人教版初中数学一次函数基础测试题
人教版初中数学一次函数基础测试题及答案解析

A.1 个
B.2 个
C.3 个
D.4 个
【答案】D
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.
【详解】 解:由图象可知, 学校到景点的路程为 40km,故①正确, 小轿车的速度是:40÷(60﹣20)=1km/min,故②正确, a=1×(35﹣20)=15,故③正确, 大客车的速度为:15÷30=0.5km/min,
A.1个
B. 2 个
C. 3 个
D. 4 个
【答案】B
【解析】
【分析】
由 x=0 时 y=1000 可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,
设动车的速度为 x 千米/小时,根据“动车 3 小时行驶的路程+普通列车 3 小时行驶的路程
=1000”列方程求解可判断①;根据 x=12 时的实际意义可判断④.
D.先变小后变大
【答案】B
【解析】
【分析】
根据一次函数图象上点的坐标特征可设出点 C 的坐标为(m,-m+4)(0<m<4),根据矩形的周
长公式即可得出 C 矩形 CDOE=8,此题得解. 【详解】
解:设点 C 的坐标为(m,-m+4)(0<m<4),
则 CE=m,CD=-m+4,
∴C 矩形 CDOE=2(CE+CD)=8. 故选 B.
是解题的关键.
7.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出
发,设普通列车行驶的时间为 x (小时),两车之间的距离为 y (千米),如图中的折线表示 y 与 x 之间的函数关系,下列说法:①动车的速度是 270 千米/小时;②点 B 的实际意义是 两车出发后 3 小时相遇;③甲、乙两地相距1000 千米;④普通列车从乙地到达甲地时间 是 9 小时,其中不正确的有( )
一次函数基础训练题

一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。
选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。
选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。
选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。
选项D,y=√(x)+1,自变量x在根号下,不是一次函数。
所以答案是C。
2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。
解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。
要使函数为一次函数,则m 1≠0,解得m≠1。
二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。
在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。
2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。
解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。
对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。
三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。
人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)一、选择题1. 已知正比例函数y = kx(k工0)的图象过第二、四象限,则()A. y随x的增大而减小B. y随x的增大而增大C .当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D .不论x如何变化,y不变2. 表示一次函数y = mx+ n与正比例函数y= mnx (m、n是常数且mn丸)图象是()A. B+c+D,3.若直线1 y= —x+n与y=mx —1相交于点(1,- -2),则[] 215153A m= n=——B —,n= —1C m=—n=——D m= —3,n=- ——2222214. 点A (- 5,y i)和B( —2,y2)都在直线y= —x上,则y i和y2的关系是[]2A y i <y2B y i = y2C y i v y2D y i > y215. 若ab > 0,be v 0,则函数y= (ax —c)的图象不经过第[]象限。
bA —B 二C 三D 四A. k > 0B. k v 0C. 0 v k v 1D. k > 17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,6.如果一次函数y=kx+(k-i)的图象经过第四象限,贝U k的取值范围是那么小亮从学校骑车回家用的时间是()的水面高度与时间的关系如图( 2 ) ?所示,图中PQ 为一线段,则这个容器是A . 37.2分钟B . 48分钟9.下列函数中,自变量的取值范围选取错误 的是 ( )10.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y ,A BCD二、填空题11. 如图(1 )所示的是实验室中常用的仪器,向以下容器内均匀注水,最后把容器注满,在注水过程中,容器C. 30分钟D . 33分钟D.3x 2的图象上的点是0,- 1 . 5)A . y= X 2 中,x 取 x >2B . y=C . y=2x 2中,x 取全体实数是匕匕厶8.下列四点中,在函A . (— 1 , 1 ) B.H ,x 取 x >-3可12.直线y i = k i x + b i 和直线y 2 = k 2x +b 2相交于y 轴上同一点的条件是 _____________ ;这两直线平行的条件是 ______13. _______________________________________________________ 在函数y Jx 1中,自变量x 的取值范围是____________________________________________________________________14. 一次函数的图象过点(1,2),且y 随x 的增大而增大,则这个函数解析式是 _________15.