高教版中职数学职业模块教案(工科类)4.1 二进制

合集下载

高教版中职数学课程代码

高教版中职数学课程代码

高教版中职数学课程代码摘要:一、高教版中职数学课程概述1.高教版中职数学课程的定位2.高教版中职数学课程的目标3.高教版中职数学课程的特点二、高教版中职数学课程的模块设置1.基础模块2.职业模块3.拓展模块三、高教版中职数学课程的教学方法1.理论教学2.实践教学3.线上线下混合式教学四、高教版中职数学课程的教材编写1.教材内容与实际需求的紧密结合2.教材的易读性与实用性3.教材的更新与完善五、高教版中职数学课程的实践应用1.学生应用能力的提升2.教师教学水平的提高3.社会认可度的增加正文:高教版中职数学课程是一门面向中职学生,以提高学生数学素养、培养学生的实践能力为主要目标的课程。

该课程旨在帮助学生掌握必要的数学基础知识,形成良好的数学思维习惯,提高解决实际问题的能力。

在高教版中职数学课程中,共设置了三个模块,分别是基础模块、职业模块和拓展模块。

基础模块主要包括初中数学知识的巩固,职业模块主要涵盖与学生所学专业相关的数学知识,拓展模块则涉及一些提高性的数学内容。

这样的模块设置,既保证了学生对基础知识的掌握,又满足了不同专业学生的需求。

在教学方法上,高教版中职数学课程采用了理论教学、实践教学以及线上线下混合式教学等多种方式。

理论教学帮助学生理解和掌握数学知识,实践教学则让学生在实际操作中运用所学知识,提高解决实际问题的能力。

线上线下混合式教学则充分利用现代信息技术,为学生提供丰富的学习资源,提高学习效果。

高教版中职数学课程的教材编写注重内容与实际需求的紧密结合,以易读性和实用性为原则,力求为学生提供高质量的学习材料。

教材在不断更新和完善中,以适应教育改革和人才培养的需求。

高教版中职数学基础模块上册电子教案完整版(2024)

高教版中职数学基础模块上册电子教案完整版(2024)
概率论与数理统计基础
包括概率论的基本概念、随机变量及其分布、数理统计的基础知识 与方法等。
10
03
函数及其性质
2024/1/27
11
函数概念及表示方法
函数的表示方法
函数的表示方法有解析法、列表法和图象法 三种。
解析法
用数学表达式表示两个变量之间的对应关系 ,是函数的主要表示方法。
列表法
列出一些自变量的值及与之对应的函数值。
02
教材内容包括但不限于:代数基础、几何基础、三角函数、数
列与数学归纳法、概率与统计初步等。
每个章节后附有练习题和思考题,供学生巩固所学知识和提高
03
思维能力。
6
02
基础知识回顾与拓展
2024/1/27
7
初中数学知识点回顾
01
代数基础
包括有理数、无理数、实数、代 数式、方程和不等式等基本概念 和运算规则。
在平面上画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。水平 方向的数轴称为x轴或横轴,竖直方 向的数轴称为y轴或纵轴。
在平面直角坐标系中,任意一点P都 可以用一对有序实数(x, y)来表示,其 中x是点P到y轴的距离,称为点P的横 坐标;y是点P到x轴的距离,称为点P 的纵坐标。
在平面直角坐标系中,点的坐标具有 唯一性,即一个点对应一个坐标;反 之,一个坐标也对应一个点。
课程背景及意义
中职数学是中等职业教育的重要基础 课程,对于培养学生的数学素养和解 决实际问题的能力具有重要作用。
本课程旨在帮助学生掌握数学基础知 识,提高数学思维能力,为后续专业 课程学习和职业发展奠定基础。
2024/1/27
4
教学目标与要求
知识与技能目标

高教版中职数学基础模块上册 电子教案

高教版中职数学基础模块上册 电子教案

说明:教参里的参考教案,供大家参考。

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素的概念及其关系,掌握常用数集的字母表示;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养分类思维和有序思维,从而提升数学思维能力.情感目标:(1)接受集合语言,经历利用集合语言描述元素与集合间关系的过程,养成规范意识,发展严谨的作风。

(2)感受利用数学知识描述和研究实际问题的乐趣,发展学好数学课程的信心。

(3)经历合作学习的过程,树立团队合作意识。

【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】利用元素特征性质来表示集合的方法在花括号【课题】1.2 集合之间的关系【教学目标】知识目标:掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.能力目标:(1)通过集合语言的学习与运用,培养学生的数学思维能力;(2)通过集合的关系的图形分析,培养学生的观察能力.情感目标:(1)经历利用集合语言描述集合与集合间的关系的过程,养成规范意识,发展严谨的作风;(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】1.3集合的运算(1)【教学目标】知识目标:理解并集与交集的概念,会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.情感目标:(1)经历利用集合语言描述集合运算的过程,养成规范意识,发展严谨的作风。

