尺规作图总结

合集下载

尺规作图专题详尽归纳

尺规作图专题详尽归纳

考点名称:尺规作图【学习目标】1.了解什么是尺规作图.2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由.4.学会使用精练、准确的作图语言叙述画图过程.5.学会利用基本作图画三角形等较简单的图形.6.通过画图认识图形的本质,体会图形的内在美.【基础知识精讲】1.尺规作图:①定义:限定只用直尺和圆规来完成的画图,称为尺规作图.注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.②步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图; (4)写出作法步骤,即作法。

(根据题目要求来定是否需要写出作法)2.尺规作图中的最基本、最常用的作图称为基本作图.任何尺规作图的步骤均可分解为以下五种.3.基本作图共有五种:(1)画一条线段等于已知线段.如图24-4-1,已知线段DE.求作:一条线段等于已知线段.作法:①先画射线AB.②然后用圆规在射线AB上截取AC=MN.线段AC就是所要作的线段.(2)作一个角等于已知角.如图24-4-2,已知∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线.如图24-4-3,已知线段AB.求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线,如图24-4-4.b.经过已知直线外一点作这条直线的垂线.如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.如图24-4-6,已知∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC.OC就是所求的射线.注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.(4)以点×为圆心,××为半径画弧,交××于点×.(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.(7)在∠×××的外部或内部画∠×××=∠×××.注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:(1)画线段××=××.(2)画∠×××=∠×××.(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等.但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.【经典例题精讲】例1已知两边及其夹角,求作三角形.如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:①作∠MAN=∠α.②在射线AM、AN上分别作线段AB=a,AC=b.③连结BC.如图24-4-8,△ABC即为所求作的三角形.注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.例2如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.如图24-4-10,△ABC即为所求的等腰三角形.例3已知三角形的一边及这边上的中线和高,作三角形.如图24-4-11,已知线段a,m,h(m>h).求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由的关系可作出点B和点C,于是△ABC即可得到.作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.(3)在DE或BE的延长线上取.(4)连结AB、AC.则△ABC即为所求作的三角形.注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.例4如图24-4-13,已知线段a.求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.作法:(1)作线段a的垂直平分线,等分线段a.(2)作线段AC,使.(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.例5如图24-4-15,已知∠AOB和C、D两点.求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.作法:(1)连结CD.(2)作线段CD的中垂线l.(3)作∠AOB的角平分线OM,交l于点P,P点为所求.注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.【中考考点】例6 (2000·安徽省)如图24-4-16,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.二处C.三处 D.四处分析:到直线距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.解:分别作相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.答案:D.注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.例7 (2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK 与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.∴x=48.答:这个正方形零件的边长为48cm.注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.例8 (2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径.解:如图24-4-18②③所示.【常见错误分析】例9如图24-4-19,已知线段a、b、h.求作△ABC,使BC=a,AC=b,BC边上的高AD=h.并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢?错解:(1)作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a.如图24-4-20,则△ABC就是所求作的三角形.(2)作出的三角形唯一.(3)得出结论:有两边及一边上的高对应相等的两三角形全等.误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部.正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a(在点C的两侧).则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等.注意:与三角形的高有关的题目应慎之又慎.【学习方法指导】学习基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.【规律总结】画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.拓展: 1.利用基本作图作三角形:(1)已知三边作三角形; (2)已知两边及其夹角作三角形; (3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图:(1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.(3)作圆的内接正方形和正六边形.附件:尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.。

(完整版)八上数学尺规作图归纳总结

(完整版)八上数学尺规作图归纳总结

八上数学教师辅导讲义学员编号:年级:新初二课时数:学员姓名:辅导科目:数学学科教师:赵老师课题尺规作图授课日期及时段教学目的教学内容一、知识梳理(一)尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

(二)五种基本作图:1、作一条线段等于已知线段;已知:如图,线段a .求作:线段AB,使AB = a . 訂〈己知)作法:A 1H p①作射线AP;:作线段等干记知线段)②在射线AP上截取AB=a .则线段AB就是所求作的图形。

