高二数学反证法
高二 选修反证法

所以假设不成立,
从而______________________. x ≠a且 x ≠b
可能出现矛盾四种情况:
• • • • 与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论.
例 2
用反证法证明 : 如果a b 0, 那么 a b .
反设
归谬
结论
反证法:
• 要证明某一结论A是正确的,但不直接 证明,而是先去证明 A 的反面(非 A ) 是错误的,从而断定A是正确的. • 即反证法就是通过否定命题的结论而 导出矛盾来达到肯定命题的结论、完 成命题的论证的一种数学证明方法. • 反证法常证唯一性命题、否定性命题、 绝对性命题以及正面证明有困难的其 它问题.
反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. x=a 或_________, x=b 证明 假设_________
(x-a)(x-b)=0 x=a 由于____________ 时,_________________,
与 (x-a)(x-b)≠0矛盾,
x=b 时,_________________, (x-a)(x-b)=0 又_________
反证法
小故事
路边苦李
古时候有个人叫王戎,7岁那年 的某一天和小伙伴在路边玩,看见 一棵李子树上的果实多得把树枝都 快压断了,小伙伴们都跑去摘,只 有王戎站着没动。他说:“李子是 苦的,我不吃。”小伙伴摘来一尝, 李子果然苦的没法吃。
小伙伴问王戎:“这就怪了!你又 没有吃,怎么知道李子是苦的啊?”
2 2
2、若函数 (x)=a f x bx c不是偶函数,则b 0。
2
高二数学反证法

苏教版高二数学选修4-5 几何法、反证法 课件(20张)

M Z Z 第3课时 几何法、反证法
目标导航
UBIAODAOHANG
知识梳理
HISHISHULI
重难聚焦
HONGNANJUJIAO
D S 典例透析 IANLITOUXI
随堂演练
UITANGYANLIAN
12
2.反 证 法 反证法证不等式是先假设所要证的不等式不成立,也就是说不等式的 反面成立,以此为出发点,结合已知条件,进行推理论证,最后推出矛盾的结 果,从而断定假设错误,因而确定要证的不等式成立. 它的步骤是:(1)作出否定结论的假设;(2)进行推理,导出矛盾;(3)否定假 设,肯定结论.
知识梳理
HISHISHULI
重难聚焦
HONGNANJUJIAO
D S 典例透析 IANLITOUXI
随堂演练
UITANGYANLIAN
12345
1 实数 a,b,c 不全为零的条件为( ) A.a,b,c 全不为零 B.a,b,c 中至多只有一个为零 C.a,b,c 中只有一个为零 D.a,b,c 中至少有一个不为零 解析:a,b,c 不全为零,即为 a,b,c 不能同时为零,也就是 a,b,c 中至少有一个不 为零. 答 案 :D
>
1 2
,
������+(1-������) 2
>
1,
2
������+(1-������) 2
>
12,
以上四个式子相加,得 2>2,���(1-������) ≤ ������+(21-������),
-12-
M Z Z 第3课时 几何法、反证法
目标导航
UBIAODAOHANG
即 ab+bc=ac,
高二数学反证法(20200806104323)