高教版中职教材—数学(基础模块)下册电子教案

高教版中职教材—数学(基础模块)下册电子教案

【课题】6.1数列的概念【教学目标】知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】根据数列的前若干项写出它的一个通项公式.【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】从小到大依次取正整数时,飞机飞机)N下角码中的数为项数,【教师教学后记】【教学目标】知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式. 能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力. 【教学重点】等差数列的通项公式. 【教学难点】等差数列通项公式的推导. 【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【教学目标】知识目标:(1)理解等比数列的定义; (2)理解等比数列通项公式. 能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力. 【教学重点】等比数列的通项公式. 【教学难点】等比数列通项公式的推导. 【教学设计】本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a nn =+1(常数).例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n , n a , 只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到,若三个数成等比数列,则将这三个数设成是aq a qa,,比较好,因为这样设了以后,这三个数的积正好等于,3a 很容易将a 求出. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】7.1 平面向量的概念及线性运算【教学目标】知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.【教学重点】向量的线性运算.【教学难点】已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.【教学设计】从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念.向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a-b=a+(-b),它可以通过几何作图的方法得到,即a-b可表示为从向量b的终点指向向量a的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数λ乘以非零向量a,是数乘运算,其结果记作λa,它是一个向量,其方向与向量a 相同,其模为a 的λ倍.由此得到λ⇔=a b a b ∥.对向量共线的充要条件,要特别注意“非零向量a 、b ”与“0λ≠ ”等条件. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】图母,印刷用黑体表示,记作,AB.模为零的向量叫做两个向量的方向相同;向量所在的直线平行,两个向量的方向相反.质TK,方向相反,我们所研究的向量只有大小与方向两个要行四边-,CDBA=DCBA//AB,DC//AB,CD共线的向量.创设情境兴趣导入BC.的和,记作a+b这说明,在平行这种求和方法叫向量加法的平行四边形法则分D。

