后张法预应力钢绞线伸长量的计算与张拉时常见问题分析及预防和处理措施

合集下载

张拉时常见问题分析及预防和处理措施

张拉时常见问题分析及预防和处理措施

张拉时常见问题分析及预防和处理措施1、钢绞线伸长率超出规范允许偏差范围规范要求张拉时钢绞线理论伸长量与实际伸长量偏差不超过±6%,但实际施工时,往往会出现实测伸长值与理论伸长值的偏差超过规范允许的范围的情况。

出现这种情况的原因有:(1)管道位置引起的偏差。

波纹管安装时,管道定位不准确,或定位卡子数量不足,混凝土振捣时碰触波纹管导致其偏位。

波纹管位置与设计位置偏差时,理论伸长量发生变化,若位置偏差较大,则会引起钢绞线伸长率超标。

(2)钢绞线材质不合格。

钢绞线原材料进场时,必须按批次进行抽样试验,确定其材质是否合格,弹性模量Ep及横截面积与标准值偏差是否符合规范要求。

(3)张拉设备故障或未及时标定。

千斤顶的精度应在使用前校准。

使用超过6个月或200次,以及在使用过程中出现不正常现象时,应重新校准。

任何时候在工地测出的预应力钢绞线伸长值有差异时,千斤顶应进行再校准。

用于测力的千斤顶的压力表应同千斤顶视为一个单元同时校准,并在量程范围内建立精确的标定关系,以确定张拉力与压力表读数之间的曲线方程。

千斤顶、油泵、液压油管接头处漏油时,会导致油表读数与张拉力不对应,无法准确控制钢绞线张拉控制应力,使实测伸长量与设计伸长量偏差较大。

(4)初应力取值过小。

传统张拉程序中,初应力取值为10%的控制应力,即认为在张拉至10%控制应力的时候已经将钢绞线拉紧。

但是在实际施工中,当钢束较长,弯曲部位较多的时候,10%控制应力的张拉力往往不足以将钢绞线拉紧,此时在计算实际伸长量的时候会包含部分松弛长度,从而引起实际伸长量计算值偏大。

因此在张拉时可以选择取20%控制应力作为初始张拉力,进行实际伸长量计算。

(5)锚垫板安装倾斜。

锚垫板安装倾斜时,锚垫板与钢绞线延伸方向不垂直,在张拉时锚垫板偏心受力,引起应力集中,不但容易导致锚垫板周围砼开裂,而且会加大钢绞线与波纹管道的摩阻力,使钢束受力不均匀,实测伸长量偏小。

(6)钢绞线扭曲、缠绕。

后张法预应力钢绞线张拉伸长值的计算

后张法预应力钢绞线张拉伸长值的计算

后张法预应力钢绞线张拉伸长值的计算预应力钢绞线是现代建筑中常用的一种材料,它通过施加张拉力来提供建筑物的强度和稳定性。

在实际的工程中,了解钢绞线的张拉伸长值是非常重要的,可以帮助工程师正确设计和施工建筑物。

钢绞线的张拉伸长值是指在施加一定的加载力后,钢绞线在长度方向上产生的伸长量。

这个伸长量可以用公式来计算:△L=P*L/AE其中,△L是钢绞线的伸长量,P是施加在钢绞线上的加载力,L是钢绞线的原始长度,A是钢绞线的截面积,E是钢绞线的弹性模量。

