21届华杯赛初赛试题及详解
21届华杯赛试题及答案

21届华杯赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = x^2 - 4x + c,若f(x)在x=2时取得最小值,则c的值为多少?A. 0B. 4C. 8D. 12答案:C2. 一个等差数列的前三项分别为2, 5, 8,那么这个数列的第10项是多少?A. 23B. 24C. 25D. 26答案:A3. 已知一个圆的直径为10cm,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:B4. 一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A二、填空题(每题5分,共20分)5. 已知一个等比数列的前三项分别为1, 2, 4,那么它的第5项是______。
答案:86. 一个长方体的长、宽、高分别为2cm、3cm和4cm,那么它的体积是______立方厘米。
答案:247. 已知一个二次函数的顶点为(-1, 2),且经过点(2, 3),那么它的解析式是______。
答案:y = (x + 1)^2 + 28. 一个圆的周长为62.8cm,那么它的半径是______厘米。
答案:10三、解答题(每题10分,共20分)9. 已知一个直角三角形的两条直角边长分别为6cm和8cm,求这个三角形的斜边长。
答案:斜边长为10cm。
10. 已知一个等差数列的前三项分别为3, 7, 11,求这个数列的第20项。
答案:第20项为83。
四、证明题(每题10分,共20分)11. 证明:对于任意正整数n,等式(1+1/n)^n < e < (1+1/(n-1))^n 成立。
答案:略。
12. 证明:对于任意实数x,y,有|x+y| ≤ |x| + |y|。
答案:略。
五、综合题(每题20分,共20分)13. 已知一个圆心在原点,半径为5的圆,以及一个点A(7,0)。
求通过点A且与圆相切的直线方程。
第二十一届华杯赛初赛试题及答案

)个数字 0. D. 2014
A. 2017 B. 2016 C. 2015 【知识点】计算模块——多位数计算 【解析】 999 9 999 9 10
2016 个 2016 个
2016
1 10 2016 1
230 270 500 350 500 500 350 350 .
【答案】A 2. 如右图所示,韩梅家的左右两侧各摆了两盆花. 每 次,韩梅按照以下规则往家中搬一盆花: 先选择左 侧还是右侧,然后搬该侧离家最近的. 要把所有花 搬到家里,共有( )种不同的搬花顺序. A. 4 B. 6 C. 8 D. 10 【知识点】 计数模块——加法原理 【解析】 将图中花从左往右依次编号 1,2,3,4. 根据题目要求,有下列搬花方式: 2-1-3-4,2-3-4-1,2-3-1-4,3-4-2-4,3-2-1-4,3-2-4-1 共 6 种不同的搬花顺序. 【答案】B 3. 在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无 重叠,且拼接的边完全重合,则得到的新图形的边数为( ). A. 8 B. 7 C. 6 D. 5 【知识点】 几何——平铺 【解析】如图所示,共有 5 个边.
10 2016 10 2016 2 10 2016 1
10 2016 ( 10 2016 2) 1
1000 0 999 98 1
2016 个 2015个
999 98000 01
A 选项中 998 显然不能被 11 整除,由 99+8 4=131,13+1 4=17,显然 17 不能 被 13 整除,从而 998 也不能被 13 整除. B 选项中 988 显然不能被 11 整除,由 98+8 4=130,显然 130 能被 13 整除,从而 988 能被 13 整除; 884 显然不能被 11 整除,由 88+4 4=104,10+4 4=26,显然 26 能被 13 整除,从而 884 能被 13 整除; 847 中,8+7-4=11,显然能被 11 整除; 473 中,4+3-7=0,显然能被 11 整除; 737 中,7+7-3=11,显然能被 11 整除. C 选项中 997 显然不能被 11 整除,由 99+7 4=127,12+7 4=30,显然 30 不能被 13 整除,从而 997 也不能被 13 整除. D 选项中 987 显然不能被 11 整除,由 98+7 4=126, 12+6 4=36,显然 36 不能被 13 整除,从而 987 也不能被 13 整除. 【答案】B 4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么 共有( A. 1152 )种不同的排法. B. 864 C. 576 D.288
华杯赛初赛试题及答案

