轴向拉(压)杆截面上的应力

合集下载

轴向拉伸和压缩

轴向拉伸和压缩

第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。

(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。

这里要注意产生内力的前提条件是构件受到外力的作用。

2. 轴力 轴向拉(压)时,杆件横截面上的内力。

它通过截面形心,与横截面相垂直。

拉力为正,压力为负。

3. 应力 截面上任一点处的分布内力集度称为该点的应力。

与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。

轴拉(压)杆横截面上只有正应力。

4. 应变 单位尺寸上构件的变形量。

5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。

6. 极限应力 材料固有的能承受应力的上限,用σ0表示。

7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。

极限应力与许用应力的比值称为安全系数。

8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。

(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。

用截面法求轴力的三个步骤:截开、代替和平衡。

求出轴力后要能准确地画出杆件的轴力图。

画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。

2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。

泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。

杆件的轴向拉压变形及具体强度计算

杆件的轴向拉压变形及具体强度计算

根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A

2、设计截面:
A

FN

3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106

4
F
90106 Pa 90MPa
x
2

FN 2 A2

20103 152 106

89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。

轴向拉压杆件应力

轴向拉压杆件应力
轴向拉伸(或压缩)的应力
建筑工程学院 莫振宝
复习提问
1、截面法的步骤? ①截开:在需求内力的截面处,沿该截面假 想地把构件切开选取其中一部分为研究对象。
② 显示:将弃去部分对研究对象的作用,以 截面上的未知内力(正方向)来代替。
③平衡:根据研究对象的平衡条件,建立平衡 方程,以确定未知内力的大小和方向。
2、轴力的符号规定? 相对于截面拉力为正,压力为负。
作业:
1、有一低碳钢杆件受三力如图,
F1=30KN, F2=10KN, F3=20KN,求杆
件各截面处的内力。
F1
A
F2 •B C F3
2、试求图中所示各杆件横截面1-1、2-2、3-3上 的轴力。F1=50KN,F2=40KN,F3=30KN。
A
正应力正负的规定与轴力相同,以拉为正,以压为负。
例1 已知A1=2000mm2,A2=1000mm2,求图示杆各段横截面
上的正应力。
A1 A2 60kN 20kN
AB
CD
解:
A1 A2 60kN 20kN
A B CD
轴力图
20kN ⊕
-○
40kN
AB
FN AB A1
40103 2000
20MPa
Ⅲ 30kN
FN3 30 0
FN3

FN3 30kN
练习 画图示杆的轴力图。 3kN 2kN 2kN A B CD
3kN ⊕ 1⊕kN
○-
1kN
轴力图
一、横截面的正应力
拉压杆的应力及强度条件
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
FN

02.3.应力·拉(压)杆内的应力解析

02.3.应力·拉(压)杆内的应力解析
第8页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
F
a b
a
b
c
d
c d
F
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。由于假设材料是均匀的,而杆 的分布内力集度又与杆件纵向线段的变形相对应,因而杆件 横截面上的正应力s呈均匀分布,亦即横截面上各点处的正 应力s 都相等。由合力概念知:
第12页
武生院建筑工程学院:材料力学
• 讨论题
第13页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
例题2-2 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
第14页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
解:Ⅰ段柱横截面上的正应力
FN1 50 103 N s1 A1 (0.24 m) (0.24 m) 0.87 106 P a 0.87 MP a (压应力)
Ⅱ.轴向拉(压)杆横截面上的应力
(1) 与轴力相应的只可能是正应力s,与切应力无关; (2) s在横截面上的变化规律:横截面上各点处s 相等 时,可组成通过横截面形心的法向分布内力的合力——轴 力FN;横截面上各点处s 不相等时,特定条件下也可组成 轴力FN。
第7页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
Ⅱ段柱横截面上的正应力
FN 2 150103 N s2 0.37 m 0.37 m A2 1.1106 Pa 1.1 MPa (压应力)
s 2 s1
所以,最大工作应力为 smax= s2= -1.1 MPa (压应力)

