等比数列的定义及其通项公式

合集下载

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。

等比数列的概念及其通项公式

等比数列的概念及其通项公式


等比数列an





an1 an
q
例1 判断下列数列是否为等比数列:
(1)1,1,1,1,1;
(2)0,1,2,,4,8;
(3)1, 1 , 1 , 1 , 1 2 4 8 16
例2 求出下列等比数列中的未知项:
(1)2, a,8;
(2) 4,b, c, 1 2
练习:课本 P48 1~3
一、新课引入
1、小故事:国际象棋源于古代印度,国王为奖 励发明者,答应他的任何要求,发明者说:“请 在棋盘的第一个格子放1颗麦粒,在第2个格子放 2颗麦粒,在第3个格子放4颗麦粒,在第4个格子 放8颗麦粒,依此类推,每个格子都是前面格子 的2倍,直到64个格子。请给我足够的粮食实现 上述要求。”你认为国王能满足他的要求吗?
印度国王奖赏国际象棋发明者的实例,得 一个数列:
1,2,22 ,23 ,,263
2、镭的半衰期是1620年如果从现在开始有的 10g镭开始,那么每隔1620年,剩余两依次为:
10,10 1 ,10 ( 1 )2 ,10 ( 1 )3 ,10 ( 1 )4 ,.....
2
2
2
2
3、某人年初投资10000元,如果年收益率是
5%,那么按照复利,5年内各年末的本利和依
次为:
100001.05,100001.052, ,100001.055
思考:与等差数列相比,上面的数列有什 么特点?
二、等比数列的定义:
一般地,如果一个数列从第2项起,每一 项与它的前一项的比都等于同一个常数,那么 这个数列就叫做等比数列,这个常数叫做等比 数列的公比,公比通常用字母q表示。
012
n1

等比数列的概念及通项公式

等比数列的概念及通项公式
a4 a7 512 ,且公比 2、等比数列{an}中,a3 a8 124 , 是整数,则 a10 等于( C ) A.256 B.-256 C.512 D.-512
3、已知三个数成等比数列,它们的和为14,它们的 积为64,求这三个数。 2,4,8 或8,4,2
4、正项等比数列{an},公比q=2,且a1a2a3…a18=230, 则a3a6a9…a18=__________ 。 216
例题分析
例:(2006全国卷I)已知{an}为等比数 列,公比q>1,a2+a4=10, a1.a5=16 求等 比 数列 {an}的通项公式


Байду номын сангаас
1、已知数列{an}为等比数列,且an>0,a2a4+ 2a3a5+a4a6=25,那么a3+a5的值等于( A ) A.5 B.10 C.15 D.20
log3 (a1a2 a3 a11 )
3
1
3
2
3
3
3
11
11
log a log 3
11 3 6 11 3
∵a1a11 = a62=9且an>0
∴a6=3
形成性训练
1、在等比数列{an}中,已知a2 = 5,a4 = 10,则公比 q的值为________ 2、 2与8的等比中项为G,则G的值为_______ 3、在等比数列{an}中,an>0, a2a4+2a3a5+a4a6=36, 那么a3+a5=_________ 4、在等比数列中a7=6,a10=9,那么a4=_________.
等比数列中有类似性质吗???
想一想
探究一
在等比数列{an}中,a2.a6=a3.a5是否成立?

等比数列的通项与求和公式

等比数列的通项与求和公式

等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,由于其特殊的规律性质,在各个领域都有广泛的应用。

本文将以等比数列的通项与求和公式为主线,探讨其定义、性质及应用等方面内容。

一、等比数列的定义等比数列是指数列中的每一项与它前一项的比值相等的数列。

通常用字母a表示首项,字母r表示公比,公比r≠0。

二、等比数列的通项公式设等比数列的首项是a,公比是r,第n项是an。

根据等比数列的定义,可得等式:an = ar^(n-1)即等比数列的通项公式为an = a × r^(n-1)。

三、等比数列的求和公式对于等比数列的求和,有两种情况要讨论。

1. 当公比r不等于1时,求和公式为:Sn = a(1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和。

