高一数学等比数列的概念及通项公式

合集下载

高中数学第二章数列2.4等比数列第1课时等比数列的概念与通项公式同步aa高一数学

高中数学第二章数列2.4等比数列第1课时等比数列的概念与通项公式同步aa高一数学

(2)a1=qan-n 1=5642-51=5,故 a1=5. (3)a3=a1·q2,即 8=2q2, 所以 q2=4,所以 q=±2. 当 q=2 时,an=a1qn-1=2·2n-1=2n, 当 q=-2 时,an=a1qn-1=2(-2)n-1=(-1)n-12n, 所以数列{an}的公比为 2 或-2, 对应的通项公式分别为 an=2n 或 an=(-1)n-12n.
所以 a1=q-42q4=12-42124=96. 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7=a1q4·a1q6=a21q10=962·1210=9. 所以 G=±3. 即 a5,a7 的等比中项为±3.
归纳升华 等比中项的三点认识
1.当 a,b 同号时,a,b 的等比中项有两个;当 a, b 异号时,没有等比中项.
2.在一个等比数列中,从第二项起,每一项(有穷数 列的末项除外)都是它的前一项与后一项的等比中项.
3.“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),要特别注意限定的条件,否则是不等价的.可 以用它来判断或证明三个数成等比数列,同时还要注意到 “a,G,b 成等比数列”与“G=± ab”是不等价的.
又 an=1,所以 3212n-1=1, 即 26-n=20,所以 n=6. 法二 因为 a3+a6=q(a2+a5), 所以 q=12. 由 a1q+a1q4=18,知 a1=32. 由 an=a1qn-1=1,知 n=6.
归纳升华 1.在已知 a1 和 q 的前提下,利用公式 an=a1qn-1 可 求出等比数列中任意一项. 2.在通项公式中知道 a1、q、n、an 四个量中的任意 三个,可求得另一个量.
[变式训练] (1)已知-1,x,-4 成等比数列,则 x

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。

2. 培养学生运用等比数列知识解决实际问题的能力。

3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。

二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。

2. 教学难点:等比数列通项公式的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。

2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。

3. 采用小组讨论法,培养学生的合作意识和团队精神。

五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。

2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。

3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。

4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。

5. 课堂练习:布置相关练习题,巩固所学知识。

6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。

7. 课后作业:布置适量作业,巩固所学知识。

六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。

2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。

3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。

七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。

2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。

3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。

八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。

2. 第二课时:推导等比数列的通项公式,讲解应用实例。

等比数列的概念及通项公式

等比数列的概念及通项公式
a4 a7 512 ,且公比 2、等比数列{an}中,a3 a8 124 , 是整数,则 a10 等于( C ) A.256 B.-256 C.512 D.-512
3、已知三个数成等比数列,它们的和为14,它们的 积为64,求这三个数。 2,4,8 或8,4,2
4、正项等比数列{an},公比q=2,且a1a2a3…a18=230, 则a3a6a9…a18=__________ 。 216
例题分析
例:(2006全国卷I)已知{an}为等比数 列,公比q>1,a2+a4=10, a1.a5=16 求等 比 数列 {an}的通项公式


Байду номын сангаас
1、已知数列{an}为等比数列,且an>0,a2a4+ 2a3a5+a4a6=25,那么a3+a5的值等于( A ) A.5 B.10 C.15 D.20
log3 (a1a2 a3 a11 )
3
1
3
2
3
3
3
11
11
log a log 3
11 3 6 11 3
∵a1a11 = a62=9且an>0
∴a6=3
形成性训练
1、在等比数列{an}中,已知a2 = 5,a4 = 10,则公比 q的值为________ 2、 2与8的等比中项为G,则G的值为_______ 3、在等比数列{an}中,an>0, a2a4+2a3a5+a4a6=36, 那么a3+a5=_________ 4、在等比数列中a7=6,a10=9,那么a4=_________.
等比数列中有类似性质吗???
想一想
探究一
在等比数列{an}中,a2.a6=a3.a5是否成立?