2、作一个角等于已知角;3、作已知线段的垂直平分线;已知:如图,线段MN.求作:点O,使MO=NQ即0是MN的中点)作法:完美WORD 格式.整理①分别以M N为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P, Q;②连接PQ交MN于O.则点O就是所求作的MN的中点。

(试问:PQ与MN有何关系?)4、作已知角的角平分线;已知:如图,/ AOB求作:射线OP,使/ AOP=Z BOP (即卩OP平分/ AOB 。

作法:①以O为圆心,任意长度为半径画弧,分别交OA OB于M N;②分别以M N为圆心,大于1/2MN的相同线段为半径画弧,两弧交/ AOB内于P;③作射线OP则射线OP就是/ AOB的角平分线。

5、过一点作已知直线的垂线;①以已知点为圆心,以任意长为半径作弧,交直线于②分别以A、B为圆心,以大于1/2AB长为半径分别作弧,两弧分别交于点M点N;③连接MN则直线MN为所求作的直线。

6、过直线外一点作直线的平行线(三)尺规作图拓展(1)已知三边作三角形。

已知:如图,线段a, b, c.求作:△ ABC 使AB = c , AC = b , BC = a.作法:(作线段的中点)(作角平分线)B两点;--------------------- b(巳知)(已知三边作三凭形)作线段AB = c ;以A 为圆心b 为半径作弧,以 B 为圆心 为半径作弧与前弧相交于 C ;连接AC, BG则厶ABC 就是所求作的三角形。

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。

如图①②连接MN,过MN的直线即为线段的垂直平分线。

如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。

如图①。

②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。

如图②。

③连接OP,OP即为角的平分线。

(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。

5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。

专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。

初中最基本的尺规作图总结

初中最基本的尺规作图总结

尺规作图一、熟练掌握尺规作图题的规范语言用直尺作图的几何语言:1. ①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;用圆规作图的几何语言:2. ①在××上截取××=××;;②以点×为圆心,××的长为半径作圆(或弧)③以点×为圆心,××的长为半径作弧,交××于点×;.④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×三、了解尺规作图题的一般步骤尺规作图题的步骤:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;1.已知:2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;一般要保留作图当不要求写作法时,作法:能根据作图的过程写出每一步的操作过程.3.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找.痕迹.作法在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,可见在解作图题不需要写出作法,而且在许多中考作图题中,又往往只要求保留作图痕迹,. 时,保留作图痕迹很重要五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。