等腰三角形的周长为 ______________________________________ 30cm ,它的腰长为y cm 与底长x cm 的函数关系式是16.如果直线y = 2x + m 不经过第二象限,那么实数 m 的取值范围是17. ___________________________________________________________ 若直线y =x +m 与直线y =-2 x +4的交点在x 轴上,则 m = ______________________________________________________y (cm )是其尾长 x (cm )的一次函数,当蛇的尾长为 6cm 时,蛇长为19. 一个一次 函数的图象与直线y 2x 1平行,且经过点(2,— 1 ),则这 个一次 函数的表达示为 ___________________________20. 函数y=2x 向左平移3个单位所得到的函数为 ___________ ,再向下平移 5个单位得到的函数为 _____________ .18.生物学家研究表明,某种蛇的长度45.5cm ;当尾长为14cm 时,蛇长为105.5cm .那么当一条蛇的尾长为10cm 时,这条蛇的长度是 ________ cm .那么小亮从学校骑车回家用的时间是( )的水面高度与时间的关系如图( 2 ) ?所示,图中PQ 为一线段,则这个容器是三、计算题21. 某市推岀电脑上网包月制,每月收取费用段,BA //X 轴,AC 是射线。
一次函数测试题(最新人教版)

《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。
该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。
人教版初中数学一次函数基础测试题含解析

人教版初中数学一次函数基础测试题含解析一、选择题1.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1【答案】C 【解析】 【分析】 【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<, ∴该函数图象是y 随x 的增大而减小, ∴a+1<0, 解得a<-1, 故选C. 【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.2.一次函数y=ax+b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】 【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置. 【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0, 满足ab<0, ∴a −b>0,∴反比例函数y=a bx- 的图象过一、三象限, 所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0, 满足ab<0, ∴a −b<0,∴反比例函数y=a bx-的图象过二、四象限, 所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0, 满足ab<0, ∴a −b>0,∴反比例函数y=a bx-的图象过一、三象限, 所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0, 满足ab>0,与已知相矛盾 所以此选项不正确; 故选C. 【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B 点坐标为(b ,-b+2), ∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0), ∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°, ∴b 的取值范围为b <0或b >2. 故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(bk-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .4.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+ B .24y x =-+C .31y x =+D .31y x -=-【答案】B 【解析】 【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案. 【详解】设一次函数关系式为y kx b =+, ∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小, ∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-, ∴y=-3x+1,-3+1=-2,故该选项不符合题意, 故选:B . 【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.5.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+ B .2133y x =+ C .1y x =+ D .5342y x =+ 【答案】D 【解析】 【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)

2022-2023学年新人教版初中八年级数学下册第十九单元基础知识质量检测卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)函数y=x―25中自变量x的取值范围是( )A.x>2B.x<2C.x≥2D.x≤22.(3分)一次函数y=﹣2x+2经过点(a,2),则a的值为( )A.﹣1B.0C.1D.23.(3分)已知一次函数y=kx﹣4(k≠0),y随x的增大而增大,则k的值可以是( )A.﹣2B.1C.0D.﹣34.(3分)下列函数中,是一次函数的是( )A.y=3x﹣5B.y=x2C.y=6xD.y=1x―15.(3分)在正比例函数y=kx中,y的值随着x值的增大而增大,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A.B.C.D.6.(3分)点P1(﹣1,y1),点P2(2,y2)是一次函数y=kx+b(k<0)图象上两点,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定7.