华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 2答案:C3. 一个圆的周长是2πr,那么它的直径是多少?A. πrB. 2rC. rD. 2πr答案:B4. 计算下列表达式的值:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)A. 5x^2 + x - 3B. 5x^2 + x + 5C. 5x^2 + x - 5D. 5x^2 + x + 3答案:A二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。
答案:32. 一个三角形的两个内角分别是40度和60度,那么第三个内角是______度。
答案:803. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-54. 一个数除以2的结果是3,那么这个数是______。
答案:6三、解答题(每题10分,共20分)1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:设数列的首项为a1=2,公差为d=5-2=3,根据等差数列的通项公式an=a1+(n-1)d,代入n=10,得a10=2+(10-1)*3=29。
答案:292. 一个长方形的长是宽的两倍,如果长是10厘米,那么宽是多少厘米?解答:设宽为x厘米,那么长就是2x厘米。
根据题意,2x=10,解得x=5。
答案:5厘米四、证明题(每题10分,共20分)1. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。
证明:设直角三角形的两直角边分别为a和b,斜边为c。
根据勾股定理,有a^2 + b^2 = c^2。
答案:证明完毕。
2. 证明:如果一个数的平方等于它的相反数,那么这个数只能是0。
证明:设这个数为x,那么x^2 = -x。
将方程重写为x^2 + x = 0,提取公因式得x(x + 1) = 0。
第21届华杯赛初赛试题及答案(小中组)

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.计算:124129106141237500113=().A.350B.360C.370D.380【答案】 A【解析】原式 (124 106) (129 141) (237 113) 500230 270 350 500500 500 3503502.如右图所示,韩梅家的左右两侧各摆了 2 盆花,每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的,要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.10【答案】 B【解析】韩梅共需要选择两次“左”和两次“右”,所以共有一下六种选择方式:“左左右右”“左右左右”“左右右左”“右右左左”“右左右左”“右左左右”。
3.在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【答案】 D【解析】如图所示,共有五个边。
4.甲、乙、丙、丁四支足球队进行比赛,懒羊羊说:甲第一,丁第四;喜羊羊说:丁第二,丙第三;沸羊羊说:丙第二,乙第一,每个的预测都只对了一半,那么,实际的第一名至第四名的球队依次是()A.甲乙丁丙B.甲丁乙丙C.乙甲丙丁D.丙甲乙丁【答案】 C【解析】分别把选项带入验算,只有 C 选项符合要求。
5.如右图,在55的空格内填入数字,使每行、每列及每个粗线框中的数字为 1,2,3,4,5,且不重复,那么五角星所在的空格内的数字是()A.1B.2C.3D.4【答案】 A【解析】如图所示:1 1 5 1 54 1 25 4 1 2 5 4 3 1 25 5 2 5 44 3 2 4 3 25 4 3 1 2 53 5 3 5 31 4 52 1 4 5 35 4 3 1 2 5 4 3 1 23 2 54 1 3 25 4 14 3 1 25 4 3 1 2 55 2 3 1 5 2 3 46.在除法算式中,被除数为 2016,余数为 7,则满足算式的除数共有()个.A.3B.4C.5D.6【答案】 B【解析】某个数除 2016 余 7 ,于是这个数整除 2016 7 2009 ,20097249,所以2009 共有 3 2 6 个约数,其中比 7 大的约数有4个(除了1和 7 )。
华杯赛初赛试题及答案