在计算钢绞线的伸长量时,需要提供一些已知的参数,包括钢绞线的截面积、弹性模量和施加在钢绞线上的加载力。

这些参数可以通过实验室测试和工程设计手册来获得。

在实际的工程中,通常使用预应力法来施加加载力。

预应力法是通过预先施加一定的张拉力来使钢绞线产生预应力,然后再施加混凝土以形成一个整体结构。

这种方法可以提高建筑物的强度和承载能力。

在预应力钢绞线的计算中,首先需要确定所需的预应力量。

这个预应力量可以根据工程设计要求来确定。

例如,在桥梁工程中,根据桥梁的跨度和荷载要求,可以确定所需的预应力量。

然后,根据预应力量和钢绞线的截面积,可以计算出所需的加载力。

在实际的施工中,通常使用专门的张拉设备来施加加载力。

这个设备可以通过应用力学原理将加载力转移到钢绞线上。

施加加载力后,需要测量钢绞线的伸长量,可以使用测量仪器来进行测量。

测量完钢绞线的伸长量后,可以计算出钢绞线的应力值。

计算钢绞线的应力值非常重要,可以用来评估钢绞线的性能并确保工程的安全性。

根据钢绞线的应力值,可以进行进一步的设计和分析,确保建筑物的结构稳定和可靠。

总之,预应力钢绞线的张拉伸长值计算是建筑工程中的一项重要任务。

通过正确计算钢绞线的伸长量和应力值,可以确保建筑物的结构安全和可靠。

在实际的施工中,需要根据工程设计要求和测量设备来进行计算和测量。

这些计算和测量可以帮助工程师正确设计和施工预应力结构。

后张法预应力钢绞线伸长量的计算方法与控制

 后张法预应力钢绞线伸长量的计算方法与控制

后张法预应力钢绞线伸长量的计算方法与控制预应力钢绞线施工时,采用张拉应力和伸长值双控,实际伸长值与理论伸长值误差不得超过6%,后张预应力技术一般用于预制大跨径简支连续梁、简支板结构,各种现浇预应力结构或块体拼装结构。

预应力施工是一项技术性很强的工作,预应力筋张拉是预应力砼结构的关键工序,施工质量关系到桥梁的安全和人身安全,因此必须慎重对待。

一般现行常接触到的预应力钢材主要:有预应力混凝土用钢绞线、PC光面钢丝、刻痕钢丝、冷拔低碳钢丝、精轧螺纹钢等材料。

对于后张法预应力施工时孔道成型方法主要有:金属螺旋管、胶管抽芯、钢管抽芯、充气充水胶管抽芯等方法。

本人接触多的是混凝土预应力钢绞线(PCstrand、1×7公称直径15,24mm,fpk =1860Mpa,270级高强底松弛),成孔方法多采用金属螺旋管成孔,本文就以此两项先决条件进行论述。

1 施工准备:1.1 熟悉图纸:拿到施工图纸应先查阅施工说明中关于预应力钢绞线的规格,一般预应力钢束采用ASTMA416-270级低松弛钢绞线,其标准强度为fpk=1860Mpa,1×7公称直径15,24mm,锚下控制力为Δk=0.75 fpk Mpa。

1.2 根据施工方法确定计算参数:预应力管道成孔方法采用金属螺旋管成孔,查下表确定K、μ取值:表1表1注:摘自《公路桥涵施工技术规范》(JTJ 041-2000)附录G-8根据钢绞线试验结果取得钢绞线实际弹性模量Ep(一般为1.9~2.04×105Mpa)1.3 材料检测:金属螺旋管根据《公路桥涵施工技术规范》(JTJ 041-2000)附录G-7之要求检测;锚具根据《公路桥梁预应力钢绞线用YM锚具、连接器规格系列》(JT/T 329.1-1997)及《公路桥梁预应力钢绞线用锚具、连接器试验方法及检验规则》(JT/T 329.2-1997)之要求检测;钢绞线根据《预应力混凝土用钢绞线》GB/T5224-2003之要求检测2 理论伸长量计算:后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。

张拉时常见问题分析及预防和处理措施

张拉时常见问题分析及预防和处理措施

张拉时常见问题分析及预防和处理措施1、钢绞线伸长率超出规范允许偏差范围规范要求张拉时钢绞线理论伸长量与实际伸长量偏差不超过±6%,但实际施工时,往往会出现实测伸长值与理论伸长值的偏差超过规范允许的范围的情况。