高教版中职教材—数学基础模块上册电子教案

高教版中职教材—数学基础模块上册电子教案

【课题】1.1集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}.0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.解不等式就可以得到不等式解集元素的特征性质;的特征性质是“元素都能写成0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>运用知识强化练习的解集.本次课学了哪些内容?重点和难点各是什么?)本次课学了哪些内容?)通过本次课的学习,你会解决哪些新问题了?)在学习方法上有哪些体会?【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.“⊇”、“∈”填空:(2){∅;2,3{}2;(4){}{}2的子集,并且集合叫做集合AB (或A),读作“.空集是任何非空集合的真子集.B{2}{1}{1,2,3,4,5,6}=9}={3,-3}x x=={x x=|2};⑸{0}?;2|1{|x x+x x+=2【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B的交集.考集合元素之间的关系*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题例1已知集合A,B,求A∩B.(1) A={1,2},B={2,3};(2) A={a,b},B={c,d , e , f };(3) A={1,3,5},B= ?;(4) A={2,4},B={1,2,3,4}.分析集合都是由列举法表示的,因为A∩B是由集合A和集合B中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集. 说明强调引领讲解说明引领强调含义说明启发引导观察思考主动求解观察思考求解领会思考求解了解通过例题进一步领会交集注意观察学生是否理解25B .表示方程程组({2,B =}2,}3B ,求B .这两个集合都是用描述法表示的集合,并且无法列举出我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集. {}{}|12|03B x x x x =-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 1)A B B A =;2)A A A = ,∅=∅ A ; B B A ⊆ ,;B .}23y =,求B .}4x,求AB .指导11名,那么该班有多少名介绍质疑B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?.集合用列举法和描述法表示时进行运算需要注意的问题是=B x={0{1B x强化思想本次课学了哪些内容?重点和难点各是什么?目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你}{}=,求AB x x2,04活动探究教材章节;学习与训练;举出交集和并集的生活实例.【课题】集合的运算(【教学目标】知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4=,求A B,A B.B x下面我们将学习另外一种集合的运算.兴趣导入质疑引导UA ,读作“{|UA x =.如果从上下文看全集是明确的,特别是当全集时,可以省略补集符号中的,将UA 简记为A ,读作的补集”.A 在全集U 中的补集的图形表示,如下图所示: 中的补集的运算叫做补运算. A U及B U .{0,2,6,7,8,9A =U {0,1,2,4,6,9B =U 2 设U =R ,}2x <,求A .作出集合在数轴上的表示,观察图形可以得到A . {}|12A x xx =->或.通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点?1不属于集合A ,所以?1属于其补集A ;因为属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A : UA )=?,UA )=U ,U U=?,U ∅=U ,U(UA )=A .运用知识 强化练习练习设{}U =小于10的正整数,{}147A =,,U A ..设U R =,{}|24A x x=-,求A .思考并回答下面的问题:.什么是集合交运算?如何用符号表示?如何用图形表示? 什么是集合并运算?如何用符号表示?如何用图形表示?A U ,B U ,()()A B U U ,)()UU A B,()U AB ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9UU A B=因为{}3,5AB =,所以(){0,1,2,4,6,7,8,9UA B =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B = 设全集U =R ,集合UA ,U B ,A B ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.解 因为全集U =R ,A ={x | x UA ={x | ,所以U B={x | {B x =-A B =R .运用知识 强化练习{1,2,3,4,5,6,7,8U =B ,B ,UA ,U B,()()UU A B ,()()U U A B .巡视指导}0180α<<,}090A α<<,}90180α<<,求UA ,U B,()()U U A B ,)()U U A B .归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?自我反思 目标检测引导提问【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”. 能力目标:通过对条件与结论的研究与判断,培养思维能力. 【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解. (2)符号“⇒”,“⇐”,“⇔”的正确使用. 【教学难点】“充分条件”、“必要条件”、“充要条件”的判定. 【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】}4x|24}x<24}x<引入问题中,新时速旅客列车的运行速度值(单位:公里B,B.两个集合的数轴表示如下图所示(1,A B=-[0,4)B=质疑分析讲解运用知识强化练习教材练习已知集合,集合B=B,B.巡视辅导B ,A B . A B ,A B .右边的一段不包括端点2}表示的区间为右半开区间,2}表示的区间为左半开区间,可以表示为开区间,用记号与“+∞”都是符号,而不是一个确切的数.质疑讲解说明强调细节典型例题已知集合(A =-∞B ,B .观察如下图所示的集合1)(AB =-∞(B =-∞. 3 设全集为R ,集合,集合(2,B =+∞1)求A ,B ;(2)求B .观察如下图所示的集合A 、B 的数轴表示,得(,0](3,)A =-∞+∞,(,2]B =-∞; (0,2]AB =.说明讲解启发强调理论升华 整体建构下面将各种区间表示的集合列表如下(表中实数,且a b <).B,B.2.设全集为,求A,B,B A.