场效应管放大电路(12)
12n15场效应管参数

12n15场效应管参数12N15场效应管参数场效应管,也称为晶体管,是一种常用的电子元件,广泛应用于电子电路中。
12N15是一种常见的场效应管型号,具有一定的特性参数。
本文将从不同角度介绍12N15场效应管的参数。
我们来看12N15场效应管的电流参数。
该管子的最大漏极电流为12安培,最大漏极电压为150伏特。
这意味着在使用过程中,漏极电流不应超过12安培,漏极电压不应超过150伏特,否则会导致管子损坏或不正常工作。
我们来了解12N15场效应管的增益参数。
该管子的电流放大倍数(也称为电流增益)为60。
这意味着输入信号经过该管子放大后,输出信号的电流将是输入信号电流的60倍。
这个参数对于设计放大电路时非常重要,可以帮助我们选择合适的电阻和电容值。
12N15场效应管还有一个重要的参数是输入电容。
输入电容是指在输入信号传输过程中,管子所具有的电容特性。
该管子的输入电容为25皮法拉。
输入电容的大小直接影响到信号传输的带宽和响应速度,因此在设计高频电路时需要注意。
除了上述参数外,12N15场效应管还有一些其他的重要参数,例如开启电压和截止电压。
开启电压是指管子开始工作的电压,一般情况下为4伏特。
截止电压是指管子停止工作的电压,一般情况下为2伏特。
这两个参数可以帮助我们确定管子的工作状态,从而正确选择工作点。
12N15场效应管的参数包括电流参数、增益参数、输入电容以及开启电压和截止电压等。
了解这些参数对于正确使用和设计电子电路非常重要。
在实际应用中,我们需要根据具体需求选择合适的管子,并结合其他元件进行电路设计。
通过合理选择和使用12N15场效应管,可以使电子电路更加稳定可靠,提高系统性能。
场效应管原理及放大电路

图6-47 分压式偏置电路
/info/flashshow/0079614.html(第 8/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
图6-47为分压式偏置电路,RG1和RG2为分压电阻。 栅-源电压为(电阻RG中并无电流通过) (6-24) 式中,UG为栅极电位。对N沟道耗尽型场效应管,UGS为负值,所以RSID>UG;对N沟道增强型场效应管,UGS为正值,所以RSID<UG。 当有信号输入时,我们对放大电路进行动态分析,主要是分析它的电压放大倍数及输入电阻与输出电阻。图6-48是图6-47所示分压式偏置放大电路的交流通 路,设输入信号为正弦量。 在图6-47的分压式偏置电路中,假如RG= 0,则放大电路的输入电阻为
故其输出电阻是很高的。在共源极放大电路中,漏极电阻RD和场效应管的输出电阻rDS是并联的,所以当rDS ro≈RD (6-26)
RD时,放大电路的输出电阻
这点和晶体管共发射极放大电路是类似的。 输出电压为 (6-27) 式中 ,由式(6-23)得出 。
电压放大倍数为
/info/flashshow/0079614.html(第 9/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
图6-43 N沟道耗尽型场效应管的输出特性曲线
图6-44 N沟道耗尽型场效应管的转移特性曲线 以上介绍了N沟道绝缘栅场效应增强型和耗尽型管,实际上P沟道也有增强型和耗尽型,其符号如图6-45所示。
/info/flashshow/0079614.html(第 6/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
(6-28) 式中的负号表示输出电压和输入电压反相。 【例6-7】 在图6-47所示的放大电路中,已知UDD=20 V,RD=10 kΩ,RS=10 kΩ,RG1=100 kΩ,RG2=51 kΩ,RG=1 MΩ,输出电阻为RL=10 kΩ。场效应管的 参数为IDSS=0.9 mA,UP= 4 V,gm=1.5 mA。试求:(1)静态值;(2)电压放大倍数。 解:(1) 由电路图可知
场效应管放大电路原理

场效应管放大电路原理场效应管放大电路原理1. 介绍场效应管(Field Effect Transistor,简称FET)是一种常用的电子器件,广泛应用于放大、开关和调节电路中。
作为一名文章写手,我将为您详细介绍场效应管放大电路的原理。
2. 场效应管概述场效应管是由源极、栅极和漏极三个主要部分组成的。
其中,栅极与源极之间的电压可以控制漏极电流的大小,从而实现信号的放大和调节。
和双极晶体管相比,场效应管具有输入电阻高、无需偏置电流等优点,因此在电子工程中得到广泛应用。