2. 当公比r等于1时,求和公式为:Sn = na这是因为当r=1时,等比数列变为等差数列,其求和公式为Sn =(n/2)(a + an) = na。

四、等比数列的性质1. 等比数列的比值恒定:对于等比数列中的任意两项an和an+1,它们的比值都等于公比r,即an+1 / an = r。

2. 等比数列前n项的和与后n项的和的关系:等比数列的前n项和Sn与后n项和Sn'的关系是Sn' = Sn × r^n。

3. 等比数列的性质与对数函数的关系:等比数列与指数函数和对数函数密切相关,等比数列的通项公式可以看作是指数函数的离散形式,而求和公式则与对数函数有着密切的联系。

五、等比数列的应用等比数列在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 财务分析:某企业每年的盈利额按等比数列递增或递减,通过求和公式可以计算出多年的总盈利额。

2. 投资计算:等比数列可以用来计算复利的本金增长情况,根据投资年限和年复利率,可以计算出多年后的本金总额。

3. 几何形状分析:等比数列可以用来分析几何形状中的边长、面积、体积等相关问题,如等比缩放、等比放大等。

等比数列的通项公式

等比数列的通项公式

等比数列的通项公式等比数列是数学中一个重要的概念,其中每一项与前一项的比值保持不变。

在解决等比数列问题时,掌握通项公式是至关重要的。

本文将详细介绍等比数列的通项公式,并给出相关的例子进行解析。

一、等比数列的定义与性质等比数列是指数列中,每一项与前一项的比值都是固定的常数。

数列的通项公式可以通过等比数列的性质推导出来。

设等比数列的首项为a₁,公比为r,则数列的通项公式可表示为:an = a₁ * r^(n-1)其中,an表示等比数列的第n项。

二、等比数列的通项公式推导接下来,我们通过一个简单的例子来推导等比数列的通项公式。

例1:已知等比数列的首项为2,公比为3,求第10项的值。

解:根据等比数列的定义,我们可以得到:a₁ = 2, r = 3代入通项公式an = a₁ * r^(n-1),则第10项的值为:a₁₀ = 2 * 3^(10-1) = 2 * 3^9通过计算,得到第10项的值为2 * 19683 = 39366。

三、等比数列的应用等比数列的通项公式在实际问题中有广泛的应用。

下面,我们通过一个实例来说明等比数列在日常生活中的应用。

例2:小明每天存钱,第一天存1元,之后每天存的金额是前一天的3倍,求30天内总共存了多少钱。

解:设第n天存的金额为an,根据题意,我们可以得到:a₁ = 1, r = 3代入通项公式an = a₁ * r^(n-1),则第30天存的金额为:a₃₀ = 1 * 3^(30-1) = 1 * 3^29通过计算,得到第30天存的金额为1 * 3^29 = 1 * 594,914,763 = 594,914,763元。

因此,小明在30天内总共存了594,914,763元。

四、等比数列的性质除了通项公式,等比数列还具有以下几个重要的性质:1. 任意项与其后第n项的比值为r^(n-1)。

2. 任意项与其前第n项的比值为r^(1-n)。

3. 任意连续两项的比值为相同的常数r。

4. 等比数列的前n项和公式为Sn = a₁ * (1 - r^n) / (1 - r)。

等比数列数学高中公式有哪些

等比数列数学高中公式有哪些

等比数列数学高中公式有哪些等比数列数学高中公式有哪些等比数列数学高中公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=。

=ak·an-k+1,k∈{1,2,。

,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2。

an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.提高数学成绩的窍门一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

等比数列的性质与公式

等比数列的性质与公式

等比数列的性质与公式数列是数学中常见的一种序列,根据元素之间的规律可以分为等差数列和等比数列等。

在本文中,我们将重点讨论等比数列的性质与公式。

一、等比数列的定义等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。

设等比数列的首项为a₁,公比为r,则数列的通项公式为:aₙ = a₁ * r^(n-1)其中aₙ表示第n项的值。

二、等比数列的性质1. 公比的性质公比为r的等比数列中,如果r>1,则数列是递增的;如果0<r<1,则数列是递减的;如果r=1,则数列是恒定的。

2. 通项公式等比数列的通项公式为aₙ = a₁ * r^(n-1),通过该公式可以求出任意项的值。

3. 首项、公比与项数的关系根据等比数列的通项公式aₙ = a₁ * r^(n-1),我们可以得到首项、公比和项数之间的关系:aₙ = a₁ * r^(n-1)a₂ = a₁ * rr = a₂ / a₁a₃ = a₁ * r^2...即等比数列的第n项等于首项乘以公比的n-1次方。