出现这种情况的原因有:(1)管道位置引起的偏差。

波纹管安装时,管道定位不准确,或定位卡子数量不足,混凝土振捣时碰触波纹管导致其偏位。

波纹管位置与设计位置偏差时,理论伸长量发生变化,若位置偏差较大,则会引起钢绞线伸长率超标。

(2)钢绞线材质不合格。

钢绞线原材料进场时,必须按批次进行抽样试验,确定其材质是否合格,弹性模量Ep及横截面积与标准值偏差是否符合规范要求。

(3)张拉设备故障或未及时标定。

千斤顶的精度应在使用前校准。

使用超过6个月或200次,以及在使用过程中出现不正常现象时,应重新校准。

任何时候在工地测出的预应力钢绞线伸长值有差异时,千斤顶应进行再校准。

用于测力的千斤顶的压力表应同千斤顶视为一个单元同时校准,并在量程范围内建立精确的标定关系,以确定张拉力与压力表读数之间的曲线方程。

千斤顶、油泵、液压油管接头处漏油时,会导致油表读数与张拉力不对应,无法准确控制钢绞线张拉控制应力,使实测伸长量与设计伸长量偏差较大。

(4)初应力取值过小。

传统张拉程序中,初应力取值为10%的控制应力,即认为在张拉至10%控制应力的时候已经将钢绞线拉紧。

但是在实际施工中,当钢束较长,弯曲部位较多的时候,10%控制应力的张拉力往往不足以将钢绞线拉紧,此时在计算实际伸长量的时候会包含部分松弛长度,从而引起实际伸长量计算值偏大。

因此在张拉时可以选择取20%控制应力作为初始张拉力,进行实际伸长量计算。

(5)锚垫板安装倾斜。

锚垫板安装倾斜时,锚垫板与钢绞线延伸方向不垂直,在张拉时锚垫板偏心受力,引起应力集中,不但容易导致锚垫板周围砼开裂,而且会加大钢绞线与波纹管道的摩阻力,使钢束受力不均匀,实测伸长量偏小。

(6)钢绞线扭曲、缠绕。

后张法预应力钢绞线伸长量的计算与张拉时常见问题分析及预防和处理措施

后张法预应力钢绞线伸长量的计算与张拉时常见问题分析及预防和处理措施

后张法预应力钢绞线伸长量的计算张拉时常见问题分析及预防和处理措施一、后张法预应力钢绞线伸长量的计算和传统的张拉程序1、钢绞线理论伸长量计算钢绞线理论伸长值直线段采用公式:△ L=PO X L/(Ay X Eg)式中:△ L: 钢绞线直线段理论伸长值(mm);PO:计算截面处钢绞线张拉力(N);L:预应力钢绞线长度(mm);Ay:预应力钢材截面面积(mm2);Eg:预应力钢材弹性模量(N/mm2).钢绞线理论伸长值曲线段采用公式:△ L = P X L/(Ay X Eg)式中:△ L:钢绞线曲线段理论伸长值(mm);P:预应力钢材平均张拉力(N);其余符号同直线段.关于PO,P 的计算:PO = P[1-(1-e- (kx+u 9))]P = P[1-e- (kx+u 9 )]/(kx+u 9):P:张拉端钢绞线张拉力X:从张拉端至计算截面的孔道长度(m);9 :从张拉端至计算截面曲线孔道部分切线的切角之和(rad);K:孔道每m 局部偏差对摩擦的影响系数;U:预应力钢材与孔道壁的摩擦系数;式中,Ay专冈绞线根数X单根钢绞线横截面积,单根钢绞线横截面积取实验值, 一般为140ml2。

K规范取值为0.015 , U规范取值为0.225。

2、传统张拉程序和实测伸长量计算后张法预应力钢绞线张拉采用分级张拉,传统张拉方式为:0—0.1 6 k —0.2 6 k —1.05 6 k (要求超张拉时)—6k持荷5分钟—回油6 k为控制应力。

实测伸长量计算:L0=(l3- l2)+2*(l2- l1)13:张拉至6 k时活塞伸出量;I 2:张拉至0.2 6 k时活塞伸出量;I 1:张拉至0.1 6 k时活塞伸出量。