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)10203040506070小车下滑的时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59下列说法正确的是( )A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快8.(3分)下列问题中,变量y与x成一次函数关系的是( )A.10m长铁丝折成长为y(m),宽为x(m)的长方形B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.路程一定时,时间y(h)和速度x(km/h)的关系9.(3分)一次函数y=﹣2x+6的图象与y轴的交点坐标是( )A.(0,6)B.(6,0)C.(3,0)D.(0,3)10.(3分)在正比例函数y=kx中,y的值随着x值的增大而减小,则点A(﹣3,k)在( )A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(a,b)在函数y=4x+3的图象上,则代数式12a﹣3b+1的值等于 .12.(3分)一次函数y=(k﹣3)x﹣2的函数值y随自变量x的增大而减小,则k的取值范围是 .13.(3分)小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为 .14.(3分)已知三点A(﹣2,6),B(﹣3,1),C(1,﹣3).若正比例函数y=kx图象经过其中两点,则k的值为 .15.(3分)将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为 .16.(3分)已知函数y=(m﹣2)x|3﹣m|+5是关于x的一次函数,则m= .三.解答题(共9小题,满分72分)17.(6分)求下列函数中自变量的取值范围.(1)y=2x﹣1;(2)y=x―3+5―x;(3)y=14―2x.18.(6分)平面直角坐标系xOy中,经过点(1,2)的直线y=kx+b,与x轴交于点A,与y轴交于点B.(1)当b=3时,求k的值以及点A的坐标;(2)若k=b,P是该直线上一点,当△OPA的面积等于△OAB面积的2倍时,求点P的坐标.19.(6分)已知y﹣1与x﹣1成正比例,且x=3时,y=4.(1)求y与x之间的函数关系式;(2)当y=﹣1时,求x的值.20.(8分)如图,一次函数y=kx+b(k≠0)的图象经过A,B两点.(1)求此一次函数的解析式;(2)结合函数图象,直接写出关于x的不等式kx+b<4的解集.21.(8分)我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了yml水.(1)试写出y与x之间的函数关系式?(2)当滴了1620mL水时,小明离开水龙头几小时?22.(8分)已知一次函数y=―12x+3.(1)作出函数的图象;(2)求图象与两坐标轴所围成的三角形的面积.23.(10分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间有如下关系:(其中0≤x≤30)时间/x257101213141720接受能力/y47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?24.(10分)狗头枣产于陕西省延安市一带,久负盛名,其性味甘平,有润心肺、止咳、补五脏、治虚损的功效,已成为革命圣地延安最为著名的特产.某经销商购进了一批狗头枣,根据以往的销售经验,每天的售价与销售量之间有如下关系:当单价为38元/千克时,每天可以销售50千克,单价每下调1元,销量就会增加2千克,若设单价下调了x 元/千克,销售量为y千克.(1)y与x之间的关系式为 ;(2)当售价为28元/千克,这天的销售量是多少?(3)如果这批狗头枣的进价是20元/千克,某天的售价定为30元/千克,则这天的销售利润是多少元?25.(10分)甲超市在国庆节期间进行苹果优惠促销活动,苹果的标价为5元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.其中x(单位:kg)表示购买苹果的重量,y甲(单位:元)表示付款金额.(1)文文购买3kg苹果需付款 元;购买5kg苹果需付款 元;(2)写出付款金额y甲关于购买苹果的重量x的函数关系式;(3)乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为5元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?参考答案1.C;2.B;3.B;4.A;5.A;6.A;7.D;8.A;9.A;10.C;11.﹣8;12.k<3;13.1.5千米;14.﹣3;15.y=﹣2x﹣4;16.4;17.解:(1)y=2x﹣1中,自变量的取值范围是全体实数;(2)由题意得:x﹣3≥0,5﹣x≥0,解得:3≤x≤5;(3)由题意得:4﹣2x>0,解得:x<2.18.解:(1)∵直线y=kx+b经过点(1,2),∴k+b=2,当b=3时,k=﹣1,∴直线解析式为y=﹣x+3,令y=0,得x=3,∴点A的坐标为(3,0);(2)由(1)知k+b=2,当k=b时,可得k=b=1,∴直线解析式为:y=x+1,令x=0,得y=1,令y=0,得x=﹣1,∴点A的坐标为(﹣1,0),点B坐标为(0,1),∴S△OAB=12×1×1=12,设点P(m,n),∵△OPA的面积等于△OAB面积的2倍,∴12×1×|n|=2×12,∴|n|=2,得n=±2,∴点P坐标为(1,2)或(﹣3,﹣2).19.解:(1)∵y﹣1与x﹣1成正比例,∴设y﹣1=k(x﹣1),∵x=3时y=4,∴4﹣1=k(3﹣1),解得:k=3 2,∴y与x之间的函数关系式为:y﹣1=32(x﹣1),即y=32x―12;(2)当y=﹣1时,﹣1=32x―12,解得:x=―1 3.20.解:(1)将点A(3,4),B(0,﹣2)的坐标分别代入y=kx+b中,得3k+b=4 b=―2,解得k=2b=―2,故一次函数的解析式y=2x﹣2;(2)观察图象可知:关于x的不等式kx+b<4的解集为x<3.21.解:(1)∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开x小时滴的水为3600×2×0.05x,∴y=360x(x≥0).(2)当y=1620mL时,1620=360x,解得x=4.5小时,答:小明离开水龙头4.5小时.22.