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。

2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。

2. 教学难点:等比数列通项公式的推导和运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。

2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。

3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。

4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。

五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。

2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。

3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。

4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。

5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。

6. 课堂练习:布置适量习题,巩固所学知识。

7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。

8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。

9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。

10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。

2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。

高中数学等比数列知识点总结

高中数学等比数列知识点总结

《高中数学等比数列知识点总结》在高中数学的学习中,等比数列是一个重要的知识点。

它不仅在数学学科中有着广泛的应用,还为其他学科的学习提供了重要的数学工具。

本文将对高中数学等比数列的知识点进行全面总结。

一、等比数列的定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做等比数列的公比,通常用字母 q 表示(q≠0)。

例如:数列 2,4,8,16,32……就是一个等比数列,公比 q= 2。

二、等比数列的通项公式等比数列的通项公式为\(a_n = a_1q^{n - 1}\),其中\(a_n\)表示数列的第 n 项,\(a_1\)表示数列的首项,q 表示公比。

1. 推导过程- 设等比数列\(\{ a_{n}\}\)的首项为\(a_1\),公比为 q。

- 则\(a_{2}=a_{1}q\),\(a_{3}=a_{2}q = a_{1}q^{2}\),\(a_{4}=a_{3}q = a_{1}q^{3}\)……- 由此可归纳出等比数列的通项公式\(a_n = a_1q^{n -1}\)。

2. 通项公式的应用- 已知等比数列的首项和公比,可以求出数列的任意一项。

- 已知等比数列的任意两项,可以求出公比和其他项。

三、等比中项如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项。

1. 等比中项的性质- \(G^{2}=ab\)。

- 若\(a\),\(b\)同号,则等比中项有两个,且互为相反数。

2. 应用举例- 已知两个数的积和其中一个数,可以求出另一个数的等比中项。

四、等比数列的前 n 项和公式等比数列的前 n 项和公式为\(S_{n}=\begin{cases}na_{1},(q = 1)\\\frac{a_{1}(1 - q^{n})}{1 - q}=\frac{a_{1}-a_{n}q}{1- q},(q\neq1)\end{cases}\)。

高中数学《等比数列的概念及通项公式》课件

高中数学《等比数列的概念及通项公式》课件

[跟踪训练]
1.已知 a 是 1,2 的等差中项,b 是-1,-16 的等比中项,
则 ab=
()
A.6
B.-6
C.±6
D.±12
解析:依题意知,2a=1+2,b2=(-1)×(-16),
∴a=32,b=±4,∴ab=±6. 答案:C
2.已知等比数列{an}的前三项依次为 a-1,a+1,a+4,则 an=________. 解析:由已知可得(a+1)2=(a-1)(a+4),

将④⑤代入②,得 a23=a1+2 a3·a23a+3·aa55.
a1+a3a5 ∴a3= a3+a5 ,即 a3(a3+a5)=a5(a1+a3). 化简,得 a23=a1·a5.又 a1,a3,a5 均不为 0,所以 a1,a3,a5 成等
比数列.
2.已知数列{an}是首项为 2,公差为-1 的等差数列,令 bn =12an,求证数列{bn}是等比数列,并求其通项公式. 解:依题意 an=2+(n-1)×(-1)=3-n, 于是 bn=123-n. 而bbn+n 1=121223- -nn=12-1=2,又 b1=122=14. ∴数列{bn}是以14为首项,2 为公比的等比数列,通项公式 为 bn=2n-3.
求等比数列通项公式的常用方法 (1)根据已知条件,建立关于 a1,q 的方程组,求出 a1,q 后再求 an,这是常规方法; (2)充分利用各项之间的关系,直接求出 q 后,再求 a1,最 后求 an,这种方法带有一定的技巧性,能简化运算.
[跟踪训练] 在等比数列{an}中. (1)a4=2,a7=8,求 an; (2)a2+a5=18,a3+a6=9,an=1,求 n.
又∵an+1=2an+3,
an+1+3 2an+3+3 2an+3

