定位系统分析北斗导航定位系统(BDS)是中国自主研发的全球卫星导航系统,旨在为全球用户提供全天候、全天时、高精度的定位、导航和授时服务。

该系统由空间段、地面段和用户段三部分组成,其中空间段包括地球静止轨道卫星、倾斜地球同步轨道卫星和中地球轨道卫星等多种类型的卫星,共同构成覆盖全球的卫星网络。

在技术特点上,北斗导航定位系统采用了三频信号、星间链路、区域短报文通信等独特设计,提高了系统的可用性和精度。

北斗高精度定位系统设计及其差分定位精度分析

北斗高精度定位系统设计及其差分定位精度分析

2020.02科学技术创新许多物料厂普遍存在物料成堆存放,货车进出料场采用刷卡有一定监管过程,铲车向货车堆货缺乏监管,造成货车与铲车司机串通对物料厂造成巨大损失,物料厂24小时作业,采用人工监管手段需耗费大量人力,采用定位方式识别记录铲车的位移,可以把控物料的管理。

技术的关键是定位方式,目前市面上通用定位技术有卫星定位,WiFi 定位等,卫星定位应用最普遍,GPS 对民用领域限制,精度仅达到10m 左右,北斗定位系统可达到2.5m 的精度,配合地面基站增强定位,选用北斗可以很好的监测铲车轨迹。

1卫星定位导航原理卫星定位采用无线电测距方式,光速量级很大需要测得时延精确,卫星原子钟误差可达到每2000万光年1秒,但原子钟价格昂贵,一般用户采用石英晶振,但误差比原子钟大1万倍。

定位要指导用户经纬度与时钟,每颗卫星可测一次距离,需同时收到四颗卫星发射信号。

卫星原子钟每日通过地面校准,传播时延收到天气等多种因素影响[1]。

采用单纯卫星定位精度只能到米级,卫星定位收到多种因素影响产生误差,卫星轨道误差的影响对定位精度影响最大。

可采用差分定位技术,在已知精确坐标点建立地面观测基站,通过卫星坐标得到坐标数据,与已知数据插值作修正值发送终端用户,可通过修正值修正自身位置信息,使精度达到亚米级。

铲车轨迹识别系统框架RTK 差分定位技术得到广泛应用,RTK 是实时动态差分测量技术,可以测得观测站指定坐标系中三维定位结果,最早应用于GPS 高精度定位,在北斗高精度定位中得到快速推广。

基准站将测得载波相位值通过广播发送终端用户,采用动态差分算法求得与基准站相对位置,根据坐标值求得用户瞬时坐标位置,可以通过无线电台进行数据的广播。

RTK 技术的优点是误差可达厘米级,具有超高的作业效率,采用RTK 技术可达到全天候测量,其缺点是受电离层影响,卫星状况限制,基站覆盖范围受到无线通信距离影响。

实际工作中要对使用仪器设备有充分的了解,合理规划作业流程。

北斗卫星导航系统定位精度分析

北斗卫星导航系统定位精度分析

北斗卫星导航系统定位精度分析摘要:随着北斗卫星导航系统的应用和普及,定位也将会引入更多的先进技术,比如BP神经网络、深度学习等,分析定位过程中存在的误差及影响因素,进一步降低动态定位误差,提高动态定位性能。