轴向拉伸与压缩时横截面上的应力

轴向拉伸与压缩时横截面上的应力
解1计算轴力由截面法可求得杆中各横截面上的轴力均为ffnf20knf20kn1212ffafnff图47nb2计算最大正应力图47bba1hha2h0cahh0b251020mm2300mm2则杆件内的最大正应力则杆件内的最大正应力为为maxmax由于整个杆件轴力相同故最大正应力发生在面积较小的横截面上即开槽部分的横截面上如图47c其面积为maxmpa667mpaa300fn10203?负号表示最大正应力为压应力
例 一正中开槽的直杆,承受轴向载荷F =20kN的作用, 如图4-7a所示。已知h = 25mm,h0 = 10mm,b = 20mm。试求 杆内的最大正应力。
1 2
F
1 2
F
解 (1) 计算轴力 由截面法可求得杆中 各横截面上的轴力均为
a)
FN F
b)
图4-7
FN = -F = -20kN
A1
图4-6
由材料的均匀性、连续性假设可以推断出轴力在横截面 上的分布是均匀的,而且都垂直于横截面,故横截面上的正 应力也是均匀分布的,如图4-6c所示。因此,轴向拉伸与压 缩时的横截面上的正应力计算公式为
FN σ= A
σ 式中, 为横截面上的正应力;FN 为横截面上的内力(轴
力);A 为横截面面积。 正应力的正负号与轴力的正负号一致。即拉应力正, 压应力为负。
h0 h
A2
h
b b
c)
(2)计算最大正应力 图4-7 由于整个杆件轴力相同,故最大正应力发生在面积较小 的横截面上,即开槽部分的横截面上如图4-7c,其面积为
A = (h-h0 )b = (25-10)
则杆件内的最大正应力 σ max 为
×20mm2 =
300mm2
σ max

拉压杆横截面上的应力应变及胡克定律

拉压杆横截面上的应力应变及胡克定律

拉、压杆横截面上的应力、应变及胡克定理
一、杆件在一般情况下应力的概念
用同一材料制成而横截面积不同的两杆,在相同 拉力的作用下,随着拉力的增大,横截面小的杆件必 然先被拉断。这说明,杆的强度不仅与轴力的大小有 关,而且还与横截面的大小有关,即杆的强度取决于 内力在横截面上分布的密集程度。分布内力在某点处 的集度,即为该点处的应力。
A 力平观在面察横假到截设:面。横上向的线分在布变是形均前匀后的均,为且直都线垂,直且于都横垂截直面于。杆的轴线,
只是其正间应距力增大,(缩其小计)算,式纵为向间距减小(增大),所有正方形的
网格均变成大小相同的长方形。
上一页 返回首页 下一页
一中段开槽的直杆,承受轴向载荷F=20kN作用,
机械工业出版社
同的。当=0时,横截面上的正应力达到最大值
max =
当 =45时,切应力达到最大值
max
=
2
当 =90时, 和均为零,表明轴向拉(压)杆在平
行于杆轴的纵向截面上无任何应力。
上一页 返回首页 下一页
= cos2
= sin 2
2
(6-3)
机械工业出版社

A11—1
A22—2
h h0 h
中段正应力大。
A2=(h-h0)b=(25-10)20mm2
=300mm2
F
b
b
FN
3)计算最大正应力
max
FN A2
20103 300
N/mm 2
66.7MPa
负号表示其应力为负(压力)。
上一页 返回首页 下一页
三、斜截面上的应力
轴向拉(压)杆的破坏有 F
机械工业出版社