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。

2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。

二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。

2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。

3. 等比数列的求和公式:介绍等比数列前n项和的公式。

三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。

2. 教学难点:等比数列通项公式的推导和证明。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。

2. 运用类比法,让学生理解等比数列与等差数列的异同。

3. 利用多媒体辅助教学,展示等比数列的动态变化过程。

4. 开展小组讨论,培养学生的合作意识和解决问题的能力。

五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。

2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。

3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。

4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。

5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。

6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。

7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。

8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。

2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。

等比数列的概念和计算

等比数列的概念和计算等比数列是数学中重要的概念之一,它在各种实际问题中都有广泛的应用。

在本文中,我们将介绍等比数列的概念、性质和计算方法,帮助读者更好地理解和运用等比数列。

一、等比数列的概念等比数列是指一系列的数按比例递增或递减的数列。

它的特点是每个数都是前一个数与同一个非零常数的乘积。

设首项为a,公比为r,则等比数列的通项公式为:an = ar^(n-1)其中,an表示第n个数,r表示公比。

二、等比数列的性质等比数列有许多有趣的性质,下面我们来介绍几个常见的性质:1. 公比的性质:对于等比数列,如果公比r>1,那么数列是递增的;如果0<r<1,数列是递减的。

当r=-1时,数列交替增减;当r=1时,数列是等差数列。

2. 等比数列的比与比与项的关系:等比数列中,任意两项的比等于它们的比的m次方,即an/am=a^(n-m)。

3. 等比数列的前n项和:等比数列的前n项和公式为Sn=a(1-r^n)/(1-r),其中S表示前n项和。

这个公式可以通过数列的递推关系和等差数列的求和公式推导得出。

三、等比数列的计算方法计算等比数列的各项值是数列问题中的重要环节,下面我们将介绍两种常见的计算方法。

1. 递推法:通过已知项计算下一项。

首先确定首项a和公比r,然后根据递推关系an = an-1 * r计算每一项的值。

这种方法适用于已知首项和公比的情况。

2. 公式法:利用等比数列的通项公式,直接计算任意项的值。

首先确定首项a和公比r,然后根据通项公式计算特定项的值。

这种方法适用于已知首项和公比,但需要计算某一特定项的情况。

四、应用举例等比数列在实际问题中有广泛的应用。

例如,金融领域中的复利计算就涉及到等比数列。

假设你存入一笔本金,每年的利率固定为r,那么n年后的本金总额可以表示为Sn=a(1-r^n)/(1-r)。

通过等比数列的计算,可以帮助我们了解到本金随时间的变化情况。

另外,等比数列还可以应用于计算机科学中的数据结构和算法设计中。

等比数列的通项与求和公式

等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,由于其特殊的规律性质,在各个领域都有广泛的应用。

本文将以等比数列的通项与求和公式为主线,探讨其定义、性质及应用等方面内容。

一、等比数列的定义等比数列是指数列中的每一项与它前一项的比值相等的数列。

通常用字母a表示首项,字母r表示公比,公比r≠0。

二、等比数列的通项公式设等比数列的首项是a,公比是r,第n项是an。

根据等比数列的定义,可得等式:an = ar^(n-1)即等比数列的通项公式为an = a × r^(n-1)。

三、等比数列的求和公式对于等比数列的求和,有两种情况要讨论。

1. 当公比r不等于1时,求和公式为:Sn = a(1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和。

2. 当公比r等于1时,求和公式为:Sn = na这是因为当r=1时,等比数列变为等差数列,其求和公式为Sn =(n/2)(a + an) = na。

四、等比数列的性质1. 等比数列的比值恒定:对于等比数列中的任意两项an和an+1,它们的比值都等于公比r,即an+1 / an = r。

2. 等比数列前n项的和与后n项的和的关系:等比数列的前n项和Sn与后n项和Sn'的关系是Sn' = Sn × r^n。

3. 等比数列的性质与对数函数的关系:等比数列与指数函数和对数函数密切相关,等比数列的通项公式可以看作是指数函数的离散形式,而求和公式则与对数函数有着密切的联系。

五、等比数列的应用等比数列在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 财务分析:某企业每年的盈利额按等比数列递增或递减,通过求和公式可以计算出多年的总盈利额。