指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问总结【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法. 【教学设计】⑴ 从复习一次函数图像、一元一次方程、一元一次不等式的联系入手; ⑵ 类比观察一元二次函数图像,得到一元二次不等式的图像解法; ⑶ 加强知识的巩固与练习,培养学生的数学思维能力; ⑷ 讨论、交流、总结,培养团队精神,提升认知水平. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题 一元二次不等式 *回顾思考 复习导入 问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系? 解决观察函数26y x =-的图像:方程260x -=的解3x =恰好是函数图像与x 轴交点的横坐标;在x 轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x ->的解集{|3}x x >;在x 轴下方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x -<的解集{|3}x x <. 归纳一般地,如果方程0ax b +=(0)a >的解是0x ,那么函数y ax b =+图像与x 轴的交点坐标为0(,0)x ,并且(1)不等式0ax b +>(0)a >的解集是函数y ax b =+的图像在x 轴上方部分所对应的自变量x 的取值范围,即介绍 提出 问题 引领 分析 讲解 提炼了解 思考 观察 领悟 理解 认知 复习 相关 知识 内容 强化 知识 点的 内在 联系 突出 数形 结合15()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存2(,)x +∞ (2ax bx c ++=bx c +的图像与示).此时0(,)x +∞)当2b ∆=-一元二次函数y )所示).此时,不等式0bx c +>0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290x -=的解集为)253x x -两边同乘1-,得30.由于判别式43x -+=0的解集为0的解集为是什么实数时,有意义. 题意需要解20-.解0=得1x =.由于二次项系数为30>以不等式的解集为[)1,⎛-∞+∞.[)1,+∞时,解下列各一元二次不等式:;(2)0x -.本次课学了哪些内容?重点和难点各是什么? 【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力. 【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>. 【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题 含绝对值的不等式 *回顾思考 复习导入 问题任意实数的绝对值是如何定义的?其几何意义是什么? 解决对任意实数x ,有其几何意义是:数轴上表示实数x 的点到原点的距离. 拓展不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞(如图(2)所示).介绍 提问 归纳总结 引导 分析了解 思考 回答 观察 领会 复习 相关 知识点为 进一 步学 习做 准备 充分 借助 图像 进行 分析10 *动脑思考 明确新知一般地,不等式x a <(0a >)的解集是(),a a -;不等式x a >(0a >)的解集是()(),,a a -∞-+∞.总结 强化 理解 记忆 强调 特点15(2)(1)a 与x a (a >)26x.或x a >的形式后求解.0>,得13x >,所以原不等式的1,3⎛⎫+∞ ⎪⎝⎭)由不等式26x ,得3x ,所以原不等式的解集强化练习解下列各不等式: 8;(2) 2.6x <;(3)1x ->实际操作 探索新知如何通过x a <等式2x +3.3213x --,224x -, 12x-,所以原不等式的解集为 []1,2-. 7>.257x +>,整理,得6- 或 1x >,)()61,+∞.1142; 12.本次课学了哪些内容?重点和难点各是什么?【教学目标】知识目标:(1) 理解函数的定义;(2) 理解函数值的概念及表示;(3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法.能力目标:(1) 通过函数概念的学习,培养学生的数学思维能力;(2) 通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)y 的理解;f(x(2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接;(2)抓住两个要素,突出特点,提升对函数概念的理解水平;(3)抓住函数值的理解与计算,为绘图奠定基础;(4)学习“描点法”作图的步骤,通过实践培养技能;(5)重视学生独立思考与交流合作的能力培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}中的任意一个值,有唯一的值与之对应.两个变量之间的这种对应关系叫做动脑思考探索新知() 1,-+∞0,得12 x.因此函数的定义域为1,2⎛⎤-∞⎥⎝⎦.代数式中含有分式,使得代数式有意义的条件是分母不等于零;代数式中含有二次根式,使得代数式有意义的条件是被开方式大于或等于零.0,这个函数与-<x x,0..但是它们的对应法则不同,因此不是同)尽管表示两个函数的字母不同,但是定义域与对应法则都相同,所以它们是同一个函数.C)之间的11月29C)随时间)变化的曲线如下图过 程行为 行为 意图 间曲线形象地反映出气温T (C )与时间t (h )之间的函数关系,这里函数的定义域为[]0,14.对定义域中的任意时间t ,有唯一的气温T 与之对应.例如,当6t =时,气温 2.2T C =︒;当14t =时,气温12.5T C =︒.3. 用S 来表示半径为r 的圆的面积,则2πS r =.这个公式清楚地反映了半径r 与圆的面积S 之间的函数关系,这里函数的定义域为+R .以任意的正实数0r 为半径的圆的面积为200πS r =.讲解 公式*动脑思考 探索新知函数的表示方法:常用的有列表法、图像法和解析法三种. (1)列表法:就是列出表格来表示两个变量的函数关系. 例如,数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等都是用列表法来表示函数关系的.用列表法表示函数关系的优点:不需要计算就可以直接看出与自变量的值相对应的函数值.(2)图像法:就是用函数图像表示两个变量之间的函数关系. 例如,我国人口出生率变化的曲线,工厂的生产图像,股市走向图等都是用图像法表示函数关系的.用图像法表示函数关系的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.(3)解析法:把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.例如,s =60t 2,A =πr 2,S =2πrl ,y =2-x (x2)等都是用总结 归纳 介绍 说明 举例 说明 举例 介绍思考 理解 记忆 观察 体会 了解 带领 学生 总结 函数 的三 种表 示方 法并 了解 其各 自的 特点 可以 教给学生55。

