模糊数学08

合集下载

模糊数学2008-3(表现定理,模糊统计)

模糊数学2008-3(表现定理,模糊统计)

22
课堂作业
设有R=[-1,1]中的集合套 中的集合套 设有 H(λ)=[λ2-1,1- λ2] ,λ ∈[0,1] 所得的模糊集A的隶属函数 求由H所得的模糊集 的隶属函数 所得的模糊集 的隶属函数A(x), , 并作图。 并作图。
吉林大学计算机科学与技术学院
23
第二章 模糊模型识别
吉林大学计算机科学与技术学院
吉林大学计算机科学与技术学院
36
吉林ห้องสมุดไป่ตู้学计算机科学与技术学院
37
“青年人”隶属函数曲线 青年人” 青年人
吉林大学计算机科学与技术学院
38
重复实验
用同样的方法 在另外两个单位做实验——武汉大 在另外两个单位做实验 武汉大 学,西安工学院 得到如下曲线
吉林大学计算机科学与技术学院
39
三所大学的调查
∈[0,1]
吉林大学计算机科学与技术学院
16
表现定理的证明
由分解定理可知, 若H (λ )满足Aλ ⊆ H (λ ) ⊆ Aλ 则1,式均成立。 2
吉林大学计算机科学与技术学院
17
表现定理的证明
∀λ ∈ [0,1] u ∈ Aλ ⇒ A(u ) > λ ⇒ A(u ) = (
α ∈[0,1] α ∈[0,1]
吉林大学计算机科学与技术学院
42
模糊数学 vs. 概率论
形式上类似: 形式上类似:
用确定性手段研究不确定现象 不确定性的度量(隶属度与概率) 不确定性的度量(隶属度与概率)均 在[0,1]取值 , 取值
不同的数学模型
吉林大学计算机科学与技术学院
43
概率统计
概率: 概率:一个事件发生的概率可以通过 概率统计方法得到, 概率统计方法得到,即——做大量的 做大量的 随机试验, 随机试验,最后得到统计规律

模糊数学2008-8(等价关系与相似关系)

模糊数学2008-8(等价关系与相似关系)

假设t ( R) = R , 最大的情况是2 ≥ n且2 2
2k k k
k −1
<n
⇔ log 2 n ≤ k < (log 2 n) + 1 ⇒ k至多为[log 2 n] + 1
吉林大学计算机科学与技术学院
31
课堂作业

1 0.1 0.2 0.1 1 0.3 R= 0.2 0.3 1 请问至多几次平方可以到达传递闭 包?
吉林大学计算机科学与技术学院
36
五个环境单元
吉林大学计算机科学与技术学院
37
步骤1: 步骤 :建立模糊相似关系
如何建立对象u 之间的相似关系? 如何建立对象 i与uj之间的相似关系? 有许多方法,应用时根据实际情况, 有许多方法,应用时根据实际情况, 选择一种方法来求u 选择一种方法来求 i与uj的相似关系 R(ui, uj)=rij 在“环境污染”的例子中,如何给 环境污染”的例子中, 出模糊相似矩阵? 出模糊相似矩阵?
吉林大学计算机科学与技术学院
20
传递闭包是什么? 传递闭包是什么?
R的传递闭包 的传递闭包t(R) 的传递闭包 是包含R的最小的传递关系 是包含 的最小的传递关系
吉林大学计算机科学与技术学院
21
传递闭包的定理1 传递闭包的定理
定理1. 定理 设模糊矩阵 A ∈ µn×n ,则 ×

t ( A) = A U A U ... U A U ... = U A
求当λ 时的聚类结果。 求当 =1,0.8,0.5,0.4时的聚类结果。 , , , 时的聚类结果
吉林大学计算机科学与技术学院
14
模糊等价矩阵的定理2 模糊等价矩阵的定理

东北大学模糊数学试题

东北大学模糊数学试题

东北大学考试试卷(A B 卷) 2007 — 2008学年 第2学期课程名称:模糊数学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2分 共计10分) 12345{,,,,}U u u u u u =,F 模糊集(0.5,0.1,0,1,0.8)A =,(0.1,0.4,0.9,0.7,0.2)B =,(0.8,0.2,1,0.4,0.3)C =。