3. 场效应管放大电路的基本原理场效应管放大电路的基本原理是利用场效应管的特性来放大输入信号。
当输入信号施加在栅极上时,栅极源极间的电压将改变栅极-源极电流的大小,从而改变漏极电流。
根据场效应管工作状态的不同,可分为共源放大器、共漏放大器和共栅放大器三种。
3.1 共源放大器共源放大器是应用最广泛的一种场效应管放大电路。
在共源放大器中,输入信号通过耦合电容施加到栅极上,当信号施加后,栅极-源极电压发生变化,控制栅极-源极电流的大小,进而改变漏极电流。
共源放大器具有放大增益高、输入输出阻抗匹配等特点,适用于多种应用场景。
3.2 共漏放大器共漏放大器是场效应管放大电路的一种重要形式。
在共漏放大器中,漏极连接到电源,源极接地,输入信号通过漏极电阻耦合到栅极。
共漏放大器具有输入电阻高、输出电阻低等特点,适用于对电压放大和阻抗转换要求较高的场合。
3.3 共栅放大器共栅放大器是场效应管放大电路的另一种形式。
在共栅放大器中,信号通过源极电阻耦合到栅极,漏极连接到电源。
共栅放大器具有输入输出阻抗匹配、频率响应宽等特点,适用于高频放大和对输入频率响应要求较高的应用。
4. 实际应用案例场效应管放大电路广泛应用于各种电子设备中。
以音频放大器为例,通过合理选择场效应管的类型和工作点,可以实现对音频信号的放大和调节,保证音频设备的音质。
5. 个人观点和理解场效应管放大电路作为一种常见的放大器,具有输入电阻高、无需偏置电流、放大增益高等技术优点。
场效应管放大电路

这种偏置电路的特点是: 栅极直流偏压直接由电源UGG经电阻Rg供给,因为3DO1是耗 尽型MOS管,故 UGS = - UGG。由于场效应管输入电阻很大, 所以 Ig = 0 。栅偏压是由固定的外加电源供给的,故称为固 定偏置电路。此电路是共源极放大电路。
⑵ 自给栅偏压偏置电路
这种偏置电路的特点是: 在源极上接一个电阻RS,外加电压UDD产生的ID就会在RS 上产 生压降URS ,由于Ig = 0,所以可以得 :UGS = - URS = - ID RS 。 这种电路栅 偏压是由漏极电流流过源极电阻产生的,故称为 自给偏压电路。增强型MOS管不采用此种这种方式。
(mA) ID UGS = 0 V
6
击穿区
rN小
可变电阻区
5
4 3 2
UGS = -1V 放 大 区 UGS = -2V UGS = -3V UGS = -4V
4 8 12 16 20 24
rN大
1 0
截止区
BUDSS
UDS(V)
⑶ 截止区 当|UGS|≥|UP|时,导电沟道完全夹断,电阻rn最大, 漏极电流 ID = 0,管子截止。
id
T2 T1 Id0
T3
Q0
ugso
ugs
从图可以看出当 UGS选在零工作 点,则温度变化时,漏极电流 ID 不变。T1,T2,T3为不同的温度 曲线。
4. 场效应管结构对称,应用灵活 ,方便。有时漏极和源极 可以互换使用,但是当衬底与源极相连在一起是不能互换使 用的。
5. 场效应管的制造工艺简单,有利于大规模集成。 6. 由于MOS场效应管输入电阻高达10¹² KΩ,故受外界静电 场感应产生的电荷不容易泄露,会在栅极上产生很高的电场 强度会引起 SiO2绝缘层击穿损坏管子。焊接时,应将电烙铁 外壳可靠接地。 7. 由于场效应管的跨导小,组成放大电路时,在相同负载 电阻的情况下,其电压放大倍数比三极管放大电路低。
MOS场效应管放大电路

2、共源放大电路的分析
• ⑵交流分析 • 再画出交流等效电路:
29
2、共源放大电路的分析
• 再根据等效电路计算交流性能: • ① 电压放大倍数
•
•
UO gmUgs(RD //RL)
•
•
Au
gmUgs(RD
•
// RL)
•gmRL
Ugs
• 电压放大倍数为负值,说明输出电压与输入电压反相。
30
•
研究动态信号时用全微分表示:
13
场效应管的低频小信号等效模型
• 定义:
• 当信号较小时,管子的电压、电流仅在Q点附近变化,可以认 为是线形的,gm与rds近似为常数,用有效值表示:
Id gmUgsr1dsUds
14
场效应管的低频小信号等效模型
• 由此式可画出场效应管的低频小信号等效模型:
• 可见场效应管的低频小信号等效模型比晶体管还要 简单。
0.258//1000
1gmRS//RL 10.258//1000
0.67
55
注意事项
(1) 在 使 用 场 效 应 管 时 , 要 注 意 漏 源 电 压 UDS、漏源电流ID、栅源电压UGS及耗散功率等 值不能超过最大允许值。
(2)场效应管从结构上看漏源两极是对称 的,可以互相调用,但有些产品制作时已将衬 底和源极在内部连在一起,这时漏源两极不能 对换用。