中考专题复习——初中最基本的尺规作图总结与典型例题

中考专题复习——初中最基本的尺规作图总结与典型例题

初中基本尺规作图总结与典型例题一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

(完整版)初中最基本的尺规作图总结

(完整版)初中最基本的尺规作图总结

尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

【中考数学考点梳理】考点18_尺规作图与定义、命题、定理

【中考数学考点梳理】考点18_尺规作图与定义、命题、定理

考点18 尺规作图与定义、命题、定理一、尺规作图1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.3.根据基本作图作三角形1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题. 2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.三、定义与命题1.一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.2.判断一件事情的语句叫做命题.3.命题的组成:命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.4.命题的表达形式:命题可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.二、真命题、假命题1.正确的命题叫做真命题.2.要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明).3.要说明一个命题是假命题,只需举一个反例即可.三、逆命题1.把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题.2.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.3.正确写出一个命题的逆命题的关键是能够正确区分这个命题的题设和结论.4.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.四、公理与定理1.如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫做公理.2.如果一个命题可以从公理或其他命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理.3.公理和定理都是真命题,都可作为证明其他命题是否为真命题的依据.4.由定理直接推出的结论,并且和定理一样可作为进一步推理依据的真命题叫做推论.五、互逆命题1.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.2.任何一个命题都有逆命题,而一个定理并不一定有逆定理.3.角平分线性质定理及其逆定理、线段的垂直平分线性质定理及其逆定理、勾股定理及其逆定理等都是互逆定理.六、反证法1.定义:假设命题的结论不成立,即命题结论的反面成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明方法叫做反证法.2.反证法的步骤:①假设命题结论的反面正确;②从假设出发,经过逻辑推理,推出与公理、定理、定义或已知条件相矛盾的结论;③说明假设不成立,从而得出原命题正确.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.1.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【答案】详见解析【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.【详解】解:如图,点P即为所求.作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B为圆心,以CD长为半径画弧,交BC于F,(3)以点F为圆心,以DE长为半径画弧,交前弧于点M,(3)连接BM,并延长BM与AC交于点P,则点P即为所求.【点睛】本题考查了作图——基本作图.解决本题的关键是掌握基本作图方法.2.如图,Rt ABC 中,90ABC ∠=︒,根据尺规作图的痕迹判断以下结论错误的是( )A .DB DE =B .AB AE =C .EDC BAC ∠=∠D .DAC C ∠=∠【答案】D 【分析】由尺规作图可知AD 是∠CAB 角平分线,DE ⊥AC ,由此逐一分析即可求解.【详解】解:由尺规作图可知,AD 是∠CAB 角平分线,DE ⊥AC ,在△AED 和△ABD 中:∵=90⎧∠=∠⎪∠=∠⎨⎪=⎩AED ABD EAD BAD AD AD ,∴△AED ≌△ABD(AAS),∴DB=DE ,AB=AE ,选项A 、B 都正确,又在Rt △EDC 中,∠EDC=90°-∠C ,在Rt △ABC 中,∠BAC=90°-∠C ,∴∠EDC=∠BAC ,选项C 正确, 选项D ,题目中缺少条件证明,故选项D 错误.故选:D.【点睛】本题考查了尺规作图角平分线的作法,熟练掌握常见图形的尺规作图是解决这类题的关键.3.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CADB .CD 平分∠ACBC .AB ⊥CD D .AB=CD【答案】D 【分析】根据作图判断出四边形ACBD 是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案【详解】解:由作图知AC=AD=BC=BD ,∴四边形ACBD 是菱形,∴AB 平分∠CAD 、CD 平分∠ACB 、AB ⊥CD ,不能判断AB=CD ,选:D .【点睛】本题主要考查线段垂直平分线的尺规作图、菱形的判定方法等,解题的关键是掌握菱形的判定与性质.1.已知AOB ∠,作AOB ∠的平分线OM ,在射线OM 上截取线段OC ,分别以O 、C 为圆心,大于12OC的长为半径画弧,两弧相交于E ,F .画直线EF ,分别交OA 于D ,交OB 于G .那么,ODG 一定是( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形 【答案】C【分析】根据题意知EF 垂直平分OC ,由此证明△OMD ≌△ONG ,即可得到OD=OG 得到答案.【详解】如图,连接CD 、CG ,∵分别以O 、C 为圆心,大于12OC 的长为半径画弧,两弧相交于E ,F ∴EF 垂直平分OC ,设EF 交OC 于点N ,∴∠ONE=∠ONF=90°,∵OM 平分AOB ∠,∴∠NOD=∠NOG ,又∵ON=ON ,∴△OMD ≌△ONG ,∴OD=OG ,∴△ODG 是等腰三角形,故选:C.【点睛】此题考查基本作图能力:角平分线的做法及线段垂直平分线的做法,还考查了全等三角形的判定定理及性质定理,由此解答问题,根据题意得到EF 垂直平分OC 是解题的关键.2.如图,已知AB =AC ,BC =6,尺规作图痕迹可求出BD =( )A .2B .3C .4D .5【答案】B 【分析】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD 为∠BAC 的角平分线,而AB=AC ,由等腰三角形的三线合一知D 为BC 重点,BD=3,故选B【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质. 3.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长 C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长 【答案】B 【分析】根据作角平分线的方法进行判断,即可得出结论.