则_________A B ⋃=___________A B ⋂=()____________A B C ⋃⋂=_________c A =2. 设论 域{,,,,}U a b c d e =,有{}0.70.8{,}0.50.7{,,}0.30.5{,,,}0.10.3{,,,,}00.1d c d A c d e b c d e a b c d e λλλλλλ<≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪≤≤⎪⎩F 集A =_________________5小题,每题12分) 设[0,10]U =为论域,对[0,1]λ∈,若F 集A 的λ截集分别为 [0,10]0[3,10]00.6[5,10]0.61[5,10]1A λλλλλλ=⎧⎪<≤⎪=⎨<<⎪⎪=⎩,求出:(1)(),[0,10]A x x ∈;(2)SuppA ;(3)KerA 2. 设F 集112340.20.40.50.1A x x x x =+++,212340.20.50.30.1A x x x x =+++,312340.20.30.40.1A x x x x =+++, 12340.60.30.1B x x x =++,21230.20.30.5B x x x =++,试用格贴近度判断12,i B B A 与哪个最接近。

3.设120.100.80.70.20.40.90.50,0.30.10.600.40.310.50.2R R ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求12121,,cR R R R R ⋃⋂4.设12345{,,,,}U u u u u u =,在U 上存在F 关系,使10.800.10.20.810.400.900.41000.10010.50.20.900.51R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求ˆR,并由此进行聚类分析,画出聚类分析图。

模糊数学总结

模糊数学总结

集合与特征函数在运算上的关系
A B CA (u) CB (u), u U A B CA (u) CB (u), u U
(1)包含 (2)相等 (3)并集
(4)交集
(5)补集
CAB (u) max CA (u), CB (u) CA (u) CB (u) CAB (u) min CA (u), CB (u) CA (u) CB (u) CAC (u) 1 CA (u)


不要把上式右端当做分式求和。“+”号不表 示求和,而是表示将各项汇总,表示集合概念。
ui 项可省略。
1 0.7 0.4 0 1 0.7 0.4 A “圆块”模糊子集: a b c d a b c
普通集合与模糊子集的区别与联系

明确外延:经典数学

外延不明确:模糊数学
C
1 1 1 C A A U, A A u1 u2 un
C
普通集合与模糊子集的区别与联系
运算性质对比 (u ) B (u ), u U A B C A (u ) CB (u ), u U A B A A B C A (u ) CB (u ), u U A B A (u ) B (u ), u U A B (u ) A (u ) B (u ) C A B (u ) C A (u ) CB (u)
U
a =1 b =0.7
d =0 c =0.4
“d”和“a”具有很大的差异, 但从“d”到“a”不是具有 突变的差异,而是采取了 一个又一个中间过渡状态 “b”和“c”。处于中间过 渡的差异“b”和“c” ,便 具有了“亦此亦彼”性。