二、张拉时常见问题分析及预防和处理措施1、钢绞线伸长率超出规范允许偏差范围规范要求张拉时钢绞线理论伸长量与实际伸长量偏差不超过±6%,但实际施工时,往往会出现实测伸长值与理论伸长值的偏差超过规范允许的范围的情况。

预应力空心板张拉常见问题及处理措施分析

预应力空心板张拉常见问题及处理措施分析

预应力空心板张拉常见问题及处理措施分析在后张法预应力空心板施工过程中,张拉工序至关重要,它决定着空心板的质量,决定着空心板能否最终浇筑合格并能使用,同时张拉工序又是一道特别危险的工序,如果出现不同的环节出现问题,则后果不堪设想。

下面我们就预应力混凝土空心板张拉过程中出问题及解救措施共同来探讨一下。

标签:后张法预应力,空心板,张拉过程,故障,解救措施一、以后张法空心梁板在张拉过程中.梁端也有出现类似先张法的纵向裂缝,甚至有的在张拉时发生梁端底板混凝土压裂破碎等现象。

分析原因:1、设计上对张拉时梁端混凝土局部应力集中考虑不周;2、张拉时,张拉顺序不当,张拉速度过快;3、梁体混凝土质量低劣、或张拉时间过早,以及锚垫板附近的混凝土不密实,导致梁端混凝土在张拉后出现碎裂。

解决措施1、预应力筋张拉顺序应符合设计要求,当设计未规定时,宜采取分次、逐级对称张拉。

张拉时.均匀加载,不宜过快,以尽可能减小张拉过程出现局部应力集中。

2、严格梁(板)混凝土浇筑时的施工控制,确保梁(板)混凝土浇筑质量,特别要加强对锚垫板后的混凝土振捣。

3、张拉前,应对梁体进行检验,是否符合质量标准要求;张拉时,混凝土强度应达到设计要求二、张拉过程中锚环突然抖动或移动,张拉力下降。

有时会发生锚杯与锚垫板不紧贴的现象。

分析原因:锚垫板安装时没有仔细对中,垫板面与预应力索轴线不垂直。

造成钢绞线或钢丝束内力不一,当张拉力增加到一定程度时,力线调整,会使锚环突然发生滑移或抖动,拉力下降。

预防措施1、锚垫板安装应仔细对中,垫板面应与预应力索的力线垂直。

2、锚垫板要可靠固定,确保在混凝土浇筑过程中不会移动。

处理方法另外加工一块楔形钢垫板,楔形垫板的坡度应能使其板面与预应索的力线垂直。

三、钢绞线断丝、滑丝原因分析1、锚夹片硬度指标不合格,硬度过低,夹不住钢绞线或钢丝;硬度过高则夹伤钢绞线或钢丝,有时因锚夹片齿形和夹角不合理也可引起滑丝或断丝。

2、钢绞线或钢丝的质量不稳定,硬度指标起伏较大,或外径公差超限,与夹片规格不相匹配。

混凝土桥梁后张法预应力施工中张拉伸长量偏差过大问题探讨

混凝土桥梁后张法预应力施工中张拉伸长量偏差过大问题探讨

混凝土桥梁后张法预应力施工中张拉伸长量偏差过大问题探讨本文主要分析了混凝土桥梁后张法预应力施工中张拉伸长量偏差过大的问题,针对问题,分析了如何去控制混凝土桥梁后张法预应力施工时候的张拉伸长量,以期能够有效提高张拉伸的准确性。

标签:混凝土桥梁;后张法预应力;张拉伸长量;偏差一、前言在混凝土桥梁施工中,后张法预应力施工必须要注意张拉伸的问题,其中,避免张拉伸长量偏差过大,必须要认识到偏差存在的原因,并落实到实践中,采取措施来控制偏差。