解:(1)直线一次函数y=―12x+3过(0,3)(6,0)两点,描点连线可以画出其图象,如图:(2)图象与两坐标轴所围成的三角形的面积=12×6×3=9.23.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为13分钟时,学生的接受能力最强;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.24.解:(1)由题意可知y与x之间的关系式为,y=50+2x;(2)当售价为28元/千克,价格下调了x=38﹣28=10,将x=10代入关系试中得y=50+2×10=70,∴当售价为28元/千克,这天的销售量是70千克;(3)当售价为30元/千克,价格下调了x=38﹣30=8,将x=8代入关系试中得y=50+2×8=66,∴当售价为30元/千克时的销售量是66千克,利润=(售价﹣进价)×销售量=(30﹣20)×66=660元,∴这天的销售利润是660元.25.解:(1)由题意可知:文文购买3kg苹果,不优惠,∴文文购买3kg苹果需付款:3×5=15(元),购买5kg苹果,4kg不优惠,1kg优惠,∴购买5kg苹果需付款:4×5+1×5×0.6=23(元),故答案为:15,23;(2)由题意得:当0<x≤4时,y甲=5x,当x>4时,y甲=4×5+(x﹣4)×5×0.6=3x+8,∴付款金额y甲关于购买苹果的重量x的函数解析式为:y甲=5x(0<x≤4) 3x+8(x>4);(3)文文在甲超市购买10kg苹果需付费:3×10+8=38(元),文文在乙超市购买10kg苹果需付费:5×10×0.8=40(元),∵38<40,∴文文应该在甲超市购买更划算.。
一次函数练习题(附答案)

一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。
5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。
CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。
【3套试卷】人教版八年级下册数学基础训练题: 第十九章 一次函数(含答案)

人教版八年级下册数学基础训练题:第十九章一次函数(含答案)一、选择题1.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)2.一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A. m<-1B. m>-1C. m>0D. m<03.一次函数的图象经过点A(﹣2,﹣1),且与直线y=2x﹣3平行,则此函数的解析式为()A. y=x+1B. y=2x+3C. y=2x﹣1D. y=﹣2x﹣54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C. y=-2x D. y=2x5.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A. y=25x+15B. y=2.5x+1.5C. y=2.5x+15D. y=25x+1.56.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( )A. x>0B. x<0C. x>2D. x<27.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米8.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A. B. C. D.9.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A. x>﹣2B. x<﹣2C. x>﹣4D. x<﹣410.小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.11.一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A. 9B. 16C. 25D. 3612.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A. x<2B. x<0C. x>0D. x>2二、填空题13.函数y=中,自变量x的取值范围为________ .14.已知,函数y=(k﹣1)x+k2﹣1,当k________ 时,它是一次函数.15.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .16.已知长方形的周长为30cm,一边长为ycm,另一边长为xcm,则y与x的关系式为________,其中变量是________,常量是________.17.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为- ,则输出的结果为 ________18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x(单位:本)之间的函数关系________.19.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为________km.20.如图,已知点A和点B是直线y=x上的两点,A点坐标是(2,).若AB=5,则点B的坐标是 ________.21.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为________.22.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为________ .三、解答题23.一次函数y=kx+b经过点(-4,-2)和点(2,4),求一次函数y=kx+b的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.甲乙两地相距 1200 千米 B.快车的速度是 80 千米∕小时 C.慢车的速度是 60 千米∕小时 D.快车到达甲地时,慢车距离乙地 100 千米 【答案】C 【解析】
【分析】
(1)由图象容易得出甲乙两地相距 600 千米;(2)由题意得出慢车速度为 600 =60(千米 10
/小时);设快车速度为 x 千米/小时,由图象得出方程 60×4+4x=600,解方程即可;(3) 求出快车到达的时间和慢车行驶的路程,即可得出答案. 【详解】
故答案选:C. 【点睛】
本题考查的是一次函数的性质,即一次函数 y kx bk 0 中,当 k 0 , b 0 时,
函数图象经过一、二、四象限.