【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长;第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.考向二 复杂作图利用五种基本作图作较复杂图形.1.如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上.【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠,∴ABP CDP ∆∆∽,∴AB AP CD CP . ∵,M N 分别为AB ,CD 的中点,∴2AB AM =,2CD CN =,∴=AM AP CN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.2.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.【答案】A【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.1.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.2.如图,在Rt ABC中.()1利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;()2利用尺规作图,作出()1中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】()1作图见解析;(2)作图见解析.∠平分线上,再根据角平分线的尺【分析】()1由点P到AB的距离(PD的长)等于PC的长知点P在BAC规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P为圆心,以大于点P到AB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD即为所求).【详解】()1如图,点P即为所求;()2如图,线段PD即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.考向三圆中的作图问题1.如图,已知,.(1)在图中,用尺规作出的内切圆,并标出与边,,的切点,,(保留痕迹,不必写作法);(2)连接,,求的度数.【答案】(1)作图见解析;(2)70°.【解析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.解析:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.考点:1.作图—复杂作图;2.三角形的内切圆与内心.2.如图,在等腰△ABC中,AB=AC=BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于1 2EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.B.10C.4D.5【答案】D【分析】如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.【详解】解:如图,设OA交BC于T.∵AB=AC=AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AE2=,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.【点睛】本题考查作图——复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.1.(1)如图,已知线段AB和点O,利用直尺和圆规作ABC,使点O是ABC的内心(不写作法,保留作图痕迹);(2)在所画的ABC 中,若90,6,8C AC BC ∠=︒==,则ABC 的内切圆半径是______.【答案】(1)作法:如图所示,见解析;(2)2.【分析】(1)内心是角平分线的交点,根据AO 和BO 分别是∠CAB 和∠CBA 的平分线,作图即可; (2)连接OC ,设内切圆的半径为r ,利用三角形的面积公式,即可求出答案.【详解】解:(1)作法:如图所示:①作射线AO 、BO ; ②以点A 为圆心,任意长为半径画弧分别交线段AB ,射线AO 于点D ,E ; ③以点E 为圆心,DE 长为半径画弧,交上一步所画的弧于点F ,同理作出点M ; ④作射线AF ,BM 相交于点C ,ABC 即所求.(2)如图,连接OC ,∵90,6,8C AC BC ∠=︒==,由勾股定理,得:10AB =,∴168242ABC S=⨯⨯=; ∵ABC AOB AOC BOC SS S S ∆∆∆=++,∴11124222AB r AC r BC r •+•+•=,∴1(1068)242r ⨯++•=, ∴2r ,∴ABC 的内切圆半径是2;故答案为:2;【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径.2.如图,点O 是正方形,ABCD 的中心.(1)用直尺和圆规在正方形内部作一点E (异于点O ),使得;EB EC =(保留作图痕迹,不写作法) (2)连接,EB EC EO 、、求证:BEO CEO ∠=∠.【答案】(1)见解析;(2)见解析【分析】(1)作BC 的垂直平分线即可求解;(2)根据题意证明EBO ECO ≅即可求解.【详解】()1如图所示,点E 即为所求.()2连接OB OC 、 由()1得:EB EC =O 是正方形ABCD 中心,,OB OC ∴=∴在EBO △和ECO 中,EB EC EO EO OB OC =⎧⎪=⎨⎪=⎩(),EBO ECO SSS ∴≅BEO CEO ∴∠=∠. 【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知正方形的性质、垂直平分线的作图及全等三角形的判定与性质.考向四逻辑推理1.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.2.如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比乙需要加强与他人的沟通合作能力;④乙的综合评分比甲要高.其中合理的是( ) A .①③B .②④C .①②③D .①②③④ 【答案】D【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确; 因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故①正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故①正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故①正确;故选:D ;【点睛】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;1.疫情期间,甲、乙、丙、丁4名同学约定周一至周五每天做一组俯卧撑.为了增加趣味性,他们通过游戏方式确定每个人每天的训练计划.首先,按如图方式摆放五张卡片,正面标有不同的数字代表每天做俯卧撑的个数,反面标有1x ,2x ,3x ,4x ,5x 便于记录. 具体游戏规则如下:甲同学:同时翻开1x ,2x ,将两个数字进行比较,然后由小到大记录在表格中,3x ,4x ,5x 按原顺序记录在表格中;乙同学:同时翻开1x ,2x ,3x ,将三个数字进行比较,然后由小到大记录在表格中,4x ,5x 按原顺序记录在表格中;以此类推,到丁同学时,五张卡片全部翻开,并由小到大记录在表格中.