RS
//1 gm
38
4、共栅放大电路的分析
• ⑴电路结构 一个共栅放大器的电路图如下:
39
4、共栅放大电路的分析
• ⑵交流性能分析 • 先画出交流通路:
40
4、共栅放大电路的分析
• ⑵交流性能分析 • 再画出交流等效电路:
MOSFET功放电路

目录场效应管功率放大电路 (1)场效应管80W音频功率放大电路 (1)一款性能极佳的JFET-MOSFET耳机功放电路图 (2)100W的MOSFET功率放大器 (2)场效应管(MOSFET)组成的25W音频功率放大器电路图 (4)一种单电源供电的MOSFET功放电路 (6)100W的V-MOSFET功率放大器电路 (6)100W场效应管功率放大电路 (8)全对称MOSFET OCL功率放大器电路图 (9)场效应管功率放大电路如图所示电路是采用功率MOSFET管构成的功率放大器电路。
电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。
其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。
场效应管80W音频功率放大电路一款性能极佳的JFET-MOSFET耳机功放电路图100W的MOSFET功率放大器电路图关于电路电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。
如果畅通,将改变这个直流电压偏置值S后续阶段。
电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。
晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。
预设R1用于调整放大器的输出电压。
电阻R3和R2设置放大器的增益。
第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。
这样做是为了提高线性度和增益。
Q7和Q8在AB 类模式运行的功率放大级的基础上。
预设R8可用于调整放大器的静态电流。
电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。
F1和F2是安全的保险丝。
电路设置设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。
下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。
场效应管放大电路原理

场效应管放大电路原理场效应管(Field Effect Transistor,简称FET)是一种重要的电子元器件,广泛应用于各种电子设备中。
它具有高输入阻抗、低输出阻抗、低噪声、高增益等优点,因此在放大电路中得到了广泛的应用。
场效应管放大电路是一种利用场效应管进行信号放大的电路。
它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。
下面将详细介绍场效应管放大电路的原理。
场效应管放大电路主要由场效应管、负载电阻、输入电容、输出电容等组成。
其中,场效应管是核心部件,起到放大信号的作用。
负载电阻用于提供输出端的负载,使得输出信号能够正常传递。
输入电容和输出电容则用于对输入信号和输出信号进行耦合。
在场效应管放大电路中,输入信号首先经过输入电容进入场效应管的栅极。
当栅极电压发生变化时,场效应管内部的通道将打开或关闭,从而控制电流的流动。
当栅极电压较低时,场效应管处于截止状态,电流无法通过。
当栅极电压较高时,场效应管处于导通状态,电流可以通过。
当输入信号经过场效应管后,会在负载电阻上产生一个较小的输出电压。
为了放大这个输出电压,需要通过负反馈来增加放大倍数。
具体来说,可以将输出信号通过输出电容耦合到放大器的输入端,然后再将输出信号与输入信号进行比较,从而调整栅极电压,使得输出信号得到放大。
在场效应管放大电路中,需要注意一些问题。
首先是输入阻抗和输出阻抗的匹配问题。
为了使得信号能够正常传递,输入阻抗和输出阻抗需要相互匹配。
其次是稳定性问题。
由于场效应管的工作点受到温度和其他因素的影响,因此需要采取一些措施来保持工作点的稳定性。
最后是频率响应问题。
由于场效应管本身具有一定的频率响应特性,因此在设计放大电路时需要考虑频率响应的影响。
总结起来,场效应管放大电路是一种利用场效应管进行信号放大的电路。
它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。