2.2.2 反证法

2.2.2反证法1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.基础梳理1.定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t,t 与假设矛盾,或与某个真命题矛盾.从而判定┐q为假,推出q为真的方法,叫做反证法.2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与假设矛盾或与数学公理、定理、公式、定义或与公认的简单事实矛盾等.想一想:(1)反证法的实质是什么?(2)反证法属于直接证明还是间接证明?其证明过程属合情推理还是演绎推理?(1)解析:反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.(2)解析:反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.自测自评1.用反证法证明命题“三角形的内角中至少有一个大于60°”时,反设正确的是(A)A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°解析:“至少有一个”的否定是“一个都没有”,则反设为“三个内角都不大于60°”.2.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p +q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是(D)A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确解析:用反证法证明问题时,其假设是原命题的否定,故①的假设应为“p+q>2”;②的假设为“两根的绝对值不都小于1”,故①假设错误.②假设正确.3.“实数a,b,c不全大于0”等价于(D)A.a,b,c均不大于0B.a,b,c中至少有一个大于0C.a,b,c中至多有一个大于0D.a,b,c中至少有一个不大于0解析:“不全大于零”即“至少有一个不大于0”,它包括“全不大于0”.故选D.基础巩固1.(2014·微山一中高二期中)用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是(C)A.a2=b2B.a2<b2C.a2≤b2D.a2<b2,且a2=b22.否定“至多有两个解”的说法中,正确的是(D)A.有一个解B.有两个解C.至少有两个解D.至少有三个解3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为(B)A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.4.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠1能力提升5.下列命题不适合用反证法证明的是(C)A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1.解析:选项A中命题条件较少,不足以正面证明;选项B中命题是否定性命题,可以反证法证明;选项D中命题是至少性命题,可以反证法证明.选项C不适合用反证法证明.故选C.6.设a、b、c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的(C)A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:首先若P 、Q 、R 同时大于零,则必有PQR >0成立.其次,若PQR >0,且P 、Q 、R 不都大于0,则必有两个为负,不妨设P <0,Q <0,即a +b -c <0,b +c -a <0,∴b <0与b ∈R +矛盾,故P 、Q 、R 都大于0.故选C.7.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得 a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:08.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有__________(填序号).解析:“x =y ”的反面是“x ≠y ”,即是“x >y 或x <y ”,所以②正确;“a >b ”的反面是“a ≤b ”;“三角形的外心在三角形外”的反面是“三角形的外心不在三角形外”;“三角形最多有一个钝角”的反面是“三角形至少有两个钝角”.所以这三个都错.答案:②9.如果非零实数a ,b ,c 两两不相等,且2b =a +c .证明:2b =1a+1c不成立. 证明:假设2b =1a +1c 成立,则2b =a +c ac =2b ac,∴b 2=ac . 又∵b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=ac ,即a 2+c 2=2ac ,即(a -c )2=0, ∴a =c ,这与a ,b ,c 两两不相等矛盾,∴2b =1a +1c不成立. 10.已知函数f (x )=a x+x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负实根. 证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0.所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数.(2)设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1.又0<ax0<1,所以0<-x0-2x0+1<1,即12<x0<2.与假设x0<0矛盾,故f(x)=0没有负实根.。
高二数学反证法试题

高二数学反证法试题1.用反证法证明:“若a,b两数之积为0,则a,b至少有一个为0”,应假设( )A.a,b没有一个为0B.a,b只有一个为0C.a,b至多有一个为0D.a,b两个都为0【答案】A【解析】解:因为用反证法证明就是对结论的否定,因此“若a,b两数之积为0,则a,b至少有一个为0”,应假设a,b没有一个为0,选A2.用反证法证明命题时,对结论:“自然数中至少有一个是偶数”正确的假设为()A.都是奇数B.都是偶数C.中至少有两个偶数D.中至少有两个偶数或都是奇数【答案】A【解析】解:因为用反证法证明命题时,对结论:“自然数a,b,c中至少有一个是偶数”正确的反设就是a,b,c都是奇数,选A3.用反证法证明:如果,那么.【答案】见解析。
【解析】本试题主要是考查了运用反证法思想解决正难则反的命题的云集用。
根据已知条件,如果,那么.,那么利用等价命题可知为假设,则,然后证明。
假设,则.容易看出,下面证明:要证:,只需证:,只需证:上式显然成立,故有。
综上,。
而这与已知条件相矛盾,因此假设不成立,也即原命题成立。
4.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设()A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°【答案】B【解析】解:因为用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,假设就是对结论否定,因此为三个内角都大于60°,选B5.设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于________.【解析】解:因为实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于,假设都小于,那么相加起来就小于1,与题意相互矛盾。
6.用反证法证明命题"如果a>b,那么a3>b3"时,下列假设正确的是A.B.C.D.【答案】B【解析】解:因为反证法证明命题时,就是对结论加以否定即可。
人教A选修2-211-12学年高二数学:2.2.2 反证法 课件(人教A版选修2-2)