下表记录的是这四名同学五天的训练计划:根据记录结果解决问题:(1)补全上表中丙同学的训练计划;(2)已知每名同学每天至少做30个,五天最多做180个.①如果236x =,340x =,那么1x 所有可能取值为__________________________;②这四名同学星期_________做俯卧撑的总个数最多,总个数最多为_________个.【答案】(1)见解析;(2)①41,42,43;②三,162.【分析】(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,然后由小到大记录在表格中,x 5按原顺序记录在表格中即可.(2)①由题意44523123303640x x x x x x x x ===,<<<<,,,推出x 5可以取31,32,33,34,35,x 1>40,应用列举法即可解决问题.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设453031x x ==,,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.应用列举法即可解决问题.【详解】解:(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,由乙同学可知231x x x <<,又结合丁同学可知42x x <,所以4231x x x x <<<,然后由小到大记录在表格中,x 5按原顺序记录在表格中补全表中丙同学的训练计划:42315x x x x x ,,,,.故答案为:42315x x x x x ,,,,.(2)①由题意x 4=30,∵45231233640x x x x x x x ==<<<<,,,∴x 5可以取31,32,33,34,35,x 1>40,当x 5=31时,x 1的最大值为43,当x 5=32时,x 1的最大值为42,当x 5=33时,x 1的最大值为41,当x 5=34或35时,x 1的值不符合题意,∴x 1的可能取41,42,43.故答案为:41,42,43.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设x 4=30,x 5=31,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.当x 2=33时,x 3+x 1的最大值为180-30-31-33=86, 若x 1=44,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=34时,x 3+x 1的最大值为180-30-31-34=85,若x 1=43,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=35时,x 3+x 1的最大值为180-30-31-33=84, 若x 1=43,则x 3=41,此时星期三的做俯卧撑的总个数为160,综上所述,星期三的做俯卧撑的总个数的最大值为162.故答案为:162.【点睛】本题考查推理与论证,统计等知识,解题的关键是理解题意,学会推理论证的方法.考向五 真命题、假命题1.判断语句是否为命题要抓住两条:①命题必须是一个完整的带有判断性的句子,通常是陈述句(包括肯定句和否定句),而疑问句和命令性语句都不是命题;②命题必须对某件事作出肯定或否定的判断. 2.辨别命题的真假时,对命题的正确性理解一定要准确,进行辨别时要熟练掌握相关的定理、公理、定义.要说明一个命题是假命题,通常可以通过举反例的方法解决.命题的反例是具备命题的条件,但不具备命题的结论的实例.1.下列判断正确的是( )A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B .一组数据6,5,8,7,9的中位数是8C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则甲组学生的身高较整齐D .命题“既是矩形又是菱形的四边形是正方形”是真命题【答案】D【分析】根据抽样调查、中位数定理、命题的判断进行分析即可;【详解】解:A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A 选项错误; B .一组数据6,5,8,7,9的中位数是7,所以B 选项错误;C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则乙组学生的身高较整齐,所以C 选项错误;D .命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D 选项正确.故选:D .【点睛】本题主要考查了数据分析的知识点应用,准确判断是解题的关键.2.从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-;(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1【答案】C【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =, ∵面积是2240cm π,则2360n r π=240π,则2nr =360×240,则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题,则随机抽取一个是真命题的概率是34,故选C. 【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.1.下列命题中真命题是( )A 2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形 【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.2.下列命题是真命题的是( )A .一个角的补角一定大于这个角B .平行于同一条直线的两条直线平行C .等边三角形是中心对称图形D .旋转改变图形的形状和大小【答案】B 【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A 、一个角的补角不一定大于这个角,故A 错误;B 、平行于同一条直线的两条直线平行,故B 正确;C 、等边三角形是轴对称图形,不是中心对称图形,故C 错误;D 、旋转不改变图形的形状和大小,故D 错误;故选:B .【点睛】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.考向六 互逆命题与互逆定理1.如果两个命题的题设和结论正好相反,那么这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,则称这两个定理互为逆定理,其中一个定理叫做另一个定理的逆定理.3.“题设与结论正好相反”可理解为第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设.1.下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等【答案】D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B 、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故选项不符合题意;C 、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D 、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理. 2.下列命题:(1)对于(0)k y k x=≠,当0k >时,y 随x 的增大而减小;(2)菱形的对角线互相垂直;(3)。