2. 投资计算:等比数列可以用来计算复利的本金增长情况,根据投资年限和年复利率,可以计算出多年后的本金总额。

3. 几何形状分析:等比数列可以用来分析几何形状中的边长、面积、体积等相关问题,如等比缩放、等比放大等。

2023年高考数学一轮复习讲义——等比数列

§6.3 等比数列 考试要求 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系. 知识梳理1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1. 3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外).(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(5)若⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1,则等比数列{a n }递增. 若⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1,则等比数列{a n }递减. 常用结论1.若数列{a n },{b n }(项数相同)是等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 也是等比数列. 2.等比数列{a n }的通项公式可以写成a n =cq n ,这里c ≠0,q ≠0.3.等比数列{a n }的前n 项和S n 可以写成S n =Aq n -A (A ≠0,q ≠1,0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.( × )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( × )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a .( × ) (4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × )教材改编题1.已知{a n }是等比数列,a 2=2,a 4=12,则公比q 等于( ) A .-12 B .-2 C .2 D .±12答案 D解析 设等比数列的公比为q ,∵{a n }是等比数列,a 2=2,a 4=12, ∴a 4=a 2q 2,∴q 2=a 4a 2=14, ∴q =±12. 2.在各项均为正数的等比数列{a n }中,a 1a 11+2a 6a 8+a 3a 13=25,则a 6+a 8=______. 答案 5解析 ∵{a n }是等比数列,且a 1a 11+2a 6a 8+a 3a 13=25,∴a 26+2a 6a 8+a 28=(a 6+a 8)2=25.又∵a n >0,∴a 6+a 8=5.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________. 答案 1,3,9或9,3,1解析 设这三个数为a q ,a ,aq , 则⎩⎨⎧ a +a q +aq =13,a ·a q ·aq =27,解得⎩⎪⎨⎪⎧ a =3,q =13或⎩⎪⎨⎪⎧a =3,q =3, ∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n等于( )A .2n -1B .2-21-n C .2-2n -1D .21-n -1 答案 B解析 方法一 设等比数列{a n }的公比为q ,则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12,得a 1=1.所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q=2n -1, 所以S n a n =2n -12n -1=2-21-n . 方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12,①a 4q 2-a 4=24, ② ②①得a 4a 3=q =2.将q =2代入①,解得a 3=4.所以a 1=a 3q 2=1,下同方法一. (2)(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.答案 1213解析 设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.教师备选1.已知数列{a n }为等比数列,a 2=6,6a 1+a 3=30,则a 4=________.答案 54或24解析 由⎩⎪⎨⎪⎧ a 1·q =6,6a 1+a 1·q 2=30,解得⎩⎪⎨⎪⎧ q =3,a 1=2或⎩⎪⎨⎪⎧q =2,a 1=3,a 4=a 1·q 3=2×33=54或a 4=3×23=3×8=24.2.已知数列{a n }为等比数列,其前n 项和为S n ,若a 2a 6=-2a 7,S 3=-6,则a 6等于() A .-2或32 B .-2或64C .2或-32D .2或-64答案 B解析 ∵数列{a n }为等比数列,a 2a 6=-2a 7=a 1a 7,解得a 1=-2,设数列的公比为q ,S 3=-6=-2-2q -2q 2,解得q =-2或q =1,当q =-2时,则a 6=(-2)6=64,当q =1时,则a 6=-2.思维升华 (1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q. 跟踪训练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( )A .2B .3C .4D .5答案 C解析 a 1=2,a m +n =a m a n ,令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,q =2为公比的等比数列,∴a n =2×2n -1=2n .又∵a k +1+a k +2+…+a k +10=215-25,∴2k +1(1-210)1-2=215-25, 即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.①求{a n }的通项公式;②求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.解 ①设{a n }的公比为q (q >1).由题设得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧ q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32(舍去). 所以{a n }的通项公式为a n =2n ,n ∈N *.