4. 等比数列的前n项和等比数列的前n项和记为Sₙ,可以通过以下公式计算:Sₙ = a₁ * (1 - rⁿ) / (1 - r)其中n表示项数。

三、等比数列的常见问题1. 求等比数列中某一项的值如果已知等比数列的首项a₁、公比r和项数n,我们可以通过通项公式aₙ = a₁ * r^(n-1)计算出该项的值。

2. 求等比数列的前n项和已知等比数列的首项a₁、公比r和项数n,可以通过前n项和的公式Sₙ = a₁ * (1 - rⁿ) / (1 - r)求得。

3. 求等比数列的项数已知等比数列的首项a₁、公比r和某一项的值aₙ,可以通过项数的对数形式求得:n = logₐ( aₙ / a₁ ) + 1其中logₐ表示以a为底的对数运算。

四、等比数列的应用等比数列在实际问题中有着广泛的应用。

例如在金融领域,利率、汇率等都可以用等比数列的形式来描述;在自然科学研究中,细胞分裂、物种繁殖等也常常涉及等比数列的计算。

等比数列的通项与公式

等比数列的通项与公式

等比数列的通项与公式等比数列是数学中的一种重要数列,它的通项与公式在数学中有着广泛的应用和意义。

在等比数列中,每一项与前一项的比值都相同,这个比值称为公比。

一、等比数列的定义与性质等比数列是指数列中的每一项与它前面的一项的比值相等的数列。

设等比数列的首项为a₁,公比为q,则它的通项可以表示为:aₙ = a₁ * q^(n-1)其中,aₙ为第n项,n为项数。

1. 公比的定义与性质在等比数列中,公比q是等于相邻两项的比值,即 q = aₙ / a(n-1)。

2. 通项的推导与性质通过观察等比数列中相邻两项的比值,可以得到通项的推导公式。

假设第n项为aₙ,前一项为a(n-1),则有:q = aₙ / a(n-1) (1)根据等比数列的定义,还可以得到:aₙ = a(n-1) * q (2)将(2)式代入(1)式中,可以得到:q = (a(n-1) * q) / a(n-1)整理得到通项的公式:aₙ = a(n-1) * q^(n-1)二、等比数列的应用举例等比数列在数学中有着广泛的应用。

下面将通过一些具体例子来展示等比数列的应用。

1. 计算等比数列前n项的和对于等比数列,我们常常需要计算前n项的和。

设等比数列的首项为a₁,公比为q,前n项的和为Sₙ,则有以下公式:Sₙ = a₁ * (1 - qⁿ) / (1 - q)这个公式可以帮助我们快速计算等比数列前n项的和。

