初中数学3反证法
反证法

反证法及其运用在初中阶段的很多几何证明题目中,我们大多是由题目所给的条件出发,通过以学习的基本知识一步步推导从而证明所要证明的结论的成立。
例如:已知:,O是对角线AC和BD的交点。
求证:CA=OC、OB=OD;而对于有些几何证明题直接由条件出发证明并不容易得到所要证明的结论,例如:已知:AB、CD是⊙O内非直径的两弦,求证AB与CD不能互相平分。
而对于这类题目常常采用间接证明方法反证法证明。
1.反证法的概念不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。
为帮助理解反证法可以先看看下面两个小故事。
故事一:南方某风水先生到北方看风水,恰逢天降大雪。
乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨。
”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎。
”实际上,小牧童正是巧妙运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的茺唐结论。
风水先生当然不会承认这个事实了。
那么,显然,他说的就是谬论了。
这就是反证法的威力,一个原本非常复杂难证的哲学问题被牧童运用了“以其人之道,还其人之身”的反证法迎刃而解了。
如果说这则故事还尚不能让我们明白反证法的思路的话,不妨再看看故事二。
故事二:王戎小时候,爱和小朋友在路上玩耍。
一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动。
等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。
”这是很著名的“道旁苦李”的故事。
实质上王戎的论述,也正是运用了反证法。
初中数学初三数学下册《反证法》优秀教学案例

在讲授新知环节,我首先详细解释反证法的定义,并通过具体实例演示反证法的步骤。在讲解过程中,注重让学生理解反证法的核心思想——通过假设命题不成立,从而推导出矛盾,进而证明原命题成立。
(三)学生小组讨论
在学生小组讨论环节,我将设计几个具有挑战性的问题,让学生分组进行讨论。这些问题涵盖反证法在不同类型的数学题目中的应用,旨在培养学生的逻辑推理能力和团队协作能力。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,培养他们勇于探索、积极进取的学习态度。
2.使学生认识到反证法在数学学习中的重要性,体会数学的严谨性和美妙,增强学生的数学素养。
3.通过反证法的学习,培养学生面对困难时,勇尝试、坚持不懈的品质。
4.引导学生学会尊重他人意见,善于合作交流,培养良好的团队精神和沟通能力。
在本章节的教学过程中,教师将始终关注学生的全面发展,注重知识与技能、过程与方法、情感态度与价值观的有机结合,使学生在轻松愉快的氛围中学习数学,提高他们的数学素养和综合素质。通过本章节的学习,学生将更加深入地理解反证法的内涵,为今后的数学学习和人生发展奠定坚实基础。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握反证法,我将创设贴近学生生活的情景,激发他们的学习兴趣。例如,可以通过讲述一个侦探故事,让学生扮演侦探,寻找线索,解决问题。在这个过程中,引导学生体会反证法在推理过程中的作用,使他们在情景体验中自然地接纳反证法。
3.小组合作,促进交流
案例中注重小组合作,让学生在互动交流中共同解决问题。这种教学策略有助于培养学生的团队协作能力、沟通能力,以及尊重他人意见的良好品质。
4.反思与评价,提高自我认知
在教学过程中,引导学生进行反思与评价,使他们在总结经验教训的基础上,不断提高自我认知。此外,实施多元化的评价方式,关注学生的全面发展,激发他们的学习信心。
《初中数学反证法》课件

本PPT课件详细介绍了初中数学中的反证法。内容包括反证法的定义和原理, 反证法在数学中的应用,反证法的基本步骤,以及使用反证法解决数学问题 的示例。
反证法例题解析
数学概念和定理
使用反证法解决常见的数学概念和定理问题。
步骤示例
演示如何运用反证法来解决具体问题。
深入探索
探讨反证法在不同数学领域中的应用。
3
学习建议
分享一些学习反证法的有效方法和技巧。
练习题和答案解析
1 提供练习