解 1)作轴力图。用截 面法求得CD段和BC段的轴力

§4-3 轴向拉(压)杆的应力

§4-3  轴向拉(压)杆的应力

§4-3 轴向拉(压)杆的应力1.应力的概念为了解决杆件的强度问题,不仅要知道当外力达到一定值时杆件可能沿哪个截面破坏,而且还要知道该截面上哪个点首先开始破坏。

因而仅仅知道杆件截面上内力的合力是不够的,还需要进一步研究截面上内力的分布情况,从而引入了应力的概念。

应力就是杆件截面上分布内力的集度。

若考察某受力杆截面m-m 上M 点处的应力,如图4-8所示。

图4-8 一点的应力在M 点周围取一很小的面积A ∆,设A ∆面积上分布内力的合力为F ∆,则面积A ∆上内力F ∆的平均集度为A F p m ∆∆= (4-1) 式中m p 称为面积A ∆上的平均应力。

当微小面积A ∆趋近于零时,就得到截面上M 点处的总应力,即dA dFA Fp A =∆∆==∆lim 0(4-2) 由于F 是矢量,故P 也是矢量,其方向一般不与截面垂直或平行,因此可以分解成与截面垂直的法向分量正应力σ和与截面向切的切向分量切应力(剪应力)τ。

从应力的定义可知,应力是与“截面”和“点”这两个因素分不开的。

一般地说,杆件在外力作用下,任一截面上不同点的应力值是不同的,同一点位于不同截面上的应力值也是不同的。

因此在谈内力时,应明确是哪个截面哪个点处的应力。

应力的量纲为⎥⎦⎤⎢⎣⎡2长度力,其国际单位为Pa(帕斯卡),1Pa=1牛顿/米2。

工程中常用MPa ,1MPa=106Pa 。

2.拉(压)杆横截面上的应力对于拉(压)杆,横截面上的内力为轴力F N ,与轴力对应的应力为正应力σ。

观察受拉等直杆(图4-9(a))的变形情况。

首先在等直杆侧面作两条横向线ab 和cd ,代表其横截面,然后在杆的两端施加一对轴向拉力F 使杆发生变形。

可以观察到,横向线ab 和cd 移动到a’b’和c’d’的位置了,如图4-9(b)所示。

对于压杆,同样可以观察到该现象。

根据这一现象,可以假设原为平面的横截面在杆变形后仍为平面,即平面假设。

根据这一假设,拉(压)杆变形后两横截面将沿杆轴线方向作相对平移,也就是说,拉(压)杆在其任意两个横截面之间纵向线段的伸长变形是均匀的。

第三节轴向拉压杆界面上的应力

第三节轴向拉压杆界面上的应力
第三节轴向拉压杆界面上的应力
一、截面应力:
1、截面应力----轴杆在在外力作用下产生内力,内力除位:Pa或N/m2
2)符号:
受拉为:+
受压为:-
二、例题:
例1、如图,变截面A、B、C、D,
已知P1=20KN,P2=P3=35KN,di=12mm,d2=16mm,d3=24mm, 求杆的应力
2)轴向变形量(应变)---或伸长或缩短
变形量:b b1 b
b b1 b 应变: b b
b
b
b1
b
b1
3)横向变形量(应变)---或伸长或缩短
横向变形量: d d1 d
d d1 d 横向应变: d d
/
b
d
b
b1
d1 d1
b
b1
4)符号:
受拉为正,受压为负
四、胡克定律:
1、胡克定律
在弹性限度内,应变与应力成正比,即:
E
E 弹性模量
2、胡克定律变形:
E
l l
N A
Nl l EA
3、泊松比: 在弹性限度内,轴向应变与横向应变之比是定值,成 为泊松比