6.若一次函数 y 3x 2 的图象与 x 轴交于点 A ,与 y 轴交于点 B, 则 AOB (O 为坐
标原点)的面积为( )
A. 3 2
B. 2
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】A
【解析】
【分析】
根据数轴得出 0<﹣2a+3<1,求出 1<a<1.5,进而可判断 1﹣a 和 a﹣2 的正负性,从而
得到答案.
【详解】
解:根据数轴可知:0<﹣2a+3<1,
解得:1<a<1.5,
∴1﹣a<0,a﹣2<0,
∴一次函数 y (1 a)x a 2的图像经过第二、三、四象限,不可能经过第一限.
集.
【详解】
解:把 (2, 0) 代入 y mx 3 得: 0 2m 3,
解得: m 3 , 2
∴一次函数 y mx 3 中 y 随 x 增大而减小,
∵一次函数 y mx 3 与 x 轴的交点为 (2, 0) ,
∴不等式 mx 3 0 的解集是: x 2 ,
故选:B.
【点睛】
5.一次函数 y x 1的图象不经过的象限是 ( )
A.第一象限
B.第二象限
C.第三象限
【答案】C
【解析】
【分析】
D.第四象限
先根据一次函数 y x 1中 k 1, b 1 判断出函数图象经过的象限,进而可得出结
论. 【详解】
解: 一次函数 y x 1中 k 1 0 , b 1 0 , 此函数的图象经过一、二、四象限,不经过第三象限.
【分析】
直接利用函数图象上点的坐标特征得出 m 的值,再利用函数图象得出答案即可.
【详解】 解:∵函数 y=−4x 和 y=kx+b 的图象相交于点 A(m,−8), ∴−8=−4m, 解得:m=2, 故 A 点坐标为(2,−8), ∵kx+b>−4x 时,(k+4)x+b>0, 则关于 x 的不等式(k+4)x+b>0 的解集为:x>2. 故选:A. 【点睛】 此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.
3.某一次函数的图象经过点 1, 2 ,且 y 随 x 的增大而减小,则这个函数的表达式可能是
()
A. y 2x 4
B. y 2x 4
C. y 3x 1
D. y 3x 1
【答案】B 【解析】 【分析】
设一次函数关系式为 y kx b ,把(1,2)代入可得 k+b=2,根据 y 随 x 的增大而减小可 得 k<0,对各选项逐一判断即可得答案. 【详解】
∵正比例函数 y=kx 的图像经过点 C,
∴-2k=1,
∴k=- 1 , 2
故选 A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点 C 的
坐标是解题的关键.
10.如图,点 A, B 在数轴上分别表示数 2a 3,1,则一次函数 y (1 a)x a 2的图像
一定不经过( )
【详解】
解:一次函数 y2=2x+3(﹣1<x<2)的函数值随 x 的增大而增大,如图所示,
N(﹣1,2),Q(2,7)为 G2 的两个临界点, 易知一次函数 y1=kx+1﹣2k(k≠0)的图象过定点 M(2,1), 直线 MN 与直线 MQ 为 G1 与 G2 有公共点的两条临界直线,从而当 G1 与 G2 有公共点时,y1 随 x 增大而减小;故①正确; 当 G1 与 G2 没有公共点时,分三种情况: 一是直线 MN,但此时 k=0,不符合要求; 二是直线 MQ,但此时 k 不存在,与一次函数定义不符,故 MQ 不符合题意; 三是当 k>0 时,此时 y1 随 x 增大而增大,符合题意,故②正确; 当 k=2 时,G1 与 G2 平行正确,过点 M 作 MP⊥NQ,则 MN=3,由 y2=2x+3,且 MN∥x 轴,可知,tan∠PNM=2, ∴PM=2PN, 由勾股定理得:PN2+PM2=MN2 ∴(2PN)2+(PN)2=9,
A. 1 <k<1 2
B. 1 <k<1 3
C.k> 1 2
D.k> 1 3
【答案】A
【解析】
【分析】
由直线 y=2x-1 与 y=x-k 可列方程组求交点坐标,再通过交点在第四象限可求 k 的取值范
围.