模糊数学原理及应用

模糊数学原理及应用

模糊数学原理及应用
模糊数学,也被称为模糊逻辑或模糊理论,是一种基于模糊概念和模糊集合的数学分析方法,用于处理不精确或不确定性的问题。

模糊数学允许将不明确的概念和信息进行量化和处理,以便更好地处理现实生活中存在的模糊性问题。

模糊数学的基本原理是引入模糊集合的概念,其中的元素可以具有模糊或不确定的隶属度。

模糊数学中的隶属函数可以用于刻画元素对于一个模糊集合的隶属程度。

模糊集合的运算可以通过模糊逻辑实现,模糊逻辑是概率逻辑和布尔逻辑的扩展,它允许使用连续的度量范围来推导逻辑结论。

模糊逻辑中的运算包括取补、交集和并集等,它们可以用来处理模糊概念之间的关系。

模糊数学在许多领域都有广泛的应用。

在控制系统中,模糊控制可以用于处理难以量化的问题,如温度、湿度和压力等。

在人工智能领域,模糊推理可以用于处理自然语言的不确定性和模糊性。

在决策分析中,模糊数学可以用于处理多个决策因素之间的不确定性和模糊性。

此外,模糊数学还在模式识别、图像处理、数据挖掘和人机交互等领域得到广泛应用。

通过使用模糊数学的方法,可以更好地处理现实世界中存在的不确定性和模糊性,从而提高问题解决的准确性和效率。

模糊数学例题大全

模糊数学例题大全

模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。

它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。

下面,我们将通过一些具体的例题来展示模糊数学的应用。

例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。

然而,在现实世界中,很多情况并不是绝对的0或1。

例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。

例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。

然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。

这时,模糊聚类分析就派上用场了。

它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。

例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。

然而,在某些情况下,我们无法用精确的规则来描述决策过程。

这时,模糊决策树就派上用场了。

它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。

例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。

然而,在某些情况下,系统的输入和输出并不是绝对的0或1。

这时,模糊控制系统就派上用场了。

它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。

例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。

然而,在某些情况下,图像中的对象边界并不清晰。

这时,模糊图像处理就派上用场了。

它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。

以上只是模糊数学众多应用的一小部分。

这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。

通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。

模糊数学和其应用

模糊数学和其应用

04
总结与展望
模糊数学的重要性和意义
模糊数学是处理模糊性现象的一种数学 理论和方法,它突破了经典数学的局限 性,能够更好地描述现实世界中的复杂 问题。
模糊数学的应用领域广泛,包括控制论、信 息论、系统论、人工智能、计算机科学等, 对现代科学技术的发展起到了重要的推动作 用。
模糊数学的出现和发展,不仅丰富 了数学理论体系,也促进了各学科 之间的交叉融合,为解决实际问题 提供了新的思路和方法。
随着计算机技术的发展,模糊 数学的应用越来越广泛,成为 解决复杂问题的重要工具之一 。
模糊数学的基本概念
模糊集合
与传统集合不同,模糊集合的成员关系不再是确 定的,而是存在一定的隶属度。例如,一个人的 身高属于某个身高的模糊集合,其隶属度可以根 据实际情况进行确定。
隶属函数
用于描述模糊集合中元素属于该集合的程度。隶 属函数的确定需要根据实推理规则不再是一 一对应的,而是存在一定的连续性。例如,在医 疗诊断中,病人的症状与疾病之间的关系可能存 在一定的模糊性,通过模糊逻辑可以进行更准确 的推理。
模糊运算
与传统运算不同,模糊运算的结果不再是确定的 数值,而是存在一定的隶属度。例如,两个模糊 数的加法运算结果也是一个模糊数,其隶属度取 决于两个输入的隶属度。
模糊数学在图像处理中的应用
总结词
模糊数学在图像处理中主要用于图像增强和图像恢复。
详细描述
通过模糊数学的方法,可以对图像进行平滑、锐化、边缘检测等操作,提高图像的视觉效果和识别能 力。例如,在医学影像处理中,可以利用模糊数学的方法对CT、MRI等医学影像进行降噪、增强和三 维重建等处理,提高医学诊断的准确性和可靠性。
02
模糊数学的应用领域
模糊控制

模糊数学-模糊数学基本知识

模糊数学-模糊数学基本知识

隶属函数参数化
1. 三角形隶属函数
0
trig ( x;
a,
b,
c)
x a ba
cx
cb
0
xa a xb b xc
cx
trig(x; a,b, c) max(min( x a , c x), 0) ba cb
参数a,b,c确定了三角形MF三个顶点的x坐标。
2. 梯形隶属函数
0
xa
trap(x, a, b, c, d )
g(x;50,20)
bell(x:20,4,50)
❖ (2)模糊子集运算的基本性质
模糊集合间的并、交、补(余)运算 具有如下的性质.
1)幂等律 A~ A~ A~, A~ A~ A~
2)交换律 A~ B~ B~ A~; A~ B~ B~ A~
3)结合律 ( A~ B~) C~ A~ (B~ C~),
论域U上的模糊集A由隶属函数uA来表征, uA的大小反映了x对于模糊子集的从属程度。 模糊子集完全由隶属函数来描述。
❖ 模糊子集的表示方法 (1)向量法
(2)查德表示法 有限集 无限集
模糊集举例 例4 设U={1,2,3,4,5,6}, A表示“靠近4”的数,则 AF (U),各数属于A的程度A(ui) 如表。
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
( A~ B~) C~ A~ (B~ C~).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊线性规划 二、模糊线性规划问题
解:设普通线性规划的一般形式为 目标函数
max f 2 x1 3 x2 x3
约束条件
2 x1 x 2 2 x 3 7 x1 3 x 2 2 x 3 11 x ,x ,x 0 1 2 3