二、后张施工桥梁后张预应力混凝土施工一直沿用油泵通过油管驱动千斤顶,千斤顶通过锚具及钢绞线对混凝土施加预应力的方法。

施工时,千斤顶与工作锚接触之间设有一块限制工作锚夹片张拉过程位移的限位板,在千斤顶后设置有工具锚。

钢绞线在张拉前锁紧工具锚夹片,千斤顶供油后油缸伸长拉伸钢绞线,钢绞线在张拉时工作锚夹片跟随钢绞线的拉伸,向后移动至限位板凹槽的底部,对钢绞线失去约束。

当千斤顶将钢绞线张拉至设计控制张拉力,在回油放松钢绞线的瞬时,钢绞线弹性收缩,工作锚夹片跟随收缩向锚环孔内位移,随即将钢绞线锚固。

三、张拉伸长量控制内容及影响因素1、预应力理论伸长量计算现场进行预应力施工前应当对理论伸长量进行检算。

由于设计图纸中计算理论伸长量各个参数取值是按照规范范围内取值,实际施工中这些参数与设计图纸理论计算取值可能不一致,两者会有一定的偏差,而现场预应力施工当中实际伸长量校核标准应当为实际施工中参数计算的理论伸长量。

理论伸长量及平均张拉力计算:式中:ΔL—预应力理论伸长值,cm;Pp—预应力筋的平均张拉力,N;L—从张拉端至计算截面孔道长度,cm;由于预应力后张法实际张拉长度包括2个张拉用液压千斤顶长度(两端张拉),故检算中应依据现场实际张拉情况增加张拉长度。

Ap—预应力筋截面面积,mm2;Ep—预应力的弹性模量,Mpa;钢绞线弹性模量允许偏差为195±10Gpa,伸长量验算应以试验检测出的实际弹模为准。

张拉时常见问题分析及预防和处理措施培训讲学

张拉时常见问题分析及预防和处理措施培训讲学

张拉时常见问题分析及预防和处理措施张拉时常见问题分析及预防和处理措施1、钢绞线伸长率超出规范允许偏差范围规范要求张拉时钢绞线理论伸长量与实际伸长量偏差不超过±6%,但实际施工时,往往会出现实测伸长值与理论伸长值的偏差超过规范允许的范围的情况。

出现这种情况的原因有:(1)管道位置引起的偏差。

波纹管安装时,管道定位不准确,或定位卡子数量不足,混凝土振捣时碰触波纹管导致其偏位。

波纹管位置与设计位置偏差时,理论伸长量发生变化,若位置偏差较大,则会引起钢绞线伸长率超标。

(2)钢绞线材质不合格。

钢绞线原材料进场时,必须按批次进行抽样试验,确定其材质是否合格,弹性模量Ep及横截面积与标准值偏差是否符合规范要求。

(3)张拉设备故障或未及时标定。

千斤顶的精度应在使用前校准。

使用超过6个月或200次,以及在使用过程中出现不正常现象时,应重新校准。

任何时候在工地测出的预应力钢绞线伸长值有差异时,千斤顶应进行再校准。

用于测力的千斤顶的压力表应同千斤顶视为一个单元同时校准,并在量程范围内建立精确的标定关系,以确定张拉力与压力表读数之间的曲线方程。

千斤顶、油泵、液压油管接头处漏油时,会导致油表读数与张拉力不对应,无法准确控制钢绞线张拉控制应力,使实测伸长量与设计伸长量偏差较大。

(4)初应力取值过小。

传统张拉程序中,初应力取值为10%的控制应力,即认为在张拉至10%控制应力的时候已经将钢绞线拉紧。

但是在实际施工中,当钢束较长,弯曲部位较多的时候,10%控制应力的张拉力往往不足以将钢绞线拉紧,此时在计算实际伸长量的时候会包含部分松弛长度,从而引起实际伸长量计算值偏大。

因此在张拉时可以选择取20%控制应力作为初始张拉力,进行实际伸长量计算。

(5)锚垫板安装倾斜。

锚垫板安装倾斜时,锚垫板与钢绞线延伸方向不垂直,在张拉时锚垫板偏心受力,引起应力集中,不但容易导致锚垫板周围砼开裂,而且会加大钢绞线与波纹管道的摩阻力,使钢束受力不均匀,实测伸长量偏小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