在实际应用中,需要注意输入阻抗和输出阻抗的匹配、工作点的稳定性以及频率响应等问题。
MOSFET功放电路

目录场效应管功率放大电路 (1)场效应管80W音频功率放大电路 (1)一款性能极佳的JFET-MOSFET耳机功放电路图 (2)100W的MOSFET功率放大器 (2)场效应管(MOSFET)组成的25W音频功率放大器电路图 (4)一种单电源供电的MOSFET功放电路 (6)100W的V-MOSFET功率放大器电路 (6)100W场效应管功率放大电路 (8)全对称MOSFET OCL功率放大器电路图 (9)场效应管功率放大电路如图所示电路是采用功率MOSFET管构成的功率放大器电路。
电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。
其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。
场效应管80W音频功率放大电路图100W的MOSFET功率放大器电路图关于电路电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。
如果畅通,将改变这个直流电压偏置值S后续阶段。
电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。
晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。
预设R1用于调整放大器的输出电压。
电阻R3和R2设置放大器的增益。
第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。
这样做是为了提高线性度和增益。
Q7和Q8在AB 类模式运行的功率放大级的基础上。
预设R8可用于调整放大器的静态电流。
电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。
F1和F2是安全的保险丝。
电路设置设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。
下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。
注意事项质量好的印刷电路板组装的电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于线性电阻。 5
UGS达到一定值时 (夹断电压VP),耗 尽区碰到一起,DS 间被夹断,这时,即 D ID
使UDS 0V,漏极电 流ID=0A。
N
G
PP
UGS
S
6
越靠近漏极,PN 结反压越大, 耗尽 层越宽,导电沟 道越窄
2 UGS=0, UDS>0V
ID
沟道中仍是电阻 特性,但是是非 线性电阻。
3DO2E 100 0.35~1.2 >12 >25
1000
CS11C 100 0.3~1
-25 -4 ≥2
26
半导体三极管图片
27
半导体三极管图片
28
§4.2 场效应 放大电路
组成原则:
(1) 静态:适当的静态工作点,使场效应管工作 在恒流区,场效应管的偏置电路相对 简单。
(2) 动态:能为交流信号提供通路。
P沟道MOSFET的工作原理与N沟 道MOSFET完全相同,只不过导电 的载流子不同,供电电压极性不同 而已。这如同双极型三极管有NPN 型和PNP型一样。
20
2.2.5 双极型和场效应型三极管的比较
双极型三极管
结构
NPN型 PNP型
C与E一般不可倒置使用
载流子 多子扩散少子漂移
输入量
电流输入
控制 电流控制电流源CCCS(β)
场效应三极管
结型耗尽型 N沟道 P沟道 绝缘栅增强型 N沟道 P沟道 绝缘栅耗尽型 N沟道 P沟道
D与S有的型号可倒置使用 多子漂移 电压输入
电压控制电流源VCCS(gm)
21
§ 4.1.4 场效应管的参数和型号
一 场效应管的参数
① 开启电压VGS(th) (或VT) 开启电压是MOS增强型管的参数,栅源电压小于开 启电压的绝对值, 场效应管不能导通。
第四章 晶体管及其小信号放大
-场效应管放大电路
电子电路基础
1
§4 场效应晶体管及场效应管放大电路
§4.1 场效应晶体管(FET)
FET 场效应管
JFET 结型
MOSFET (IGFET) 绝缘栅型
N沟道 (耗尽型)
P沟道
增强型
N沟道 P沟道
耗尽型
N沟道 P沟道
2
§ 4.1.1 结型场效应管
一、结构
iD f (v ) DS vGSconst.
iD f (v ) GS vDS const.