高教版中职数学基础模块上册-电子教案设计

高教版中职数学基础模块上册-电子教案设计

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素的概念及其关系,掌握常用数集的字母表示;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养分类思维和有序思维,从而提升数学思维能力.情感目标:(1)接受集合语言,经历利用集合语言描述元素与集合间关系的过程,养成规范意识,发展严谨的作风。

(2)感受利用数学知识描述和研究实际问题的乐趣,发展学好数学课程的信心。

(3)经历合作学习的过程,树立团队合作意识。

【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】1.2 集合之间的关系【教学目标】知识目标:掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.能力目标:(1)通过集合语言的学习与运用,培养学生的数学思维能力;(2)通过集合的关系的图形分析,培养学生的观察能力.情感目标:(1)经历利用集合语言描述集合与集合间的关系的过程,养成规范意识,发展严谨的作风;(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间10*动脑思考 探索新知 概念一般地,如果集合B 的元素都是集合A 的元素,那么称集合A 包含集合B ,并把集合B 叫做集合A 的子集. 表示将集合A 包含集合B 记作A B ⊇或B A ⊆(读作“A 包含B ”或“B 包含于A ”). 可以用下图表示出这两个集合之间的包含关系.拓展由子集的定义可知,任何一个集合A 都是它自身的子集,即A A ⊆.规定:空集是任何集合的子集,即A ∅⊆.总结 归纳说明强调引导 介绍理解 领会记忆观察了解带领 学生 理解 包含 意义 特别 介绍 符号 的规 范性图形 有助 学生 加深 理解15*巩固知识 典型例题例1 用符号“⊆”、“⊇”、“∈”或“∉”填空: (1) {},,,a b c d {},a b ;(2) ∅ {}1,2,3;(3) N Q ; (4) 0 R ;(5) d {},,a b c ; (6) {}|35x x << {}|06x x <…. 分析 “⊆” 与“⊇”是用来表示集合与集合之间关系的符号;而“∈”与“∉”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号. 解 (1)集合{},a b 的元素都是集合{},,,a b c d 的元素,因此{},,,a b c d ⊇{},a b ;说明引领观察思考领会通过 例题 进一 步指 导学 生元 素与 集合 集合AB*巩固知识 典型例题 例4 用适当的符号填空:⑴ {1,3,5} {1,2,3,4,5,6}; ⑵ 2{|9}x x = {3,-3};⑶ {2} { x | |x |=2 }; ⑷ 2 N ; ⑸ a { a }; ⑹ {0} ; ⑺ {1,1}- 2{|10}x x +=. 解 ⑴ {1,3,5}{1,2,3,4,5,6}Ü; ⑵ {x |x 2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =Ü; ⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0}Ý;⑺ 因为2{|10}x x +==,所以{1,1}-Ý2{|10}x x +=.【课题】 1.3集合的运算(1)【教学目标】知识目标:理解并集与交集的概念,会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.情感目标:(1)经历利用集合语言描述集合运算的过程,养成规范意识,发展严谨的作风。