后张法预应力钢绞线伸长量的计算与张拉时常见问题分析及预防和处理措施文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-后张法预应力钢绞线伸长量的计算张拉时常见问题分析及预防和处理措施一、后张法预应力钢绞线伸长量的计算和传统的张拉程序1、钢绞线理论伸长量计算钢绞线理论伸长值直线段采用公式:△L=P0×L/(Ay×Eg)式中:△L:钢绞线直线段理论伸长值(mm);P0:计算截面处钢绞线张拉力(N);L:预应力钢绞线长度(mm);Ay:预应力钢材截面面积(mm2);Eg:预应力钢材弹性模量(N/mm2).钢绞线理论伸长值曲线段采用公式:△L = P×L/(Ay×Eg)式中:△L:钢绞线曲线段理论伸长值(mm);P:预应力钢材平均张拉力(N);其余符号同直线段.关于P0,P的计算:P0 = P[1-(1-e-(kx+uθ))]P = P[1-e-(kx+uθ)]/(kx+uθ):P:张拉端钢绞线张拉力X:从张拉端至计算截面的孔道长度(m);θ:从张拉端至计算截面曲线孔道部分切线的切角之和(rad);K:孔道每m 局部偏差对摩擦的影响系数;U:预应力钢材与孔道壁的摩擦系数;式中,Ay=钢绞线根数×单根钢绞线横截面积,单根钢绞线横截面积取实验值,一般为140mm 2。

K 规范取值为0.015,U 规范取值为0.225。

2、传统张拉程序和实测伸长量计算后张法预应力钢绞线张拉采用分级张拉,传统张拉方式为:0→0.1бk → 0.2бk→1.05бk(要求超张拉时)→бk 持荷5分钟→回油бk 为控制应力。

实测伸长量计算:L0=(l 3- l 2)+2*(l 2- l 1)l 3:张拉至бk 时活塞伸出量;l 2:张拉至0.2бk 时活塞伸出量;l 1:张拉至0.1бk 时活塞伸出量。

二、张拉时常见问题分析及预防和处理措施1、钢绞线伸长率超出规范允许偏差范围规范要求张拉时钢绞线理论伸长量与实际伸长量偏差不超过±6%,但实际施工时,往往会出现实测伸长值与理论伸长值的偏差超过规范允许的范围的情况。

出现这种情况的原因有:(1)管道位置引起的偏差。

波纹管安装时,管道定位不准确,或定位卡子数量不足,混凝土振捣时碰触波纹管导致其偏位。

波纹管位置与设计位置偏差时,理论伸长量发生变化,若位置偏差较大,则会引起钢绞线伸长率超标。

(2)钢绞线材质不合格。

钢绞线原材料进场时,必须按批次进行抽样试验,确定其材质是否合格,弹性模量Ep及横截面积与标准值偏差是否符合规范要求。

(3)张拉设备故障或未及时标定。

千斤顶的精度应在使用前校准。

使用超过6个月或200次,以及在使用过程中出现不正常现象时,应重新校准。

任何时候在工地测出的预应力钢绞线伸长值有差异时,千斤顶应进行再校准。

用于测力的千斤顶的压力表应同千斤顶视为一个单元同时校准,并在量程范围内建立精确的标定关系,以确定张拉力与压力表读数之间的曲线方程。

千斤顶、油泵、液压油管接头处漏油时,会导致油表读数与张拉力不对应,无法准确控制钢绞线张拉控制应力,使实测伸长量与设计伸长量偏差较大。

(4)初应力取值过小。

传统张拉程序中,初应力取值为10%的控制应力,即认为在张拉至10%控制应力的时候已经将钢绞线拉紧。

但是在实际施工中,当钢束较长,弯曲部位较多的时候,10%控制应力的张拉力往往不足以将钢绞线拉紧,此时在计算实际伸长量的时候会包含部分松弛长度,从而引起实际伸长量计算值偏大。