解:引进松弛变量 x 4 , x 5 , 将其化成标准形式 min f 2 x1 3 x 2 x3
n
当 bi a ij x j bi d i
j 1

a
j 1
ij
x j bi
对于 X 中的模糊集
x6
较高 高 较高 高 很低 63.6 0
C1 :生产集中程度高 C 2 :采煤机械化程度高 C3 :采区生产系统完善 C4 :安全生产可靠度高 C5 :煤炭损失率低
G: 巷道掘进费用(万元)
解答略,留作练习
模糊线性规划 二、模糊线性规划问题
普通线性规划的一般形式为 min f c1 x1 c2 x 2 cn x n 目标函数 约束条件
模糊数学
第8章 综合分析
§ 8.1 综合函数与例子
§ 8.1 综合函数与例子
§ 8.1 综合函数与例子
§ 8.1 综合函数与例子
§ 8.2 综合函数的性质
§ 8.2 综合函数的性质
§ 8.2 综合函数的性质

综合函数的例子
§ 8.2 综合函数的性质
§ 8.2 综合函数的性质
A1 A2 A3
G
其中模糊目标 G ( x)
M f ( x) max f min f
总约束集 A A1 A2 A3 {0,0.7,0.5,0.4,0.6} 模糊目标集 G {1,0.33,0,0.25,0.5} 约束与目标对等时,用对称型模糊判决
D( x ) A( x ) G ( x )
min f CX ~ AX b x0
矩阵表达形式
为了体现这个近似小于等于,我们引入伸缩指标 di ,
模型又可写成
min f c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn [b1 , d1 ] a21 x1 a22 x2 a2 n xn [b2 , d 2 ] am1 x1 am 2 x2 amn xn [bm , d m ] x 0 ( j 1,2 n) j
1.将语言真值(评价结果)转化为各模糊约束集的隶属度 2. 目标函数f(x)模糊化 f ( x) m M f ( x) 或者G ( x) G( x ) max f min f max f min f 3.定义模糊判决: 对称型: D( x ) A( x ) G ( x ). 加权型: D( x ) aA( x ) bG ( x ). 4. 由最大隶属原则求出x*, 则x*为模糊条件极大值点。
(1)
模糊线性规划,其模型为 目标函数 min f c1 x1 c2 x2 cn xn ~ a11 x1 a12 x2 a1n xn b1 ~b a x a x a x 21 1 22 2 2n n 2 (2) 约束条件 ~b a x a x a x m1 1 m 2 2 mn n m x 0 ( j 1,2 n) j
0 2 3 1 0 0 0 c T ( B) b A 7 2 1 2 1 0 11 1 3 2 0 1
它有一个现成可行基
B p 4 , p5