高教版中职教材—数学(基础模块)上册电子教案

高教版中职教材—数学(基础模块)上册电子教案

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于强调的实数所组成的集合可表示为如果从上下文能明显看出集合的元素为实数,那么可以0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>运用知识强化练习的解集.本次课学了哪些内容?重点和难点各是什么?)本次课学了哪些内容?)通过本次课的学习,你会解决哪些新问题了?)在学习方法上有哪些体会?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.∈”或“∉(2){∅;2,3(4){}}2的子集,并且集合叫做集合B(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果A{2}{1}{1,2,3,4,5,6}=9}={3,-3}x x=={x x= |2};⑸a{0}∅;2{|x x |10}x x+=}2【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,读作“过 程行为 行为 意图 间交B ”.即{}AB x x A x B =∈∈且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算. 仔细 分析 讲解 关键 词语 强调 图像 含义 理解 记忆 观察 总结 三个 问题 的共 同点 得到 交集 的定义10 *巩固知识 典型例题例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.说明 强调 引领讲解说明观察 思考 主动 求解 观察通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法过 程行为 行为 意图 间例3 设{}|12A x x=-<,{}|03B x x=<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x x x x =-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;(4)如果A B A B A =⊆ 那么,. 引领强调 含义说明 启发 引导思考 求解 领会 思考 求解 了解突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25 *运用知识 强化练习 练习1.3.11.设{}1,0,1,2A =-,{}0,2,4,6B =,求AB .2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B .3.设{}|22A x x =-<≤,{}|04B x x=,求A B . 提问巡视指导动手 求解 交流 及时 了解 学生 知识 掌握 情况 35 *创设情景 兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A ={该班团员};B ={该班非团员};C ={该班同学}.那么这三个集合之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班第一学年的三好学生都有哪些同学?用我们学过的集合来表示:A ={李佳,王燕,张洁,王勇};B ={王燕,李炎,王勇,孙颖};C ={李佳,王燕,张洁,王勇,李炎,孙颖}.那么这三个集合之间有什么关系?介绍 质疑了解 观看 课件 思考从实 际事 例使 学生 自然 的走 向知 识点 引导B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?.集合用列举法和描述法表示时进行运算需要注意的问题是教 学 过 程教师 行为 学生 行为 教学 意图 时间{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.分析 讲解 说明 思考 求解比例 题讲 解巩 固所 归纳 的强 化点 75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3; (2)书面作业: 学习与训练1.3;(3)实践调查: 举出交集和并集的生活实例. 说明记录90【课题】 1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念; (2)会求集合的补集. 能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力; (2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4B x=,求A B,A B.下面我们将学习另外一种集合的运算.介绍兴趣导入过 程行为 行为 意图 间某学习小组学生的集合为U={王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在学校应用文写作比赛与技能大赛中获得过金奖的学生集合为P ={王明,曹勇,王亮,李冰,张军},那么没有获得金奖的学生有哪些? 解决没有获得金奖的学生的集合为Q ={赵云,冯佳,薛香芹,钱忠良,何晓慧}. 结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合. 质疑 引导 分析 总结 归纳思考 自我 分析 领会引导 式启 发学 生理 解集 合之 间元 素的 关系15*动脑思考 探索新知 概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合A 是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做A 在全集U 中的补集. 表示集合A 在全集U 中的补集记作UA ,读作“A 在U 中的补集”.即{}|UA x x U x A =∈∉且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:仔细 分析 讲解 强调引导说明思考 理解 记忆 观察 领会特别 注意 讲解 关键 词的 含义 强调 表示 方法 的书 写规 范性 充分 利用 图形 的直 观性过 程行为 行为 意图 间求集合A 在全集U 中的补集的运算叫做补运算. 20 *巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U 及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x=-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A : A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明 讲解引领 引导 分析讲解 说明理解观察 思考 主动 求解 观察 思考 理解 自我 总结通过 例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳 35*运用知识 强化练习 教材 练习1.3.31.设{}U =小于10的正整数,{}147A =,,,求UA .2.设U R =,{}|24A x x=-,求A .提问 巡视指导互动 求解 交流反馈 学习 效果45*理论升华 整体建构 思考并回答下面的问题:1.什么是集合交运算?如何用符号表示?如何用图形表示?质疑小组 讨论以学 生小 组讨A U,B U ,()()ABU U ,)()UU A B,()U AB ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ; {}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9U U AB=因为{}3,5AB =,所以 (){0,1,2,4,6,7,8,9UAB =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B = 设全集U =R ,集合U A , U B , AB ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来引领分析UA ={x | ,所以U B ={x | {B x =-A B =R .运用知识 强化练习{1,2,3,4,5,6,7,8U =B ,B ,UA ,U B ,()()U U A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? 引导【课题】 1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】讲解}4xx<|24}过 程行为 行为 意图 间表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350). 强调 细节领会各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15*运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视辅导思考 解题 交流 反馈 学习 效果20 *动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点,为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x表示的区间为右半开区间,用记号[2,)+∞表 质疑 讲解 说明 强调 细节思考 领会 记忆 理解学习 各种 区间过 程行为 行为 意图 间示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数.明确25*巩固知识 典型例题例 2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写30 *理论升华 整体建构下面将各种区间表示的集合列表如下(表中a 、b 为任意实数,且a b <). 区间(,)a b[,]a b (,]a b 集合 {|}x a x b << {|}x a x b ≤≤ {|}x a x b <≤ 区间 [,)a b (,)b -∞ (,]b -∞ 集合 {|}x a x b <≤ {|}x x b < {|}x x b ≤ 区间(,)a +∞[,)a +∞ (,)-∞+∞集合 {|}x x a >{|}x x a ≥R引导分析思考 互动 总结小组 讨论 教师 归纳35B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷ 讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题 2.3 一元二次不等式 *回顾思考 复习导入 问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系? 解决观察函数26y x =-的图像:方程260x -=的解3x =恰好是函数图像与x 轴交点的横坐标;在x 轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x ->的解集{|3}x x >;在x 轴下方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x -<的解集{|3}x x <. 归纳一般地,如果方程0ax b +=(0)a >的解是0x ,那么函数y ax b =+图像与x 轴的交点坐标为0(,0)x ,并且(1)不等式0ax b +>(0)a >的解集是函数y ax b =+的图像在x 轴上方部分所对应的自变量x 的取值范围,即0{|}x x x >;介绍 提出 问题 引领 分析 讲解了解 思考 观察 领悟 理解复习 相关 知识 内容 强化 知识 点的 内在 联系 突出 数形 结合()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间内的值,使得260y x x =--<.30 *动脑思考 探索新知 解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3)(2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞.(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R . 归纳 总结讲解分析强调 讲解思考 观察 理解 领会 记忆引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用40*理论升华 整体建构2(,)x +∞0(,)x +∞0([)2,x +∞R 0< 12,)x∅]12,x }0x224b ac x =-. 典型例题解下列各一元二次不等式:26x x --0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得30.由于判别式43x -+=0的解集为0的解集为是什么实数时,有意义. 题意需要20-.解0=得1x =.由于二次项系数为30>以不等式的解集为[)1,⎛-∞+∞.[)1,+∞时,32有意义. 0.本次课学了哪些内容?重点和难点各是什么? 【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力.【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞(如图(2)所示).引导分析观察 领会习做 准备 充分 借助 图像 进行 分析10 *动脑思考 明确新知一般地,不等式x a <(0a >)的解集是(),a a -;不等式x a >(0a >)的解集是()(),,a a -∞-+∞.试一试:写出不等式x a 与x a (0a >)的解集.总结 强化理解 记忆强调 特点15*巩固知识 典型例题 例1 解下列各不等式: (1)310x ->; (2)26x.分析:将不等式化成x a <或x a >的形式后求解.解 (1)由不等式310x ->,得13x >,所以原不等式的解集为11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭;(2)由不等式26x ,得3x ,所以原不等式的解集为[]3,3-.分析讲解强调 细节思考 主动 求解进一 步巩 固知 识点20*运用知识 强化练习 教材练习2.4.1 解下列各不等式:巡视解题反馈 学习(2)(1)8;(2)实际操作 探索新知如何通过x a <等式2x +3.3213x --, 224x -, 12x-,所以原不等式的解集为 []1,2-. 7>.257x +>,整理,得6- 或 1x >,()1,+∞.11;4212.本次课学了哪些内容?重点和难点各是什么?【课题】 3.1 函数的概念及其表示法【教学目标】知识目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法. 能力目标:(1) 通过函数概念的学习,培养学生的数学思维能力;(2) 通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)(x f y 的理解; (2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接; (2)抓住两个要素,突出特点,提升对函数概念的理解水平; (3)抓住函数值的理解与计算,为绘图奠定基础; (4)学习“描点法”作图的步骤,通过实践培养技能; (5)重视学生独立思考与交流合作的能力培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}中的任意一个值,有唯一的值与之对应.两个变量之间的这种对应关系叫做动脑思考探索新知。