给出一些练习题,让学生巩固对反证法的理解。
2 答案解析
提供详细的答案解析,帮助学生检查和纠正错误。
3 挑战题目
提供一些有挑战性的题目,激发学生的思考和探索欲望。
解题技巧
分享一些解题技巧和经验。
反证法的优势和限制
数学推理的优势
反证法在数学推理中的重要作 用。
限制和注意事项
使用反证何促进思维的创 新。
常见误解和常见问题
1
常见错误和误解
学生在学习反证法时可能容易犯的常见错误和误解。
2
问题解答
解答学生常见问题和困惑,帮助他们更好地理解和应用反证法。
反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是一种证明方法,它通过假设所要证明的结论不成立,然后推出与已知事实相矛盾的结论,从而得出所要证明的结论成立的结论。
在初中数学中,反证法被广泛应用。
它不仅能够帮助学生更加深刻地理解数学概念,还能够提高学生的思维能力和解决问题的能力。
首先,反证法在初中数学中常用于证明某些命题是假的。
比如,我们常常可以用反证法证明一些等式不成立。
例如,我们来看下面这个例子:已知 $a,b,c$ 为正整数,且 $a+b=c$,证明 $a^2+b^2$ 不能被 4 整除。
我们可以用反证法来证明这个命题。
假设 $a^2+b^2$ 能被 4 整除,那么 $a$ 和$b$ 一定都是偶数。
令 $a=2m$,$b=2n$,其中 $m$ 和 $n$ 是正整数,则:$a^2+b^2=4(m^2+n^2)$由于 $a+b=c$,因此:因此,$c$ 也是偶数。
但是,由于 $a,b,c$ 是正整数,因此 $c$ 不能为偶数。
因此,假设不成立,命题得证。
其次,反证法在初中数学中还常用于证明一些命题是正确的。
有时候,我们可以通过假设某些前提不成立,然后推出一个与已知事实不符的结论,从而证明原命题是正确的。
比如,我们来看下面这个例子:对于正整数 $n$,如果 $n^2$ 是奇数,则 $n$ 也是奇数。
由于 $n^2$ 是奇数,因此 $4m^2$ 也是奇数。
但是,我们知道,偶数的平方一定是偶数,因此 $4m^2$ 一定是偶数,与已知事实相矛盾。
因此,可以得出结论:如果$n^2$ 是奇数,则 $n$ 也是奇数。
反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨反证法是初中数学中常用的一种证明方法,是通过假设命题不成立,推导出矛盾的结果,从而证明原命题成立。
反证法在数学证明中具有重要的作用,同时也在数学解题中有很多应用。
一、应用举例1. 直角三角形定理的证明要证明直角三角形定理,可以使用反证法。
假设三角形不是直角三角形,即三条边不能成直角,那么三条边呈现的几何形状就是一个锐角三角形和一个钝角三角形。
由于锐角三角形的每个角都小于90度,所以它的三角度数之和小于180度。
因此,它的两条短边加起来肯定小于斜边的长度,这与勾股定理不符合。
同理,对于钝角三角形,由于它的两条短边加起来肯定大于斜边的长度,也不符合勾股定理,因此可以得出结论:三角形必须为直角三角形。
2. 二次不等式当我们需要解决类似于x²+2x<3这样的不等式时,可以先假设x²+2x≥3,即假设不等式右边小于左边。
那么可以将不等式两边移项得到x²+2x-3≥0,然后可以因式分解得到(x+3)(x-1)≥0。
根据符号法可以知道方程的解集为(-∞,-3]∪[1,∞),由此可以得到原始不等式的解集为(-3,1)。
3. 对于奇偶性问题的判断对于奇偶性问题,可以使用反证法。
首先,假设一个数n为奇数,那么可以得到2n为偶数,可是,如果2n为偶数,那么n一定为偶数。
因此,我们可以得出结论:如果n是奇数,那么2n一定是偶数;反之,如果2n是偶数,那么n一定是偶数。
二、反证法的特点1. 简单实用反证法是初中数学中最为简单实用的证明方法之一。
这种证明方法可以减少证明的复杂度和时间,使证明更加简单和直观。
通过假设未知量在某种前提情况下为错误的来证明未知量的正确性。
2. 适用范围广反证法的适用范围非常广泛,可以处理大多数数学问题。
特别是在数学证明中,它通常用来证明那些难证或没有直观的结论。
在不少数学分支中,反证法是解题的重要手段。
3. 可以检验猜想的正确性使用反证法不仅可以证明一个结论,还可以证明一个猜想的错误性。
反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是一种证明方法,运用反证法可以达到“证明之外还证明”的效果,也就是通过证明不成立的情况来证明规律的正确性。