【详解】 解:设交点坐标为(x,y)
y 2x 1
③当 k=2 时,G1 与 G2 平行,且平行线之间的距离为 .
下列选项中,描述准确的是( )
A.①②正确,③错误
B.①③正确,②错误
C.②③正确,①错误
D.①②③都正确
【答案】D
【解析】
【分析】
画图,找出 G2 的临界点,以及 G1 的临界直线,分析出 G1 过定点,根据 k 的正负与函数增
减变化的关系,结合函数图象逐个选项分析即可解答.
(3)快车到达甲地所用时间: 600 20 小时,慢车所走路程:60× 20 =400 千米,此时
90 3
3
慢车距离乙地距离:600-400=200 千米,故选项 D 错误.
故选 C
【点睛】
本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.
13.已知直线 y=2x-1 与 y=x-k 的交点在第四象限,则 k 的取值范围是( )
8.如图,在矩形 ABCD 中, AB 2 , BC 3,动点 P 沿折线 BCD 从点 B 开始运动到 点 D .设运动的路程为 x , ADP 的面积为 y ,那么 y 与 x 之间的函数关系的图象大致是()A.B. NhomakorabeaC.
D.
【答案】D 【解析】
【分析】
由题意当 0 x 3 时, y 3 ,当 3 x 5时, y 1 3 5 x 3 x 15 ,由此即
A.
B.
C.
D.
【答案】C 【解析】 【分析】 分 k>0 和 k<0 两种情况确定正确的选项即可. 【详解】 当 k:>0 时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随 着 x 的增大而增大,A 选项错误,C 选项符合; 当 k<0 时,反比例函数的图象位于第二、四象限,一次函数的图象交 y 轴于正半轴,y 随 着 x 的增大而增减小,B. D 均错误, 故选:C. 【点睛】 此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.
设一次函数关系式为 y kx b ,
∵图象经过点 1, 2 ,
k b 2;
∵y 随 x 增大而减小,
∴k 0,
A.2>0,故该选项不符合题意, B.-2<0,-2+4=2,故该选项符合题意, C.3>0,故该选项不符合题意,
D.∵ y 3x 1,
∴y=-3x+1, -3+1=-2,故该选项不符合题意, 故选:B. 【点睛】
A.– 1 2
B. 1 2
C.–2
D.2
【答案】A
【解析】
【分析】根据已知可得点 C 的坐标为(-2,1),把点 C 坐标代入正比例函数解析式即可求
得 k.
【详解】∵A(-2,0),B(0,1),
∴OA=2,OB=1,
∵四边形 OACB 是矩形,
∴BC=OA=2,AC=OB=1,
∵点 C 在第二象限,∴C 点坐标为(-2,1),
2
22
可判断.
【详解】
由题意当 0 x 3 时, y 3 ,
当 3 x 5时, y 1 3 5 x 3 x 15 ,
2
22
故选 D.
【点睛】
本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问
题.
9.如图,在矩形 AOBC 中,A(–2,0),B(0,1).若正比例函数 y=kx 的图象经过点 C,则 k 的值为( )
∴PN= ,
∴PM= .
故③正确. 综上,故选:D. 【点睛】 本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质 逐条分析解答,难度较大.
12.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之 间的距离 y(千米)与行驶时间 x(小时)的对应关系如图所示,下列叙述正确的是( )
本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数 y=kx+b(k≠0), 当 k>0 时,图象经过一、三、象限,y 随 x 的增大而增大;当 k<0 时,图象经过二、 四、象限,y 随 x 的增大而减小;熟练掌握一次函数的性质是解题关键.
4.函数 y k 与 y kx k ( k 0 )在同一平面直角坐标系中的大致图象是( ) x
解:(1)由图象得:甲乙两地相距 600 千米,故选项 A 错; (2)由题意得:慢车总用时 10 小时,
∴慢车速度为: 600 =60(千米/小时); 10
设快车速度为 x 千米/小时, 由图象得:60×4+4x=600,解得:x=90, ∴快车速度为 90 千米/小时,慢车速度为 60 千米/小时;选项 B 错误,选项 C 正确;