华杯赛初赛试题及答案华杯赛初赛试题及答案一、选择题1.下列选项中,哪个是所有外国歌曲?A.梅花香自苦寒来B.黄河之水天上来C.Let It GoD.没那么简单答案:C2.中国三大中心城市不包括以下哪个城市?A.北京B.上海C.深圳D.广州答案:D3."世界上最长的河流"指的是哪条河?A.长江B.亚马逊河C.尼罗河D.黄河答案:C4.下面哪个星座是水瓶座?A.1月20日-2月18日B.2月19日-3月20日C.3月21日-4月19日D.4月20日-5月20日答案:A5.以下哪个国家拥有最多的人口?A.印度B.巴西C.美国D.俄罗斯答案:A二、填空题1.请列举五大洲的名称。
答案:______、______、______、______、______。
2.请写出日本首都的名称。
答案:_________。
3.请填写下列成语:一日三秋。
答案:______。
4.下面哪个不是动物的名字?A.猫B.狗C.凳子D.鸟答案:C5.请写出中国古代四大发明中的任意一项。
答案:______。
三、问答题1.请简述中国的国旗和国徽的设计。
答案:中国的国旗背景为红色,中间有五颗黄色的星星,象征着中国共产主义革命的五类人民。
国徽上有天安门的图案以及麦穗和五星。
2.请写出任意一位中国的古代历史人物。
答案:_________。
3.请解释什么是环保。
答案:环保是指保护和改善环境,使人们的生活环境更加美好,并且不对地球造成不可逆转的伤害。
四、判断题判断下列句子的正误,正确的写“对”,错误的写“错”。
1.地球是宇宙中唯一有生命的行星。
答案:错2.北京是中国的首都。
答案:对3.《罗密欧与朱丽叶》是一部古希腊悲剧。
答案:错4."绿水青山就是金山银山"是习近平提出的口号。
答案:对5.手机可以用来打电话和上网。
答案:对五、作文题请根据自己的实际情况,写一篇关于节约用水的作文。
(文章正文内容,请根据个人实际情况进行书写,字数不限)答案:(以下为作文示例)在日常生活中,节约用水对我们每个人都非常重要。
第21届华杯赛初赛试卷及答案解析(小高组)

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题的圆括号内.)1.算式的结算中含有( )个数字 0. A.2017 B.2016C.2015D.2014【答案】C【解析】(102016- 1) 2 = (102016- 2) ⨯ 102016+ 1 = 999...998 000 (001)2015 个2015个2.已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A , B 两地出发,相向而行,在距 A 地140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒()米.A. 2 3B. 2 4D. 31 C.355 5【答案】D【解析】设甲速 v 1 乙速 v 2⎧ v 1140 7 ⎧ 14⎪ = = v 1 = v 300 -140 8 ⎪5⎪2 ⎨v1= 300 -180 = 2解得 ⎨= 16⎪⎪v⎪1803⎪ 25⎩v 2 +1 ⎩3.在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数, 则这个七位数最大是( )A.9981733B.9884737C.9978137D.9871773【答案】B【解析】1001 = 11⨯13 ⨯7 ,ACD 前三位都不是 11 或 13 的倍数988 = 13 ⨯76 , 884 = 13 ⨯68, 847 = 11⨯77 , 473 = 11⨯43 , 737 = 11⨯674.将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有()种不同的排行.A.1152B.864C.576D.288【答案】A【解析】1 + 2 + 3 + ... + 7 = 28 ,8的两边之和都是14有(1247)8(356), (1256)8(347), (1346)8(257), (2345)8(356) 四种分法共有 2 ⨯ 4 ⨯ 4!⨯ 3! =1152 种排法5.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,E A B∠AEC 是直角, CE = CB ,则 AE2等于() D CA.84B.80C.75D.64【答案】A【解析】EA BD G F CAG = BF = h , CG =10, CF =4AC 2= AG 2+ CG 2= h2+100CE 2= BC 2= BF 2+ CF 2= h2+16AE 2= AC 2- CE2=846.从自然数 1,2,3,…,2015,2016 中,任意取n个不同的数,要求总能在这n个不同的数中找到 5 个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112【答案】B【解析】1 到 2016 中,数字和最大 28。
第21届华杯赛小学高年级组初赛试题解析(成都)