在初中数学中,反证法可以有效地应用于解题,以下是几个例子:1、证明根号2是无理数。
假设根号2是有理数,可以表示为p/q,其中p,q互质。
则根号2=p/q,两边平方得到2=p*p/q*q,化简可得到p*p=2*q*q,由于2是质数,而p*p是偶数,就可以推出p也是偶数。
那么p=2k,代入原式可得到2=q*k,则q也是偶数。
这与p,q互质矛盾,因此假设不成立,根号2是无理数。
2、证明平方根小数是无限不循环小数。
假设平方根的小数部分有限、循环。
设其小数部分为a.b(c)。
则有a.b(c)=x/10^t+y/(10^(t+1))+z/(10^(t+2))+…,即表示成有限的分数形式。
那么可以将该分数转换为最简分数a’/b’,然后平方可得到(a’)^2/(b’)^2=2+2y/(10^t)+(y/(10^t))^2+(2z/(10^(t+1))+(z/(10^(t+1)))^2+……3、证明勾股数不存在除1以外的公因数。
假设勾股数存在除1以外的公因数d,则可以表示a=dm,b=dn。
那么c^2=a^2+b^2=d^2(m^2+n^2),即c也能被d整除,此时c/d也是一个整数,且满足c/d是勾股数a/d,b/d的最大公因数。
这与a/d,b/d互质矛盾,因此假设不成立,勾股数不存在除1以外的公因数。
以上几个例子展示了反证法在初中数学解题中的应用,可以看到反证法是一种极为重要的证明方法。
在解题过程中,可以运用一些技巧,如化简、分解因式、求幂、辗转相除等,帮助分析矛盾的来源,找到反证的破绽,从而得出正确的结论。
反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨【摘要】本文探讨了反证法在初中数学解题中的应用。
首先介绍了利用反证法证明等式的独特性,通过假设等式错误来推导出矛盾,从而证明等式成立。
其次讨论了利用反证法证明几何命题的正确性,通过假设命题错误来推导出矛盾,从而证明命题正确。
然后探讨了利用反证法解决逻辑推理题和方程组的解存在性问题,通过假设反面来得出结论。
最后讨论了利用反证法证明不等式的性质,通过假设不成立来推导出矛盾,从而证明不等式成立。
结论指出反证法在初中数学解题中的重要性,是培养学生逻辑思维能力的重要方式。
初中学生应该熟练掌握反证法的运用,以提升数学解题的能力和思维水平。
【关键词】反证法、初中数学、应用探讨、等式、几何命题、逻辑推理题、方程组、解存在性、不等式、重要性、逻辑思维能力1. 引言1.1 反证法在初中数学解题中的应用探讨引言:反证法是数学证明中常用的一种方法,通过反证法可以证明一个命题的否定是不成立的,从而进而证明这个命题是成立的。
在初中数学中,反证法也有着广泛的应用,可以帮助学生解决各种复杂的数学问题。
本文将探讨反证法在初中数学解题中的应用,包括利用反证法证明等式的独特性、利用反证法证明几何命题的正确性、利用反证法解决逻辑推理题、利用反证法解决方程组的解存在性问题以及利用反证法证明不等式的性质。
通过这些例子,我们可以更好地理解反证法在数学解题中的重要性,同时也可以培养学生的逻辑思维能力,帮助他们更好地理解和运用数学知识。
反证法不仅是一种证明方法,更是一种思维方式,能够帮助学生提高解题能力,培养批判性思维,从而更好地应对数学学习中遇到的各种问题。
2. 正文2.1 利用反证法证明等式的独特性利用反证法证明等式的独特性是初中数学中常见的解题方法之一。
在数学中,我们经常要证明一些等式的成立性,而有时候直接利用已知条件来进行证明并不是很方便,这时候反证法就派上了用场。
反证法的基本思想是假设要证明的结论为假,然后推导出矛盾的结论,从而证明原结论的真实性。
反证法在初中代数中的应用

反证法是高中阶段需要掌握的基本证明方法,它在中学数学中有着广泛的应用。
了解反证法的思维方式,强调反证法中的逆向思维对于解决相关命题的重要性,引导并要求学生能用逆向思维解决更多的数学问题,特别是对于一些难度比较大的证明题,灵活地运用反证法,就能迎刃而解。
本文首先介绍了反证法的相关基础知识,通过分析命题,总结反证法在各类命题中的使用规律,然后归纳出反证法在中学数学代数解题中的应用。
反证法是间接论证的方法之一,是通过推论出与论题相矛盾的命题来确定原论题的真实性的一种方法。
即肯定题设而否定结论,从而导出矛盾,推理而得。