②由于(-1)n -1a n a n +1=(-1)n -1×2n ×2n +1 =(-1)n -122n +1,故a 1a 2-a 2a 3+…+(-1)n -1a n a n +1=23-25+27-29+…+(-1)n -1·22n +1=23[1-(-22)n ]1-(-22)=85-(-1)n 22n +35. 题型二 等比数列的判定与证明例2 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由;(3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n . 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4.将n =2代入得,a 3=3a 2,所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列,由条件可得a n +1n +1=2a n n,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1. 教师备选已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n +1}为等比数列;(2)若a 1=12,a 2=32,求{a n }的通项公式.(1)证明 a n +2=2a n +1+3a n ,所以a n +2+a n +1=3(a n +1+a n ),因为{a n }中各项均为正数,所以a n +1+a n >0,所以a n +2+a n +1a n +1+a n=3, 所以数列{a n +a n +1}是公比为3的等比数列.(2)解 由题意知a n +a n +1=(a 1+a 2)3n -1=2×3n -1,因为a n +2=2a n +1+3a n ,所以a n +2-3a n +1=-(a n +1-3a n ),a 2=3a 1,所以a 2-3a 1=0,所以a n +1-3a n =0,故a n +1=3a n ,所以4a n =2×3n -1,a n =12×3n -1. 思维升华 等比数列的三种常用判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则{a n }是等比数列. (3)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2 S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧ a 1q 3=9a 1q ,a 1(1-q 3)1-q =13,q >0,解得a 1=1,q =3,∴a n =3n -1,S n =1-3n 1-3=3n -12. (2)假设存在常数λ,使得数列{S n +λ}是等比数列,∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13,∴(λ+4)2=(λ+1)(λ+13),解得λ=12, 此时S n +12=12×3n , 则S n +1+12S n +12=12×3n +112×3n =3, 故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是以32为首项,3为公比的等比数列. 题型三 等比数列的性质例3 (1)若等比数列{a n }中的a 5,a 2 019是方程x 2-4x +3=0的两个根,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2 023等于( )A.2 0243B .1 011 C.2 0232D .1 012答案 C解析 由题意得a 5a 2 019=3,根据等比数列性质知,a 1a 2 023=a 2a 2 022=…=a 1 011a 1 013=a 1 012a 1 012=3,于是a 1 012=123,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2 023=log 3(a 1a 2a 3…a 2 023) 11011232023=l 3·og 3.2⎛⎫= ⎪⎝⎭(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50答案 B解析 数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即4,8,S 9-S 6,S 12-S 9是等比数列,∴S 12=4+8+16+32=60.教师备选1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=__________. 答案 73解析 设等比数列{a n }的公比为q ,易知q ≠-1,由等比数列前n 项和的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,∴S 6-S 3S 3=S 9-S 6S 6-S 3, 又由已知得S 6=3S 3,∴S 9-S 6=4S 3,∴S 9=7S 3,∴S 9S 6=73. 2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案 2解析 由题意,得⎩⎪⎨⎪⎧ S 奇+S 偶=-240,S 奇-S 偶=80, 解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. 思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2022·安康模拟)等比数列{a n }的前n 项和为S n ,若S 10=1,S 30=7,则S 40等于( )A .5B .10C .15D .-20答案 C解析 易知等比数列{a n }的前n 项和S n 满足S 10,S 20-S 10,S 30-S 20,S 40-S 30,…成等比数列.设{a n }的公比为q ,则S 20-S 10S 10=q 10>0,故S 10,S 20-S 10,S 30-S 20,S 40-S 30,…均大于0. 故(S 20-S 10)2=S 10·(S 30-S 20),即(S 20-1)2=1·(7-S 20)⇒S 220-S 20-6=0.因为S 20>0,所以S 20=3.又(S 30-S 20)2=(S 20-S 10)(S 40-S 30),所以(7-3)2=(3-1)(S 40-7),故S 40=15.(2)在等比数列{a n }中,a n >0,a 1+a 2+a 3+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( )A .2B .4C .8D .16 答案 A解析 ∵a 1a 2…a 8=16,∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=2,∴1a 1+1a 2+…+1a 8=⎝⎛⎭⎫1a 1+1a 8+⎝⎛⎭⎫1a 2+1a 7+⎝⎛⎭⎫1a 3+1a 6+⎝⎛⎭⎫1a 4+1a 5 =12(a 1+a 8)+12(a 2+a 7)+12(a 3+a 6)+12(a 4+a 5)=12(a 1+a 2+…+a 8)=2. 