2. 物质的倍增在一些自然和社会领域中,存在着物质的倍增问题。

比如,细菌的繁殖、人口增长等都可以看作是等比数列的应用。

在这些问题中,公比q常常表示倍增的比例。

三、等比数列的举例与求解下面通过一些具体的例子来展示等比数列的应用与求解过程。

例1:已知等比数列的首项为2,公比为3,求第6项的值。

根据等比数列的通项公式可以得到:a₆ = a₁ * q^(6-1) = 2 * 3^(6-1) = 2 * 3^5 = 2 * 243 = 486所以第6项的值为486。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列的定义及其通项公式
【基础回顾】
1.等比数列的定义
1
n n a q a -=(q 为常数且0q ≠,n ∈N +且2n ≥) 2.等比数列的通项公式及其性质
11n n m n n m a a q a a q --−−−→==←−−−推广
特例 等比数列中没有零这个项且其中的项要么全部是正或全部是负或正负间隔出现,总之,等比..数列的奇数项符号相同..........,偶数项的符号相同.........等比数列的通项形式是指数式...
. 3.等比中项
2211(2)(1)()n n n n n k n k m n p q a a a n a a a n k a a a a m n p q -+-+−−−→−−−→=≥=≥+=+=+←−−−←−−−推广推广特例特例
4.等比数列的证明
(1)定义法:1
(2n n a q n a -=≥,n ∈N +,q 是非零常数) (2)等比中项法:211n n n a a a -+=⋅(2n ≥,且0n a ≠)
(3)通项公式法:n n a kq =(,k q 为常数,且0kq ≠)
(4)求和法:n n S Aq B =+,且0A B +=,0AB ≠.
5.函数性质
【典型例题】
例1 已知无穷等比数列{}n a 的首项为1a ,公比为q .
(1)数列n a ,1n a -, ,2a ,1a 也成等比数列吗?如果是,写出它的首项和公比;
(2)依次取出{}n a 的所有奇数项,组成一个新数列,这个数列还是等比数列吗?如果是,写出它的首项和公比;
(3)数列{}n ca (其中c 为常数且0c ≠)是等比数列吗?如果是,写出它的首项和公比. 例2 在等比数列{}n a 中.
(1)已知13a =,2q =-,则6a = ;(2)已知32n n a =⨯,则1a = ,d = ;
(3)它的首项和公比均为2,若它的末项为32,则这个数列共有 项;
(4)已知12a =,7128a =,则q = ;(5)已知427a =,3q =-,则7a = ;
(6)已知320a =,6160a =,则n a = ;(7)若4n n a a +=,则q = . 例3 (1)已知{}n a 为等比数列,且243546225a a a a a a ++=,那么35a a +的值等于 ;
(2)已知等比数列{}n a 中,3833a a +=,4732a a =,且数列{}n a 是递增数列,则数列{}n a 的公比q 为 .
练习:(1)等比数列1a -,2a ,8a , 的第四项为 ;
(2)已知各项均为正数的等比数列{}n a 中,1235a a a ⋅⋅=,78910a a a =,则456a a a = . 例4 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数和第三个数的和是12,求这四个数.
【夯实基础】
1.在等比数列{}n a 中,如果66a =,99a =,那么3a 的值为( )
A.4
B.
32 C.169
D.2 2.已知数列a ,(1)a a -,2(1)a a -, 是等比数列,则实数a 的取值范围是( )
A.1a ≠
B.1a ≠或0a ≠
C.0a ≠
D.1a ≠且0a ≠
3.公差不为0的等差数列{}n a 中,2a 、3a 、6a 依次成等比数列,则公比等于( ) A.12 B.13
C.2
D.3 4.已知数列{}n a 的前n 项和1n n S a =-(a 是不为0的常数),那么数列{}n a 是( ) A.一定是等差数列 B.一定是等比数列
C.或者是等差数列,或者是等比数列
D.既不是等差数列,也不是等比数列
5. ABC 的三边a 、b 、c 成等比数列,则角B 的取值范围是( ) A.[0,]6π B.(0,]6π C.[0,]3π D.(0,]3
π 6.已知等比数列32781,,,,,41632
x y -- ,则x = ,y = . 7.若正项等比数列{}n a 的公比1q ≠,且356,,a a a 成等差数列,则3546
a a a a ++等于 . 8.在83和272
之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 9.设a 、b 、c 成等比数列,x 是a 、b 的等差中项,y 是b 、c 的等差中项,则a c x y
+= .
10.已知{}n a 成等差数列,{}n b 成等比数列,且公差与公比均为d (0d >,且1d ≠).若11a b =,333a b =,555a b =,求n a 和n b .
11.已知有穷数列{}n a 共有2k 项(整数2k ≥),首项12a =,设该数列的前n 项和为n S ,且1(1)2n n a a S +=-+(1,2,,21n k =- ),其中常数1a >.
(1)求证:数列{}n a 是等比数列;
(2)若2
212k a -=,数列{}n b 满足2121log ()(1,2,,2)n n b a a a n k n
== ,求数列{}n b 的通项公式.
12.已知数列{}n a 中,n S 表示前n 项和,若11a =,142n n S a +=+(n ∈N +)
(1)求证:1{2}n n a a +-为等比数列;(2)求证:{}2n n a 为等差数列;(3)求n a ,n S ;。

相关文档
最新文档