高教版中职教材—数学(基础模块)上册电子教案

高教版中职教材—数学(基础模块)上册电子教案

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【上课时间】【课时安排】1课时【教学过程】*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等.同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始……1.学习——旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2.老师——导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味. 3.目的——运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备——必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.回答为什么要学数学?学什么样的数学?怎么学数学?*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.*创设情景兴趣导入某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里?显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐,彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐.面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合.而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的元素.*动脑思考探索新知由某些确定的对象组成的整体叫做集合,简称集.组成集合的对象叫做这个集合的元素.如大于2并且小于5的自然数组成的集合是由哪些元素组成?一般采用大写英文字母,,,a b c…表示集合的元素.A B C…表示集合,小写英文字母,,,拓展集合中的元素具有下列特点:(1)互异性:一个给定的集合中的元素都是互不相同的;(2)无序性:一个给定的集合中的元素排列无顺序;(3) 确定性:一个给定的集合中的元素必须是确定的.不能确定的对象,不能组成集合.例如,某班跑得快的同学,就不能组成集合.例1下列对象能否组成集合:(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程210x->的所有解.x-=的所有解;(4)不等式20解 (1) 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合.(2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合.(3)方程210x -=的解是−1和1,它们是确定的对象,所以可以组成集合.(4)解不等式20x ->,得2x >,它们是确定的对象,所以可以组成集合.由方程的所有解组成的集合叫做这个方程的解集.由不等式的所有解组成的集合叫做这个不等式的解集.像方程210x -=的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x -2>0的解组成的集合那样,由无限个元素组成的集合叫做无限集.像平面上与点O 的距离为2 cm 的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集.由数组成的集合叫做数集.方程的解集与不等式的解集都是数集.所有自然数组成的集合叫做自然数集,记作N .所有正整数组成的集合叫做正整数集,记作*N 或+Ζ.所有整数组成的集合叫做整数集,记作Z .所有有理数组成的集合叫做有理数集,记作Q .所有实数组成的集合叫做实数集,记作R .不含任何元素的集合叫做空集,记作∅.例如,方程x 2+1=0的实数解的集合里不含有任何元素,所以这个解集就是空集元素a 是集合A 的元素,记作a A ∈(读作“a 属于A ”), a 不是集合A 的元素,记作a A ∉(读作“a 不属于A ”).集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一.*运用知识强化练习练习1.1.11.用符号“∈”或“∉”填空:(1)−3 N,0.5 N,3 N;(2)1.5 Z,−5 Z,3 Z;(3)−0.2 Q,πQ,7.21 Q;(4)1.5 R,−1.2 R,πR.2.指出下列各集合中,哪个集合是空集?(1)方程210x+=的解集;(2)方程22x+=的解集.*继续探索活动探究(1)阅读理解:教材1.1,学习与训练1.1;(2)书面作业:教材习题1.1,学习与训练1.1训练题;(3)实践调查:探究生活中集合知识的应用【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【上课时间】【课时安排】1课时【教学过程】*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.*动脑思考探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开.如不大0,1,2,3,4,5.于5的自然数所组成的集合可以表示为{}当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写0,1,2,3,,99,正偶数集可以表示为法.例如,小于100的自然数集可以表示为{}{}2,4,6,.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为{|5,}x x x<∈R.如果从上下文能明显看出集合的元素为实数,那么可以将x∈R省略不写.如不等式360x ->的解集可以表示为{|2}x x >.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}. *巩固知识 典型例题例2 用列举法表示下列集合:(1)由大于4-且小于12的所有偶数组成的集合;(2)方程2560x x --=的解集.分析 这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程2560x x --=才能得到.解(1)集合表示为{}2,0,2,4,6,8,10-;(2)解方程2560x x --=得11x =-,26x =.故方程解集为{}1,6-.例3 用描述法表示下列各集合:(1)不等式210x +…的解集;(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析 用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成21()k k +∈Z 的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式210x +…得12x -…,所以解集为 12x x ⎧⎫-⎨⎬⎩⎭…; (2)奇数集合{}21,x x k k =+∈Z ;(3)第一象限所有的点组成的集合为(){},0,0x y x y >>.*运用知识 强化练习教材练习1.1.21.用列举法表示下列各集合:(1)方程2340x x--=的解集;(2)方程430x+=的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x-=的解集;(3)大于5的所有偶数所组成的集合;(4)不等式253x->的解集.*理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.*巩固知识典型例题例4 用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解(1){−5};(2){x| x>4} ;(3) {4,6,8,10};(4) {x| x≤5} .*运用知识强化练习选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x-=的解集;(3)不等式465x+<的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x+=的解集;(6)不等式组330,60xx+>⎧⎨-⎩…的解集.