/
D
C B A P3 P1 P2
P1
d3
d2
d1
例2、如图,一等直混凝土柱子,横截面边长为200mm的正方形,
如果在截面A和B上受有载荷P1=200KN,P2=100KN,试求在1-1,
2-2截面上的应力
P1
2m
1 P2
1
2m
2
2
三、拉杆变形:
1)拉压变形----一根轴载受到轴向力作用下,伸长或缩短的变形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-6
轴向拉(压)杆截面上的应力
【解】(1)内力分析。取结点D为研究对象,其受力图如图56(b)所示,求各杆轴力:
∑Fy=0,FNBD·cos 45°-F=0,FNBD=2F=31.4 kN ∑Fx=0,-FNCD-FNBD·sin 45°=0,FNCD=-F=-22.2 kN可见, BD杆受拉,CD杆受压。 (2)求各杆的应力。 根据公式(5-2)可得
工程力学
Hale Waihona Puke 轴向拉(压)杆截面上的应力
1.1 轴向拉压杆横截面上的应力
在已知轴向拉压杆横截面轴力的情况 下,确定该横截面的应力,必须要首先了 解横截面上应力的分布规律。由于应力分 布与构件变形之间存在着一定的物理关系, 因此可以从杆件的变形特点上着手,分析 应力在横截面上的变化规律。
轴向拉(压)杆截面上的应力
现以拉杆为例,杆的横截面积为A,受轴向拉力F的作
用,如图5-7(a)所示。为了研究任意斜截面上的应力,用
一个与横截面夹角为α的斜截面m—m,将杆分成两部分
[见图5-7(b)]。用Aα表示斜截面面积,用pα表示斜截面 上的应力,Fα表示斜截面上分布内力的合力。按照研究横截 面上应力分布情况的方法,同样可以得到斜截面上各点处的
轴向拉(压)杆截面上的应力
【例5-3】
工程力学
首先取一等直杆,在其表面等间距地刻画出与杆轴线平行的 纵向线和垂直轴线的横向线,如图5-5(a)所示。当杆受到拉力 F作用时,观察变形后的杆件,发现:纵向线仍为直线,且仍与 轴线平行;横向线仍为直线,且仍与轴线垂直;横向线的间距增 加,纵向线的间距减小,变形前横向线和纵向线间相交得到的一 系列正方形都沿轴向伸长,横向缩短,变成一系列矩形,如图55(b)所示。根据观察到的变形现象和材料的连续性假设,可以 由表及里地对杆件内部变形做出如下假设:变形前为平面的横截 面,在变形后仍然保持为平面,并且垂直于轴线,只是各横截面 沿杆轴线间距增加,此即为平面假设。
轴向拉(压)杆截面上的应力
由内力、应力的概念可知,横截面上应力的合力即 为横截面上的轴力FN,由于轴力垂直于横截面,可知拉压 杆横截面上只有垂直于截面的正应力σ,因此有
即 (5-2)
式中,A为横截面面积。正应力的正负号随轴力的正 负号而定,即拉应力为正,压应力为负。
轴向拉(压)杆截面上的应力
【例5-2】
其中,BD杆承受拉应力,CD杆承受压应力。
轴向拉(压)杆截面上的应力
1.2 轴向拉压杆斜截面上的应力
前面分析了等直杆拉伸或压缩时横截 面上的应力。但实验表明,铸铁试件受压 时,并不是沿着横截面方向发生破坏,而 是沿着斜截面方向破坏。所以需要研究拉 (压)杆在任意斜截面上的应力情况。
轴向拉(压)杆截面上的应力
应力pα相等的结论。再由左段的平衡条件[见图5-7(b)] 可知
F=Fα
(a) (b)
轴向拉(压)杆截面上的应力
图5-7
轴向拉(压)杆截面上的应力
轴向拉(压)杆截面上的应力
可见,轴向拉伸(压缩)时,在杆件 的横截面上,正应力为最大值;在与杆件 轴线成45°的斜截面上,即α=45°时,切 应力为最大值,且τmax=σ2。此外,当α= 90°时,σα=τα=0,这表示在平行于杆件 轴线的纵向截面上无任何应力。
轴向拉(压)杆截面上的应力
图5-5
轴向拉(压)杆截面上的应力
由于杆件的连续性假设,可假想杆件是 由许多纵向纤维所组成的,由平面假设可以 推断,两任意横截面间的纵向纤维具有相同 的伸长变形。由于材料是均匀的,不难想象, 各纵向纤维变形相同,受力也应相同,由此 可以推断横截面上各点处的应力均匀分布, 如图5-5(c)所示。
相关文档
最新文档