iD
IDSS (1
vG S VP
)2
(VP vGS 0)
VP
10
结型场效应管的缺点:
1. 栅源极间的电阻虽然可达107以上,但在 某些场合仍嫌不够高。
2. 在高温下,PN结的反向电流增大,栅源 极间的电阻会显著下降。
栅极,用G
源极,用S或s表示或g表示
漏极,用 D或d表示
N型导电沟道 符号
PP型型区区
3
二、工作原理(以N沟道为例) 1 UGS<0, UDS=0V
PN结反偏, |UGS|越大则耗 尽区越宽,导 电沟道越窄。
4
|UGS|越大耗尽区越宽,
沟道越窄,电阻越大。
ID
但当|UGS|较小时,耗 尽区宽度有限,存在
7
当 UDS=| Vp |, 发生预 夹断, ID= IDss
UDS增大则被夹断
ID
区向下延伸。此时,
电流ID由未被夹断 区域中的载流子形
成,基本不随UDS 的增加而增加,呈
恒流特性。
8
3 UGS<0, UDS>0V
UGD= UGS- UDS=UP
ID
时发生预夹断
9
三、特性曲线和电流方程
1. 输出特性 2. 转移特性
3. 栅源极间的PN结加正向电压时,将出现 较大的栅极电流。
绝缘栅场效应管可以很好地解决这些问题。
11
§ 4.1.2 绝缘栅场效应管(MOS)
绝缘栅型场效应三极MOSFET( Metal Oxide Semiconductor FET)。分为
增强型 N沟道、P沟道 耗尽型 N沟道、P沟道
12
一 N沟道增强型MOSFET 1 结构
15
3 N沟道增强型MOS管的特性曲线
转移特性曲线
ID=f(VGS)VDS=const
16
输出特性曲线
ID=f(VDS)VGS=const
17
二 N沟道耗尽型MOSFET
(a) 结构示意图
(b) 转移特性曲线
18
输出特性曲线
ID
UGS>0
UGS=0
UGS<0
0
U DS
19
P沟道MOSFET
13
2 工作原理
(1) VGS=0V时,漏源之间相当两个背靠背的 二极管,在D 、S之间加上电压不会在D、S间形成电流。 (2) VGS> VGS(th)>0时,形成导电沟道
反 型 层
14
(3) VGS> VGS(th)>0时, VDS>0
VDS=VDG+VGS =-VGD+VGS
VGD=VGS-VDS = VGS(th)时发生预夹断
25
几种常用的场效应三极管的主要参数
参 数 PDM
IDSS
型号
mW mA
VRDS VRGS VV
VP gm
fM
V mA/ V MHz
3DJ2D 100 <0.35 >20 >20 -4 ≥2 300
3DJ7E 100 <1.2 >20 >20 -4 ≥3
90
3DJ15H 100 6~11 >20 >20 -5.5 ≥8
gm
iD vGS
VDS
gm
2IDSS(1 VP
vGS VP
) ( 当VP
vGS
0时)
23
⑥ 最大漏极功耗PDM 最大漏极功耗可由PDM= VDS ID决定,与双极型
三极管的PCM相当。
24
二 场效应三极管的型号
场效应三极管的型号, 现行有两种命名方法。 其一是与双极型三极管相同,第三位字母J代
② 夹断电压VGS(off) (或VP) 夹断电压是耗尽型FET的参数,当VGS=VGS(off) 时,漏极 电流为零。 ③ 饱和漏极电流IDSS 耗尽型场效应三极管, 当VGS=0时所对应的漏极电流
22
④ 输入电阻RGS
场效应三极管的栅源输入电阻的典型值,对于结型 场效应三极管,反偏时RGS约大于107Ω,对于绝缘 栅型场效应三极管, RGS约是109~1015Ω。 ⑤ 低频跨导gm 低频跨导反映了栅压对漏极电流的控制作用, 这一点与电子管的控制作用相似。gm可以在 转移特性曲线上求取,也可由电流方程求得
表结型场效应管,O代表绝缘栅场效应管。第二位 字母代表材料,D是P型硅,反型层是N沟道;C是 N型硅P沟道。例如,3DJ6D是结型N沟道场效应三极 管,3DO6C是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管, ××以数字代表型号的序号,#用字母代表同一型号 中的不同规格。例如CS14A、CS45G等。