基于此,本文对北斗卫星导航系统定位精度进行了分析。

关键词:北斗;卫星轨道;原子钟;电离层;多路径;差分引言卫星定位在国防建设、森林防火、抗震救灾、海洋渔业、交通、水利等行业发挥了重要作用。

在卫星定位系统中GPS的应用最广,与其相比北斗卫星导航系统在市场占有率与服务体验上还有一定差距。

但作为国家十三五规划重点推进项目,北斗系统的广泛应用,有利于我国摆脱对GPS的过度依赖,消除国家战略安全的潜在威胁。

为了增加科研人员以及普通用户对北斗系统的了解,加快北斗系统的推广,对北斗定位系统定位精度的研究是很有必要的。

1.北斗定位系统的定位精度1.1卫星轨道影响卫星轨道参数作为求解方程中的已知量,是求解位置的基础。

卫星轨道信息是包含在卫星历书内的,历书的精度决定了定位的精度,通过对历书的生成与更新的研究,发现历书的精度与摄动力模型有关。

卫星是绕地飞行物,万有引力是其维持在运行轨道面的力学基础,由于地球质量分布不均匀,或者是其他星体、潮汐等引起的引力变化,以及大气阻力与太阳光压的影响,卫星偏离了原定轨道,从而造成导航电文内包含的历书信息与卫星实际轨道不符。

这些摄动力对卫星轨道偏离的影响,需要建立相应的摄动力模型来预报轨道变化,修正历书减小误差。

北斗定位系统采用了三种轨道面,包括中轨道,倾斜地球同步轨道以及地球同步轨道,需要建立三种摄动力模型用来预测并纠正卫星轨道。

GPS系统只有中轨道卫星,并且摄动力模型已经经过三十多年的完善,北斗卫星观测数据积累不足,且摄动力模型参考GPS模型,摄动力模型与光压模型还不能满足定位精度对摄动力模型的要求,依据北斗系统的三轨道面的摄动力模型仍然是研究的重点。

卫星轨道变动的动力来自于摄动力与发动机,其中摄动力是带来误差的外力。

北斗卫星导航系统精度评估方法研究

北斗卫星导航系统精度评估方法研究

北斗卫星导航系统精度评估方法研究北斗卫星导航系统(简称北斗系统)是中国自主研发的卫星导航系统,它能够在全球范围内提供定位、导航和授时服务。

自北斗系统建设以来,广泛应用于交通、水利、气象、农业、渔业、林业、测绘、地质勘探、电力、通信、金融等领域。

为了保证北斗系统的导航精度,需要对其进行精度评估。

一、北斗系统的导航精度北斗系统的导航精度取决于卫星的几何因素、时钟误差、大气延迟、多径效应等因素。

其中,最主要的因素是卫星的几何因素。

由于卫星的位置不断变化,导致导航精度也不断变化。

因此,北斗系统需要不定期对其进行精度评估和校正,以保证其导航精度。

二、北斗系统的精度评估方法1、与基准站进行实时比对方法这种方法是指通过与已知位置的基准站实时比对卫星信号,从而进行误差估计。

这种方法虽然实时性强,但是需要基准站的配合,且成本较高。

2、单点定位方法单点定位是一种通过卫星的伪距观测值,推导出接收机的三维空间坐标的方法。

该方法适用于无需知晓精确位置的应用场景。

然而,由于单点定位容易受到多种误差因素的影响,精度较低,仅适用于某些精度要求不高的应用场景。

3、差分定位方法差分定位是指通过一个基准站观测卫星信号,并与其他接收机的观测值进行比较,从而估计定位误差。

该方法的优点在于可以通过对比不同基准站的数据,来减少大气误差和钟差误差的影响。

它适用于一些对精度要求较高的应用场景,如航空、导航等领域。

4、测量工程方法测量工程方法是通过在一定范围内,建立测量网络并对接收机进行实地观测的方法。

该方法能够产生较准确的位置信息,但需要较大的场地和昂贵的设备。

三、北斗系统精度评估的应用实例北斗系统的精度评估可以通过一系列的实验来进行。

例如,可以通过安装北斗芯片的移动设备,在不同场景下比对和验证其位置信息的准确度。

同时,数字化地图的建立也可以借助北斗系统进行,通过对比实测结果和地图信息的差异,评估北斗系统的导航精度。

此外,还可以在农业、气象等领域使用北斗系统进行应用实例测试,例如,在农业领域,可以通过北斗系统的精度评估,提高精准农业、土地评估等方面的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北斗卫星系统(BDS)差分定位性能研究近几年随着全球卫星导航系统(GPS(美国)、GLONASS(俄罗斯)、Galileo(欧洲)、北斗卫星导航系统(BDS中国)及区域增强系统,例如QZSS(日本)及IRNSS(印度))的不断更新,播发信号质量提高以及全球卫星星座的改善,其定位技术也不断革新,我国着眼于国家安全和经济领域,极其重视北斗卫星导航系统的建设,全力研发具有独立知识产权的卫星导航系统。