因此在张拉时可以选择取20%控制应力作为初始张拉力,进行实际伸长量计算。

(5)锚垫板安装倾斜。

锚垫板安装倾斜时,锚垫板与钢绞线延伸方向不垂直,在张拉时锚垫板偏心受力,引起应力集中,不但容易导致锚垫板周围砼开裂,而且会加大钢绞线与波纹管道的摩阻力,使钢束受力不均匀,实测伸长量偏小。

(6)钢绞线扭曲、缠绕。

钢绞线在管道内扭曲,张拉时管道内钢绞线受力不均匀,部分钢绞线松弛未受力或受力未达到控制应力要求,伸长量不足。

(7)波纹管道破裂、漏浆。

在先穿钢绞线后浇筑混凝土施工时,若波纹管道破裂、漏浆,造成钢束与混凝土握裹,都会导致实际摩阻力大于计算的摩阻力,使实测值变小。

(8)锚垫板喇叭口内被混凝土充塞。

锚垫板喇叭口内有混凝土时,会使刚绞线在喇叭口内无法扩张导致锚具安装困难,同时会使钢束伸长方向与锚垫板不同心,张拉时会增大钢绞线与管道间的摩阻力,影响钢绞线的顺利伸长。

2、滑丝(1)夹片丝口磨损或未清理干净。

当夹片丝口出现磨损或丝口上粘有杂物时,夹片与钢绞线无法紧密咬合,易出现滑丝现象。

若工具夹片出现滑丝现象,在张拉过程中则会出现夹片崩出现象;若工作夹片出现滑丝现象,在张拉完毕回油时,会造成钢绞线回缩,预应力损失。

(2)钢绞线粘有油污,夹片与钢绞线无法精密咬合,容易出现滑丝现象。

(3)夹片质量不合格。

夹片进场的时候未经过检验,夹片强度达不到要求,张拉时夹片破裂,会出现滑丝现象。

(4)切割锚头钢绞线时留的长度太短,或未采取降温措施。

封锚时切割钢绞线要保证钢绞线外露长度不小于3cm,及时采取降温措施。

3、断丝当张拉到一定吨位后,发现油压突然回落,加压后又回落,那说明可能发生了断丝现象。

引起断丝的原因有:(1)钢绞线材质不合格。

钢绞线原材料进场时未进行检验,不合格的钢绞线抗拉强度达不到要求时,张拉时容易出现断丝现象。

因此,在钢绞线进场后必须及时进行原材料检验,不合格材料不允许用于施工。

(2)千斤顶未标定或使用时间或次数超过标定要求。

未标定或标定过期的千斤顶在张拉时无法控制张拉应力,会出现张拉应力超过钢绞线极限抗拉强度,出现断丝现象。

在千斤顶进场后,进行第一次张拉前必须委托有相应资质的计量单位进行标定,标定过的张拉设备才可以用于张拉施工。

千斤顶和油表在标定一次后,使用时间超过六个月或使用次数超过200次,以及在使用过程中出现不正常现象时,则必须重新进行标定。

(3)下料、穿束时造成钢绞线损伤。

在钢绞线运输、下料和穿束过程中,有时会造成钢绞线出现豁口、刮伤或烧伤等损伤,影响了钢绞线的受力性能,在张拉过程中就极易出现断丝现象。

钢绞线在施工现场存放和下料时,必须专门有干净清洁的场地。

钢绞线穿束时,在与梁体混凝土有摩擦的地方可以采用滑轮吊着,防止钢绞线与混凝土摩擦造成钢绞线刮伤。

(4)管道内钢绞线绞结。

钢绞线在管道内绞结,张拉时管道内钢绞线受力不均匀,绞结处受力大于钢绞线极限抗拉强度,导致钢绞线被拉断。

防止措施为:在钢绞线穿束时,对钢绞线进行编号,对钢束每隔1m-1.5m 绑扎一道铁丝,铁丝扣应向里,为防止钢绞线扎破波纹管,穿束前在钢绞线前端套上一个带圆头的塑料管,穿束时要顺着劲穿,穿好后每根钢绞线在一个方向上。