尺规作图知识归纳

尺规作图知识归纳

尺规作图知识归纳考点名称:尺规作图尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。

一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。

其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。

运用尺规作图可以画出与某个角相等的角,十分方便。

尺规作图的中基本作图:作一条线段等于已知线段;作一个角等于已知角;作线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线。

还有:已知一角、一边做等腰三角形已知两角、一边做三角形已知一角、两边做三角形依据公理:还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。

注意:保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。

尺规作图方法:任何尺规作图的步骤均可分解为以下五种方法:·通过两个已知点可作一直线。

·已知圆心和半径可作一个圆。

·若两已知直线相交,可求其交点。

·若已知直线和一已知圆相交,可求其交点。

·若两已知圆相交,可求其交点。

【学习目标】1.了解什么是尺规作图.2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由.4.学会使用精练、准确的作图语言叙述画图过程.5.学会利用基本作图画三角形等较简单的图形.6.通过画图认识图形的本质,体会图形的内在美.【基础知识精讲】1.尺规作图:限定只用直尺和圆规来完成的画图,称为尺规作图.注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.2.尺规作图中的最基本、最常用的作图称为基本作图.3.基本作图共有五种:(1)画一条线段等于已知线段.如图24-4-1,已知线段DE.求作:一条线段等于已知线段.作法:①先画射线AB.②然后用圆规在射线AB上截取AC=MN.线段AC就是所要作的线段.(2)作一个角等于已知角.如图24-4-2,已知∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线.如图24-4-3,已知线段AB.求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线,如图24-4-4.b.经过已知直线外一点作这条直线的垂线.如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.如图24-4-6,已知∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC.OC就是所求的射线.注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.通过这一节的学习,同学们要掌握下列作图语言:(1)过点某和点某画射线某某,或画射线某某.(2)在射线某某上截取某某=某某.(3)以点某为圆心,某某为半径画弧.(4)以点某为圆心,某某为半径画弧,交某某于点某.(5)分别以点某,点某为圆心,以某某,某某为半径作弧,两弧相交于点某.(6)在射线某某上依次截取某某=某某=某某.(7)在∠某某某的外部或内部画∠某某某=∠某某某.注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:(1)画线段某某=某某.(2)画∠某某某=∠某某某.(3)画某某平分∠某某某,或画∠某某某的角平分线.(4)过点某画某某⊥某某,垂足为点某.(5)作线段某某的垂直平分线某某,等等.但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.【经典例题精讲】例1已知两边及其夹角,求作三角形.如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:①作∠MAN=∠α.②在射线AM、AN上分别作线段AB=a,AC=b.③连结BC.如图24-4-8,△ABC即为所求作的三角形.注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.例2如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.如图24-4-10,△ABC即为所求的等腰三角形.例3已知三角形的一边及这边上的中线和高,作三角形.如图24-4-11,已知线段a,m,h(m>h).求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED 可以作出来(△AED为奠基三角形).当Rt△AED作出后,由可得到.的关系可作出点B和点C,于是△ABC即作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.(3)在DE或BE的延长线上取.(4)连结AB、AC.则△ABC即为所求作的三角形.注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.例4如图24-4-13,已知线段a.求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.作法:(1)作线段a的垂直平分线,等分线段a.(2)作线段AC,使.(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.例5如图24-4-15,已知∠AOB和C、D两点.求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.作法:(1)连结CD.(2)作线段CD的中垂线l.(3)作∠AOB的角平分线OM,交l于点P,P点为所求.注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.【中考考点】例6(2000·安徽省)如图24-4-16,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处分析:到直线距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.解:分别作相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.答案:D.注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.例7(2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC=80cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE 线段的中垂线HK与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.(2)设这个正方形零件的边长为某cm,∵DE∥AC,∴,∴.∴某=48.答:这个正方形零件的边长为48cm.注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.例8(2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径.解:如图24-4-18②③所示.【常见错误分析】例9如图24-4-19,已知线段a、b、h.求作△ABC,使BC=a,AC=b,BC边上的高AD=h.并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢?错解:(1)作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a.如图24-4-20,则△ABC就是所求作的三角形.(2)作出的三角形唯一.(3)得出结论:有两边及一边上的高对应相等的两三角形全等.误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部.正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a(在点C的两侧).则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等.注意:与三角形的高有关的题目应慎之又慎.【学习方法指导】学习本单元基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.【规律总结】画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.考点一尺规作图1.定义:只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图;(4)写出作法步骤,即作法.考点二五种基本作图1.作一线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.考点三基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺规作图
.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角.
利用这两个基本作图,可以作两条线段或两个角的和或差. 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角;3、作已知线段的垂直平分线; 4、作已知角的角平分线;5、过一点作已知直线的垂线;
题目一:作一条线段等于已知线段。