课时精练1.(2022·合肥市第六中学模拟)若等比数列{a n }满足a 1+a 2=1,a 4+a 5=8,则a 7等于( )A.643 B .-643C.323 D .-323答案 A解析 设等比数列{a n }的公比为q ,则a 4+a 5a 1+a 2=q 3=8,所以q =2,又a 1+a 2=a 1(1+q )=1,所以a 1=13,所以a 7=a 1×q 6=13×26=643.2.已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( )A .2B .4 C.92 D .6答案 B解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2.又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.3.(2022·开封模拟)等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为() A.13 B .-13 C.19 D .-19答案 B解析 由等比数列前n 项和的性质知,S n =32n -1+r =13×9n +r ,∴r =-13. 4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( )A .6里B .12里C .24里D .48里答案 C解析 由题意可知,该人所走路程形成等比数列{a n },其中q =12, 因为S 6=a 1⎝⎛⎭⎫1-1261-12=378, 解得a 1=192,所以a 4=a 1·q 3=192×18=24. 5.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( )A .数列{a n a n +1}是公比为q 2的等比数列B .数列{a n +a n +1}是公比为q 的等比数列C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列 答案 AD解析 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列; 对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列;对于C ,当q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q, 所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列.6.(多选)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2 答案 ABD解析 由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *),当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n ,可得a n +1=3a n ,即a n +1a n=3(n ≥2), 又a 1=1,则a 2=2S 1=2a 1=2,所以a 2a 1=2, 所以数列{a n }的通项公式为 a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2. 当n ≥2时,S n =a n +12=2·3n -12=3n -1, 又S 1=a 1=1,适合上式,所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n 3n -1=3, 所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.7.(2022·嘉兴联考)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 1=________. 答案 1解析 由于S 3=7,S 6=63知公比q ≠1,又S 6=S 3+q 3S 3,得63=7+7q 3.∴q 3=8,q =2.由S 3=a 1(1-q 3)1-q =a 1(1-8)1-2=7, 得a 1=1.8.已知{a n }是等比数列,且a 3a 5a 7a 9a 11=243,则a 7=________;若公比q =13,则a 4=________. 答案 3 81解析 由{a n }是等比数列,得a 3a 5a 7a 9a 11=a 57=243,故a 7=3,a 4=a 7q 3=81. 9.(2022·徐州模拟)已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n ,n ∈N *.(1)求实数p 的值及数列{a n }的通项公式;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫T n +16为等比数列.(1)解 S n =na 1+n (n -1)2d =na 1+n (n -1) =n 2+(a 1-1)n ,又S n =pn 2+2n ,n ∈N *,所以p =1,a 1-1=2,即a 1=3,所以a n =3+2(n -1)=2n +1.(2)证明 因为b 3=a 1=3,b 4=a 2+4=9,所以q =3,所以b n =b 3·q n -3=3n -2,所以b 1=13, 所以T n =13(1-3n )1-3=3n -16, 所以T n +16=3n 6, 又T 1+16=12,所以T n +16T n -1+16=3n 63n -16=3(n ≥2), 所以数列⎩⎨⎧⎭⎬⎫T n +16是以12为首项,3为公比的等比数列. 10.(2022·威海模拟)记数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +1.设b n =a n +1-2a n .(1)求证:数列{b n }为等比数列;(2)设c n =|b n -100|,T n 为数列{c n }的前n 项和.求T 10.(1)证明 由S n +1=4a n +1,得S n =4a n -1+1(n ≥2,n ∈N *),两式相减得a n +1=4a n -4a n -1(n ≥2),所以a n +1-2a n =2(a n -2a n -1),所以b n b n -1=a n +1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1 =2(n ≥2),又a 1=1,S 2=4a 1+1,故a 2=4,a 2-2a 1=2=b 1≠0,所以数列{b n }为首项与公比均为2的等比数列.