报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第6题 在一个七位数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是() (A)9981733 答案:B 解析: 要使此 7 位数最大,则第一个数为 9,如果第二个数为 9,要使其 能被 13 整除,用试除法知 988 能被 13 整除,990 能被 11 整除, 而如果为 990,则 0 不能和它后面两位数构成三位数,则不能为 990, 所以第二个数不能为 9, 所以第二个数为 8,998 能被 13 整除, 则看第 4 位,用同样的方法可得此七位数为 9884737. ___________________________________________________________ (B)9884737 (C)9978137 (D)9871773
2 n 1 4 无法求出 n 值,不符合。
___________________________________________________________
报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第3题 有一种饮料包装瓶的容积是 1.5 升。现瓶里装了一些饮料,正放时饮 料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如右图。那么 瓶内现有饮料()升
则 ab 为 15 的倍数
ab 15 , 15 3 5 a b 4 ab 30 , 30 1 30 2 15 3 10 5 6 a b 8 ab 45 , 45 1 45 3 15 5 9 a b 12 ab 60 , 60 1 60 2 30 3 20 4 15 5 12 6 10(符合) a b 16
华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 中国数学华罗庚杯竞赛C. 中国数学华杯赛D. 全国青少年数学华罗庚杯竞赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的试题难度级别是?A. 初级B. 中级C. 高级D. 专家级答案:C二、填空题(每题5分,共20分)1. 华杯赛的全称是________。
答案:全国青少年数学华罗庚杯竞赛2. 华杯赛的举办周期是________。
答案:每年一次3. 华杯赛的参赛对象是________。
答案:初中生4. 华杯赛的试题难度级别是________。
答案:高级三、解答题(每题10分,共30分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。
答案:该等差数列的公差为3,所以第10项为2 + 3 * (10 - 1) = 31。
2. 一个圆的半径为5,求该圆的面积。
答案:圆的面积公式为πr²,所以面积为π * 5² = 25π。
3. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。
四、证明题(每题10分,共30分)1. 证明:如果一个三角形的两边相等,则这个三角形是等腰三角形。
答案:设三角形ABC中,AB = AC,根据等腰三角形的定义,如果一个三角形有两边相等,则这个三角形是等腰三角形,所以三角形ABC是等腰三角形。
2. 证明:如果一个四边形的对角线互相垂直平分,则这个四边形是菱形。
答案:设四边形ABCD中,对角线AC和BD互相垂直平分,根据菱形的定义,如果一个四边形的对角线互相垂直平分,则这个四边形是菱形,所以四边形ABCD是菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一届华罗庚金杯少年数学邀请赛
初赛试卷(小学高年级组)
(时间:2015年12月12日10:00~11:00)
一、选择题 (每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请
将表示正确答案的英文字母写在每题的圆括号内)
1. 算式999……9⏟ 2016个
×999……9⏟ 2016个
的结果中含有( )个数字0
(A )2017 (B )2016 (C )2015 (D )2014 【答案】:C
【解析】:找规律:9×9=81;99×99=9801;999×999=998001 …… 999……9⏟ 2016个
×999 (9)
⏟ 2016个
结果中有2016-1=2015个0
2. 已知A 、B 两地相距300米,甲、乙两人同时分别从A 、B 两地出发,相向而行,在距
A 地140米处相遇;如果乙每秒多行1米,则两人相遇处距
B 地180米。
那么乙原来的速度是每秒( )米
(A )23
5
(B )24
5
(C )3 (D )31
5
【答案】:D
【解析】:第一次相遇时:V 甲:V 乙=140:160=14:16,即设V 甲=14a ,V 乙=16a ; 由第二次相遇时:14a:(16a+1)=12:18,得a=1
5,则原来乙原来的速度为16a=
165
3.在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,
则这个七位数最大的()。
(A)9981733 (B)9884737 (C)9978137 (D)9871773 【答案】:B
【解析】:公开题,最大为B
4.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()
种不同的排法。
(A)1152 (B)864 (C)576 (D)288
【答案】:A
【解析】:除去8外,剩下的数之和为1+2+3+……+7=28,各一半为14。
14的可能组合有1+2+4+7与3+5+6一对,1+2+5+6与3+4+7一对,1+3+4+6与2+5+7一对,1+6+7与2+3+4+5一对
第一对中A
4×A33×2=288种,同理第二、三、四对中都为288种,288×4=1152种
4
5.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,角AEC是直角,CE=CB,则
AE的平方等于()
(A)84 (B)80 (C)75 (D)64
6.从自然数1,2,3,...,2015,2016中,任意取n个不同的数,要求总能在这n个不同的
数中找到5个数,他们的数字和相等,那么n的最小值等于()
(A)109 (B)110 (C)111 (D)112
二、填空题(每小题10分,满分40分)
7.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘
米,那么满足上述条件的所有正方形共有对。
8.,
那么
9.设q是一个平方数,如果q-2和q+2都是质数,就称q为P型平方数。
例如,9就是
一个P型平方数,那么小于1000的最大P型平方数是
10.有一个等腰梯形纸片,上底长度是2015,下底的长度是2016,用该纸片剪出一些等腰
梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来的锐角,则最多可以剪出个同样的等腰梯形。