已知:如图,线段a .
求作:线段AB ,使AB = a .
题目二:作已知线段的中点。

已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点).
题目二:过一点做已知线段的垂线。

已知:如图,O 点、线段MN.
求作:过O 点作OP ⊥线段MN.
题目三:作已知角的角平分线。

已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

题目四:作一个角等于已知角。

已知:如图,∠AOB ,
求作:∠M0N, 使∠MON =∠BOA
题目五:已知三边作三角形。

已知:如图,线段a ,b ,c.
求作:△ABC ,使AB = c ,AC = b ,BC = a.
题目六:已知两边及夹角作三角形。

已知:如图,线段m ,n, ∠α.
求作:△ABC ,使∠A=∠α,AB=m ,AC=n.
M N O A B O A B
M N O
题目七:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.
题目八:已知一个三角形,作一个点到各个顶点距离相等
已知:如图,△ABC
求作:一个点到三个顶点的距离相等
题目九:已知一个三角形,做一个点到三边的距离相等已知:如图,△ABC
求作:一个点到三条边的距离相等。

初中尺规作图典型例题归纳1、如图,在△ABC中,AB=AC,AD是高,
AM是△ABC外角∠CAE的平分线.
(1)用尺规作图方法,作∠ADC的平分线DN;
(保留作图痕迹,不写作法和证明)
2、如图,△ABC是等腰三角形,AB=AC。

请你用尺规
作图将△ABC分成两个全等的三角形,并说明这两
个三角形全等的理由。

(保留作图痕迹,不写作法)
3、如图,已知中,为的中点。

请用尺规作图法作边的中点,并连接。

(保留作图痕迹,不要求写作法)
4、如图所示,已知锐角。

过点作边的垂线,交于点
(用尺规作图法,保留作图痕迹,不要求写作法)。

5、如图,已知平行四边形。

延长,并在的延长线上截取线段,使得
(用尺规作图法,保留作图痕迹,不要求写作法)。

6、如图,在图中求作,使满足以线段为弦,且圆心到两边的距离相等
(尺规作图,不写作法,保留作图痕迹)。

7、如图,已知在△ABC中,AB=AC.
试用直尺和圆规在AC上找一点D,使
(不写作法,但需保留作图痕迹).
8、如图,四边形是平行四边形。

用尺规作图作的平分线交于
(保留作图痕迹,不要求写作法,不要求证明)。

9、如图,已知,用尺规作的内接正四边形
(不写作法,保留作图痕迹,)
:
10、如图,在平行四边形中,是上一点,
延长到点,使。

用直尺和圆规在上作出一点,使
(保留作图的痕迹,不写作法)。

11、如图,在中,
请用直尺和圆规按照下列步骤作图,保留作图痕迹。

①作的平分线,交斜边于点。

②过点作的垂线,垂足为点。

相关文档
最新文档