(5)张拉数据计算出错。

在进行钢绞线张拉控制应力、张拉力和对应的油表读数计算时,必须小心核对,特别注意钢绞线根数,防止出现错误。

4、张拉槽口处混凝土开裂(1)锚垫板安装倾斜或喇叭口内被混凝土充塞,偏心张拉。

锚垫板偏心受力时,会引起锚垫板与锚具接触位置局部受力过大,超过混凝土极限抗压强度,引起混凝土开裂。

在锚垫板安装时,应采取可靠措施保证锚垫板与模板紧密贴合,同时要保证模板加固到位,防止其在混凝土振捣过程中发生偏移或变形。

在锚垫板喇叭口末端穿波纹管位置处可采用胶带裹住密封,防止混凝土进入喇叭口内部。

(2)锚具安装不到位,未放入锚垫板凹槽内。

锚具未放入锚垫板凹槽内时,锚具与锚垫板平面无法紧密贴合,张拉时锚具处于倾斜状态,锚具与锚垫板接触位置会产生应力集中,易导致锚垫板破裂,混凝土开裂。

在安装锚具时,若人工无法将锚具安装入锚垫板凹槽内,可采用端头顶稍微加压配合安装锚具,端头顶施加的压力不得超过初始张拉应力。

(3)张拉槽口处混凝土未振捣密实,存在空洞。

因锚垫板处钢筋非常密集,并且往往处于振捣棒难以到达的位置,若不采取措施,经常会出现空洞现象。

锚垫板后部混凝土有空洞时,张拉过程中混凝土无法有效分担压力,极易出现混凝土开裂,锚垫板破裂现象。

在混凝土浇筑过程中,可在张拉槽口位置处增开振捣口,对锚垫板后部的混凝土进行专门的振捣,防止出现空洞。

在张拉前,可用小锤敲击锚垫板附近的混凝土,通过敲击的声音判断混凝土内部是否有空洞,若有空洞,则必须提前处理,处理完毕后再进行张拉。

(4)锚下螺旋钢筋未安装,锚下网片筋未安装。

锚下螺旋筋和网片钢筋可以有效的分担锚垫板上的压力,并加强锚垫板周围混凝土抗压强度,防止混凝土开裂,施工时必须按图纸要求进行安装。

(5)混凝土强度未达到张拉强度要求,张拉过早。

梁体混凝土强度必须达到设计强度的95%以上,弹性模量必须达到设计值的100%以上,方可进行预应力的张拉施工。

张拉前,实验室必须对混凝土同养试件进行抗压强度和弹性模量实验,实验合格方可进行预应力张拉施工。

5、张拉时引起的梁体其他部位混凝土开裂(1)跨中底板砼开裂。

张拉时跨中底板混凝土开裂的常见原因是底板预应力管道未设或少设U形防崩钢筋。

因底板预应力管道密集,弯度较大,且波纹管道非常靠近底板底面。

施工时必须加设足够数量的U形防崩钢筋,使钢绞线法向应力由底板上下层钢筋网片和防崩钢筋共同分担,以防止底板混凝土开裂,波纹管道弹出。

(2)横隔墙混凝土开裂。

梁端和跨中横隔墙在边跨和中跨底板预应力束张拉过程中经常容易出现裂缝,裂缝位置往往都是在横隔墙横断面竖向中心线位置。

这主要是由于边跨和中跨底板预应力束较多,张拉时应力集中在横隔墙中心线处,容易造成该处出现裂缝,这也是预应力连续梁的通病。

若裂缝宽度小于规范要求的宽度值,对桥梁整体质量并无影响;若裂缝宽度较大,则需要采取措施进行补强。

在横隔墙内设2-3根横向预应力钢束进行张拉,对此种裂缝的产生有一定效果。

相关文档
最新文档