(2)解 由(1)可得b n =2·2n -1=2n ,所以c n =|2n -100|=⎩⎪⎨⎪⎧100-2n ,n ≤6,2n -100,n >6, 所以T 10=600-(21+22+…+26)+27+28+29+210-400=200-2(1-26)1-2+27+28+29+210 =200+2+28+29+210=1 994.11.(多选)(2022·滨州模拟)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( )A .数列{a n +1+a n }为等比数列B .数列{a n +1-2a n }为等比数列C .a n =2n +1+(-1)n 3D .S 20=23(410-1) 答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3),所以a n +a n -1=2a n -1+2a n -2=2(a n -1+a n -2),又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确;若a n =2n +1+(-1)n 3,则a 2=23+(-1)23=3, 但a 2=1≠3,C 错误;由A 知{a n +a n -1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4,所以S 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2(1-410)1-4=23(410-1),D 正确. 12.(多选)(2022·黄冈模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( ) A .0<q <1B .a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7 答案 AD解析 ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0, ∴a 7>1,0<a 8<1,∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为各项为正的递减数列,∴S n 无最大值,故C 错误;又a 7>1,0<a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.13.(2022·衡阳八中模拟)设T n 为正项等比数列{a n }(公比q ≠1)前n 项的积,若T 2 015=T 2 021,则log 3a 2 019log 3a 2 021=________. 答案 15解析 由题意得,T 2 015=T 2 021=T 2 015·a 2 016a 2 017a 2 018a 2 019a 2 020a 2 021,所以a 2 016a 2 017a 2 018a 2 019a 2 020a 2 021=1,根据等比数列的性质,可得a 2 016a 2 021=a 2 017a 2 020=a 2 018a 2 019=1,设等比数列的公比为q ,所以a 2 016a 2 021=(a 2 021)2q 5=1⇒a 2 021=52,q a 2 018a 2 019=(a 2 019)2q =1⇒a 2 019=12,q 所以log 3a 2 019log 3a 2 021=123523log 1.5log q q= 14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案 132解析 由题意,得正方形的边长构成以22为首项,22为公比的等比数列,现已知共含有1 023个正方形,则有1+2+…+2n -1=1 023,所以n =10,所以最小正方形的边长为⎝⎛⎭⎫2210=132.15.(多选)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列关于“等差比数列”的判断正确的是( )A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0答案 AD解析 对于A ,k 不可能为0,正确;对于B ,当a n =1时,{a n }为等差数列,但不是“等差比数列”,错误; 对于C ,当等比数列的公比q =1时,a n +1-a n =0,分式无意义,所以{a n }不是“等差比数列”,错误;对于D ,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确.16.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n项和为(2n -1)·3n +12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,∀n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3, 所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =(2n -1)·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=(2n -3)·3n -1+12(n ≥2), 两式相减,得a n b n =2n ·3n -1(n ≥2), 因为a n =2·3n -1,所以b n =n (n ≥2),当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式),所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34. 因为∀n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于通项公式an a1qn1来说,有a1 , q , an , n四个量, 可以知三求一
例2:在等比数列{an}中:
已知 a3 2 , a6 16 , 求an
解: an a1qn1
a6 a3
a1q5 a1q2
16 2
a1 q
1 2
2
an
1 2n1 2
2n2
此题解法是利用数学的函数与方程思想,函数 与方程思想是数学几个重要思想方法之一,也是高 考必考的思想方法,应熟悉并掌握。
注意:
公比q能不能是零?
不能!!
注:(1)等比数列的每一项都不为0,即an≠0。 (2)公比不为0,即q≠0。
名称
等差数列
等比数列
定义
数学式 子表示 通项公式
如果一个数列从第2项 如果一个数列从第2
起,每一项与前一项 项起,每一项与它前
的差等于同一个常数,一项的比都等于同一
那么这个数列叫做等 个 常 数 , 那 么 这 个 数
通项 公式
a3 a2 d
a4 a3 d
……
an an1 d
把这n-1个式子1=a1 上式成立
an a1 (n 1)d , n N*
法2:

n 2 , a2 q a1
……
名称
等差数列
an a1 (n 1)d
法2:累加法
a…n … q
an1
把这n-1个式子相乘,得: an a1qn1
当n=1时,上式成立 an a1qn1 , n N*
例1:在等比数列{an}中:
(1)已知a1 2, q 3, an 162, 求n;
(2)已知a1
3,
q
1 2
,求a5;
(3)已知a9
1 9
,q
1 3
, 求a1;
(4)已知a1 2, a5 8,求q
公式
引申 am a1 (m 1)d
an am (n m)d
可得
an am (n m)d
an=a1qn-1
am=a1qm-1
an qnm am
可得
an amqnm n,m N*
例2:在等比数列{an}中:
已知 a3 2 , a6 16 , 求an
另解 :
Q an amqnm n, m N *
比一比
(1) 1, 2, 22 , 23 ,…… 263
(2)
1 , 1 , 1 , 1 , …… 2 4 8 16
(3) 9,92,93,94,95,96
(4) 36,36×0.9,36×0.92, 36×0.93,…
共同特点? 从第2项起,每一项
与前一项的比都等于同一常数。
等比数列定义
一般地,如果一个数列从第 2 项起,每一项与它
……
由此归纳等差数列的通 项公式可得:
an a1 (n 1)d
等比数列
an a1qn1
法1:不完全归纳法
a2 a1
q a2
a1q
a3 a1q2
a4 a1q3
……
由此归纳等差数列的通 项公式可得:
an a1qn-1
名称
等差数列
等比数列
an a1 (n 1)d
法2:累加法
n 2 , a2 a1 d
n 2 , a2 a1 d
通项 公式
a3 a2 d
a4 a3 d
……
an an1 d
把这n-1个式子相加,得:
an a1 (n 1)d
当n=1时,上式成立
an a1 (n 1)d , n N*
等比数列
an a1qn1
法2: 累乘 法
n 2 , a2 q a1
a3 q a2
a6 a3q63 q3 16
2 q 2 an a3 qn3 2 2n3 2n2
例3 :已知等比数列an, a1
a3
10, a4
a6
5 4
,
求a5 a7的值。
接轨生活 世界杂交水稻之父—袁隆平
从1976年至1999年在我国累计推广种植杂交水稻35亿多亩, 增产稻谷3500亿公斤。年增稻谷可养活6000万人口。 西 方世界称他的杂交稻是“东方魔稻” ,并认为是解决下 个世纪世界性饥饿问题的法宝。
④100001.0198 ,100001.01982 ,100001.01983
100001.01984 ,100001.01985 ,……
请同学们仔细观察一下,看看以上①、②、③、④ 四个数列有什么共同特征?
忆一忆
什么是等差数列?
一般地,如果一个数列从第2项起,每一项与前一 项的差等于同一个常数,那么这个数列叫做等差数列。 这个常数叫做等差数列的公差,用d表示。
(1) 1,2, 4, 16, 64, … 不是 (2) 16, 8, 1, 2, 0,… 不是 (3) 2, -2, 2, -2, 2 是 (4) a, a, a, a, a … 不一定
a0
思考:在等比数列中,各项的符号与公比q有什么 关系?
若q>0,则各项的符号与a1相同; 若q<0,则各项的符号正负相间.
的前一项的 比 等于 同一个,常那数么这个数列就叫
做等比数列。
这个常数叫做等比数列的公比,通常用字母q表示。
其数学表达式 (判断一个数列是否为等比
数列的依据)
an q(n 2) 或 an1
an1 q(n N *) an
an 0
练一练
指出下列数列是不是等比数列,若是,说 明公比;若不是,说出理由.
差数列.这个常数叫做 列 叫 做 等 比 数 列 . 这
等差数列的公差,用d 个常数叫做等比数列
表示
的公比,用q表示
an+1-an=d
an1 q an
an = a1 +(n-1)d
?
名称
等差数列
an a1 (n 1)d
法1:不完全归纳法
通项 公式
a2 a1 d a3 a1 2d a4 a1 3d
名称
等差数列
等比数列
an am (n m)d n,m N*
已知等差数列{an}中,公 差为d,则an与am(n,m ∈ N*) 有何关系?
an amqnm n, m N*
已知等比数列{an}中,公 比为q,则an与am(n,m ∈ N*) 有何关系?
通项 an a1 (n 1)d
讲解新课:
课题导入
课本P48页的4个例子:
(1)细胞分裂问题 ①1,2,4,8,16,…
(2②)“1一,尺之12 棰,,14日,取18其半,,116万,世…不竭”从一第项二与它项前起一,项每
(3)计算机病毒感染问题
③1,20,202,203 ,204 ,…
之比等于同一常 数.
(4)银行复利计算问题
相关文档
最新文档