[例3] 已知:一点A和平面α. 求证:经过点A只能有一条直线和平面α垂直. [分析]
[解析] 根据点A和平面α的位置关系,分 两种情况证明. (1)如图1,点A在平面α内,假设经过点A 至少有平面α的两条垂线AB、AC,那么AB、 AC是两条相交直线,它们确定一个平面β, 平面β和平面α相交于经过点A的一条直线a.
[点评] 1.本题的解答依赖于等差和等比 数列的概念和性质,体现了特殊化思想、 分类讨论思想和正难则反的思维策略.对 代数的推理能力要求较高. 2.结论中含有“不”、“不是”、“不 可能”、“不存在”等词语的命题,此类 问题的反面比较具体,适于应用反证法.
3.反证法属逻辑方法范畴,它的严谨体 现在它的原理上,即“否定之否定等于肯 定”,其中:第一个否定是指“否定结论 (假设)”;第二个否定是指“逻辑推理结 果否定了假设”.反证法属“间接解题方 法”,书写格式易错之处是“假设”易错 写成“设”.
2.命题“三角形中最多只有一个内角是 直角”的结论的否定是 ( ) A.两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角 [答案] C [解析] “最多只有一个”即为“至多一 个”,反设应为“至少有两个”,故应选 C.
3.如果两个实数之和为正数,则这两个 数( ) A.一个是正数,一个是负数 B.两个都是正数 C.至少有一个正数 D.两个都是负数 [答案] C [解析] 假设两个数都是负数,则两个数 之和为负数,与两个数之和为正数矛盾, 所以两个实数至少有一个正数,故应选C.
[分析] 本题中,含有“至少存在一个” 词,可考虑使用反证法.
[证明]
1 假设不存在 x∈[-1,1]上一个 x 满足|f(x)|≥2.
人教A选修二第2章2.2.2

课堂互动讲练
考点突破 用反证法证明否定性命题 结论中含有“不 、 不是 不是”、 不可能 不可能”、 不存在 不存在” 结论中含有 不”、“不是 、“不可能 、“不存在 等词语的命题,此类命题的反面比较具体, 等词语的命题,此类命题的反面比较具体,适于 应用反证法. 应用反证法.
x-2 - 例1 已知 f(x)=a + (a>1),证明 = , x+1 +
2
用反证法证明唯一性问题 结论以“有且只有一个 、“只有一个 、“唯一存 结论以 有且只有一个”、 只有一个”、 唯一存 有且只有一个 只有一个 等形式出现的命题, 在”等形式出现的命题,由于反设结论易于导出 等形式出现的命题 矛盾,所以用反证法证其唯一性简单明了. 矛盾,所以用反证法证其唯一性简单明了. 例3 已知:一点 和平面 已知:一点A和平面 和平面α. 求证:经过点A只能有一条直线和平面 垂直. 只能有一条直线和平面α垂直 求证:经过点 只能有一条直线和平面 垂直.
在平面β内经过点 有两条直线都和 垂直, 在平面 内经过点A有两条直线都和 垂直,这 内经过点 有两条直线都和BC垂直 与平面几何中经过直线外一点只能有已知直线的 一条垂线相矛盾. 一条垂线相矛盾. 综上,经过一点A只能有平面 的一条垂线. 只能有平面α的一条垂线 综上,经过一点 只能有平面 的一条垂线.
(2)如图 ,点A在平面 外,假设经过点 至少有 如图2, 在平面α外 假设经过点A至少有 如图 在平面 平面α的两条垂线 的两条垂线AB和 为垂足), 平面 的两条垂线 和AC(B、C为垂足 ,那么 、 为垂足 AB、AC是两条相交直线,它们确定一个平面 , 是两条相交直线, 、 是两条相交直线 它们确定一个平面β, 平面β和平面 相交于直线BC,因为AB⊥平面α, 和平面α相交于直线 平面 和平面 相交于直线 ,因为 ⊥平面 , AC⊥平面 ,BC⊂α,所以 ⊥BC,AC⊥BC. ⊥平面α, ⊂ ,所以AB⊥ , ⊥ 图2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。