实施初等行变换进行换基得
13 0 0 1.8 0.5 0.8 T ( B ) 2 1 0 0.8 0.6 0.2 3 0 1 0.4 0.2 0.4
目标也有多个,如 可以采用 和
模糊线性规划 一、模糊约束条件下的极值问题
例:某人想买一件大衣,提出如下标准:式样一般, 质量好,尺寸较合身,价格尽量便宜,设有5件大衣X ={x1,x2,x3,x4,x5}供选择,经调查结果如表
大衣 式样 质量 尺寸 价格 x1 过时 好 合身 40 x2 较陈旧 较好 较合身 80 x3 时髦 好 合身 100 x4 较新 较差 合身 85 X5 一般 一般 较合身 75
D( x ) 0.4 A( x ) 0.6G ( x )
0.6 0.48 0.2 0.31 0.54 x1 x2 x3 x4 x5 由最大隶属原则,应该买x1.
模糊线性规划 实例
采区巷道布置是矿井开拓中的重要内容,其目的就是建立完善 的矿井生产系统,实现采区合理集中生产,改善技术经济指标.因此, 合理地选择最优巷道布置方案,对于矿井生产具有十分重要的意义. 根据煤矿开采的特点和采区在矿井生产的作用,在选择最优巷道布 置方案时,要求达到下列标准: (1)生产集中程度高; (2)采煤机械化程度高; (3)采区生产系统十分完善; (4)安全生产可靠性好; (5)煤炭损失率低; (6)巷道掘进费用尽可能低. 上述问题,实际上就是一个模糊约束下的条件极值问题,我们可 以把(1)~(5)作为模糊约束,而把(6)作为目标函数. 设某矿井的采区巷道布置有六种方案可供选择,即
问他应该购买哪一件大衣?
解:将式样,质量,尺寸化为三个模糊约束 A1,A2,A3,价格化为模糊目标G: 将表中的评价结果转化为各模糊约束集的隶属度
大衣 x1 0 1 1 1 x2 0.7 0.8 0.8 0.33 x3 0.5 1 1 0 x4 0.8 0.4 1 0.25 x5 1 0.6 0.8 0.5
相应地有 X 中一个模糊子集与之对应, 其隶属函数为
n 1 Di ( x ) f j ( a ij x j ) 1 j 1 di 1 n a ij x j bi j 1 0 当
a
j 1 n
n
ij
x j bi
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 a x a x a x b m2 2 mn n m m1 1 x j 0 ( j 1,2,, n)
min f CX AX b x0
13 0 0 1.8 0.5 0.8 T ( B ) 2 1 0 0.8 0.6 0.2 3 0 1 0.4 0.2 0.4
由于检验数中没有正数,因此有最优解。 最优解为
x1 2, x 2 3, x 3 0
最优值为
f f 13
§ 8.2 综合函数的性质
§ 8.2 综合函数的性质
§ 8.3 综合函数的生成
§ 8.3 综合函数的生成
§ 8.3 综合函数的生成
§ 8.3 综合函数的生成
§ 8.4 模糊线性规划

将线性规划的约束条件或目标函数模糊 化,引入隶属函数,从而导出一个新的 线性规划问题,其最优解称为原问题的 模糊最优解。
模糊线性规划 解:求 X 中年轻人的最高者实际上是求两个模糊集 A =“年轻人”与 G =“高个子”的交集。由
X f(x)/cm x1 172 x2 180 x3 165 x4 174 x5 168
得模糊目标
对称性模糊判决
所以 X 中年轻人的最高者是 x4 。
模糊线性规划 多约束和多目标情况:
若约束条件不知一个,如约束为
对于模糊线性规划
min f c1 x1 c2 x2 cn xn
~ a x a x a x 11 1 12 2 1n n b1 ~ a21 x1 a22 x2 a2 n xn b2 ~ am1 x1 am 2 x2 amn xn bm x 0 ( j 1,2 n) j
7 2 x1 x 2 2 x 3 x 4 x 5 11 x1 3 x 2 2 x 3 x , x , x 0 1 2 3
这时
c (2, 3, 1, 0, 0)
2 1 2 1b 11
(1)
矩阵表达形式
模糊线性规划 二、模糊线性规划问题
例如:某工厂将用 A1, A2 两种原料生产 B1, B2, B3 三 种产品,每吨产品的利润分别为 2, 3, 1万元,每吨产 品需用原料及现有原料数如下表所示
原料
B1
2 1
B2
1 3
B3
2 2
现有原料数 7 11
A1/t
A2/t
求使总利润最大的生产方案。
普通线性规划的一般形式为 f c1 x1 c2 x 2 cn x n 目标函数 min a x a x a x b 约束条件
11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n 2 a x a x a x b m2 2 mn n m m1 1 x j 0 ( j 1,2,, n)
因此,使总利润最大的生产方案是:生产 2t B1, 3t B2, 不生产 B3,最大利润为13万元。
二、模糊线性规划问题
普通线性规划其约束条件和目标函数都是确定的, 但在一些实际问题中,约束条件可能带有弹性, 目标函数可能不是单一的,可以借助模糊集的方 法来处理. 模糊线性规划是将约束条件和目标函数模糊化,引 入隶属函数,从而导出一个新的线性规划问题,它 的最优解称为原问题的模糊最优解.
模糊线性规划 一、模糊约束条件下的极值问题
例:设 X={x1,x2,x3,x4,x5} 为5个人的集合,X 中每个人 的身高为
X f(x)/cm x1 172 x2 180 x3 165 x4 174 x5 168
相关文档
最新文档