也就是说假设命题的结论不成立,在已知条件和“否定命题结论”的新条件下,通过逻辑推理,得出与公理、定理、题设相矛盾的结论或自相矛盾的结论,从而得出命题结论的反面不成立,即证明了原命题结论一定是正确的。
1.反证法的一般步骤反证法的证明模式可以简单的概括为两个否定,一个推理。
也就是否定结论,再利用相关的知识点,正确无误的推导出与逻辑矛盾的结果,最后便可以否定刚开始的否定。
所以可以得出反证法证明命题的一般步骤,如下:(1)反设。
假设原命题反设成立;(2)归谬。
从命题的假设出发,经过相关推理得出和反面命题矛盾,或者与定义、公理、定理相矛盾的结论;(3)结论。
得出假设命题不成立,即证明原命题成立2.反证法在代数中的应用反证法是高中数学的重点和难点之一。
尽管在平时一些定理或者命题的证明中,学生接触过一些,但是接触的都比较浅,印象不是特别的深,以至于在解题过程中,根本没有运用反证法来解决问题的意识。
所以在平时的课堂中,可以加入反证法来对例题进行另种方法的讲解,在其讲解过程中,反复地强调反证法的逻辑思维,让反证法渐渐渗透到学生的数学思想中,培养学生多维度思考问题的能力以及学生的逆向思维能力。
下面我们来看看反证法在高中代数中的简单运用。
2.1 肯定性命题反证法可以用来解决结论里面出现“一定是”、“是”等肯定性词语的命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.反证法
【基本目标】
1.理解反证法.
2.会用反证法证明较简单的题.
【教学重点】
用反证法证明几何命题.
【教学难点】
反证法中渗透“正难则反”的思想.
一、创设情景,导入新课
出示多媒体,展示《路旁苦李》的故事的动画场景,引入反证法的课题.
二、师生互动,探究新知
活动
1反证法的步骤.
教师给出问题:如果你当时也在场,你会怎么办?五戎是怎么判断李子是苦的?你认为他的判断正确吗?
学生讨论交流,选代表发言.
如果李子不是苦的,路旁的人很多,早就没有这么多李子.
教师出示,若a2+b2≠c2(a≤b≤c),则△ABC不是直角三角形,你能按照刚才五戎的方法推理吗?
学生活动,代表展示.若∠C是直角,则a2+b2=c2,而a2+b2≠c2,这是不可能的,即△ABC不是直角三角形.
【教师归纳】先假设结论的反面是正确的;然后经过演绎推理,推出与基本事实、已证定理、定义或已知条件相矛盾;从而说明假设不成立,进而得出原命题正确.即:一、反设;二、推理得矛盾;三、假设不成立,原命题正确.
活动2用反证法证明.
教材P116例5.
【教师活动】原命题结论的反向是什么?按照假设可以得到矛盾吗?
【学生活动】独立完成,交流成果,发言展示.
教材P116例6.
【教师活动】△ABC至少有一个内角小于或等于60°的反向是什么?按照假设可以推出矛盾吗?
【学生活动】独立完成,交流成果,发言展示.
【教学说明】在几何命题中涉及到有“至少”“至多”“唯一”时,直接不易证明,可考虑反证法.
三、随堂练习,巩固新知
完成练习册中本课时对应的课后作业部分,教师巡视并及时点评,主要是证明格式是否规范.
四、典例精析,拓展新知
例求证:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
【教师活动】(1)你首选的是哪一种证明方法?(2)如果你选择反证法,先怎样假设?结果和什么产生矛盾?(3)能不用反证法证明吗?你准备怎样证明?
要求按问题解决的四个步骤进行:理解题意(画出图形,写出已知求证);制订计划(选择证明方法,找出证明思路);执行计划(写出证明过程).
【学生活动】讨论交流后独立完成.
五、运用新知,深化理解.
完成教材P117练习第1、2题.
六、师生互动,课堂小结
这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上,教师总结.
完成练习册中本课时对应的课后作业部分.
反证法是一种重要的证题方法,也是初中数学的难点,如何突破这一难点,并为学生更好地理解和掌握是需要教师精心设计的.在教学时应注意三个思维障碍:1.思维方向的转换,不能总用直接法;2.证明步骤存在障碍;3.归谬起点推证存在障碍.为使学生更好地理解并掌握反证法,应积极引导学生克服上述思维上的障碍,并通过有关题目训练,使学生掌握反证法.
教师在教学中应强调当结论的反面不止一种情况时,应穷举;“归谬”这一步应包含“归导”与“揭谬”两个层次.。