同别的卫星星座相比较,北斗卫星导航系统的建设目前正逐步的走向成熟,并计划于2020年实现从亚太地区区域性覆盖到全球覆盖,实现从第二代到第三代北斗系统的过渡。

北斗卫星系统是由同步地球高轨道卫星(GEO)、中圆地球轨道卫星(MEO)和倾斜地球同步轨道卫星(IGSO)组成的混合星座,并且每颗卫星可播发三个频段的信号。

北斗卫星系统在全球卫星导航系统中具有重要地位与独特优势,这使其拥有极高的研究价值,近几年随着国内外对北斗卫星系统研究的加深,其对定位精度的要求也愈来愈高,已经由传统的定位精度较低的单点定位方式逐渐发展到高精度差分定位方式,频段也从仅使用单频定位发展到多频组合定位,定位精度大幅提升,并且在民用化建设层面也在稳步推进中,国产北斗终端产品例如廉价导航定位芯片的市场份额日益增加。

目前国内的研究者对北斗多频差分定位解算中窄巷模糊度与卡尔曼滤波新息向量相结合的相关研究较少,并且在北斗廉价单频导航定位芯片的研究中,对基于网络基站的动态RTK定位性能的研究较少,因此本文在北斗中长基线的差分定位中给出一种将窄巷模糊度和卡尔曼滤波结合的历元挑选策略,并且基于网络基站对北斗廉价单频导航定位模块特别是对其动态RTK定位性能进行评估分析,具体工作内容如下:(1)基于北斗三频的独特优势并使用实测数据,研究其中长基
线下的差分定位性能,首先使用双频几何无关法并结合本文给出的多历元平均修正法进行周跳探测和粗差剔除从而对数据进行预处理,然后使用伪距和相位无几何无电离层组合进行三频多路径误差检测,并使用宽巷模糊度和电离层无关组合进行B3频段窄巷模糊度求解,然后使用本文给出的利用相邻历元B3频段窄巷模糊度组成卡尔曼滤波的新息值并结合滤波发散条件进行历元挑选的策略。

实验结果表明:通过卡尔曼滤波新息向量内积的RMS值可以很方便的查找每个卫星对的窄巷模糊度的收敛情况,并通过该方法进行历元筛选后可有效修正因卡尔曼滤波发散导致的定位结果严重偏离问题,最终得到中长基线差分厘米级的定位精度并有效缩短首次收敛时间及提高Fix率。

(2)针对卫星全球组网及国产北斗终端产业的快速发展,以及立足于2020年北斗交通应用目标,开展了廉价(价格低于10$)单频BDS+GPS双模导航定位模块
的RTK定位能研究,借助于网络CORS基站的实时RTCM数据进行静态、动态差分定位,使用插值法对双差模型中卫星位置坐标以及星站几何距离进行修正,从而
解决了由于基准站和移动站在不同频率实时数据输出条件下所引起的定位不稳
定问题,并借助于不同的实验环境仿真空旷环境以及城市地区树木及建筑物遮挡环境。

实验结果表明:经过插值修正后可以确保两测站不同频率数据输出情况下的定位稳定性,最终得到静态厘米级差分定位精度,以及动态亚米级的RTK定位
精度,并且基于多星座的优势可在遮挡较为严重的环境下保证相对较高的Fix率。

本文的研究工作兼顾事后差分定位以及动态实时RTK定位,涉及价格昂贵接收机与廉价导航定位模块的差分定位,全面的分析了北斗系统差分定位性能,对
即将完善的北斗第三代卫星定位性能研究以及其未来廉价北斗终端的发展有一
定的意义。

相关文档
最新文档