*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?*继续探索活动探究(1)阅读理解:教材1.1,学习与训练1.1;(2)书面作业:教材习题1.1,学习与训练1.1训练题;(3)实践调查:探究生活中集合知识的应用【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【上课时间】【课时安排】1课时【教学过程】教学过程*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.*动脑思考 探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开.如不大于5的自然数所组成的集合可以表示为{}0,1,2,3,4,5.当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法.例如,小于100的自然数集可以表示为{}0,1,2,3,,99,正偶数集可以表示为{}2,4,6,.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为{|5,}x x x <∈R .如果从上下文能明显看出集合的元素为实数,那么可以将x ∈R 省略不写.如不等式360x ->的解集可以表示为{|2}x x >.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}. *巩固知识 典型例题例2 用列举法表示下列集合:(1)由大于4-且小于12的所有偶数组成的集合;(2)方程2560x x --=的解集.分析 这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程2560x x --=才能得到.解(1)集合表示为{}2,0,2,4,6,8,10-;(2)解方程2560x x --=得11x =-,26x =.故方程解集为{}1,6-.例3 用描述法表示下列各集合:(1)不等式210x +…的解集;(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析 用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成21()k k +∈Z 的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式210x +…得12x -…,所以解集为 12x x ⎧⎫-⎨⎬⎩⎭…; (2)奇数集合{}21,x x k k =+∈Z ;(3)第一象限所有的点组成的集合为(){},0,0x y x y >>.*运用知识 强化练习教材练习1.1.21.用列举法表示下列各集合:(1)方程2340x x --=的解集;(2)方程430x +=的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x -=的解集;(3)大于5的所有偶数所组成的集合;(4)不等式253x ->的解集.*理论升华 整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.*巩固知识典型例题例4 用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解(1){−5};(2){x| x>4} ;(3) {4,6,8,10};(4) {x| x≤5} .*运用知识强化练习选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x-=的解集;(3)不等式465x+<的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x+=的解集;(6)不等式组330,60xx+>⎧⎨-⎩…的解集.*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?*继续探索活动探究(1)阅读理解:教材1.1,学习与训练1.1;(2)书面作业:教材习题1.1,学习与训练1.1训练题;(3)实践调查:探究生活中集合知识的应用【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【上课时间】【课时安排】1课时【教学过程】*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}.4.元素与集合之间有属于或不属于的关系.完成下面的问题:用适当的符号“∈”或“∉”填空:(1) 0 ∅;(2) 0 N;(3) ;(4) 0.5 Z;(5) 1 {1,2,3};(6) 2 {x|x<1};(7)2 {x|x=2k+1, k∈Z}.那么集合与集合之间又有什么关系呢?*创设情景兴趣导入1.设A表示我班全体学生的集合,B表示我班全体男学生的集合,那么,集合A与集合B 之间存在什么关系呢?2.设M={数学,语文,英语,计算机应用基础,体育与健康,物理,化学},N ={数学,语文,英语,计算机应用基础,体育与健康},那么集合M与集合N之间存在什么关系呢?3.自然数集Z与整数集N之间存在什么关系呢?显然,问题1中集合B的元素(我班的男学生)肯定是集合A的元素(我班的学生);问题2中集合N的元素肯定是集合M的元素;问题3中集合N的元素(自然数)肯定是集合Z的元素(整数).当集合B的元素肯定是集合A的元素时称集合A包含集合B.两个集合之间的这种关系叫做包含关系.*动脑思考 探索新知一般地,如果集合B 的元素都是集合A 的元素,那么称集合A 包含集合B ,并把集合B 叫做集合A 的子集.将集合A 包含集合B 记作A B ⊇或B A ⊆(读作“A 包含B ”或“B 包含于A ”). 可以用下图表示出这两个集合之间的包含关系.拓展由子集的定义可知,任何一个集合A 都是它自身的子集,即A A ⊆.规定:空集是任何集合的子集,即A ∅⊆.*巩固知识 典型例题例1 用符号“⊆”、“⊇”、“∈”或“∉”填空:(1){},,,a b c d {},a b ;(2) ∅ {}1,2,3; (3) N Q ; (4) 0 R ;(5) d {},,a b c ; (6) {}|35x x << {}|06x x <….分析 “⊆” 与“⊇”是用来表示集合与集合之间关系的符号;而“∈”与“∉”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.解 (1)集合{},a b 的元素都是集合{},,,a b c d 的元素,因此 {},,,a b c d ⊇{},a b ;(2)空集是任何集合的子集,因此∅⊆{}1,2,3;(3)自然数都是有理数,因此N ⊆ Q ;(4)0是实数,因此0∈R ;(5)d 不是集合{},,a b c 的元素,因此d ∉{},,a b c ;(6)集合{}|35x x <<的元素都是集合{}|06x x <…的元素,因此{}{}|35|06x x x x <<⊆<….*运用知识 强化练习教材练习1.2.1用符号“⊆”、“⊇”、“∈”或“∉”填空:(1)*N Q ;(2){}0 ∅; (3)a {},,a b c ;(4){}2,3 {}2;(5)0 ∅;(6){}|12x x <… {}|14x x -<<.*继续探索 活动探究(1)阅读: 教材章节1.2;学习与训练1.2;(2)书写: 习题1.2,学习与训练1.2训练题;(3)实践:寻找集合和集合关系的生活实例.【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力. 【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【上课时间】【课时安排】1课时【教学过程】*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}.4.元素与集合之间有属于或不属于的关系.完成下面的问题:用适当的符号“∈”或“∉”填空:(1) 0 ∅;(2) 0 N;(3) ;(4) 0.5 Z;(5) 1 {1,2,3};(6) 2 {x|x<1};(7)2 {x|x=2k+1, k∈Z}.那么集合与集合之间又有什么关系呢?*动脑思考探索新知如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作A B Ý (或B A Ü), 读作“A 真包含B ”(或“B 真包含于A ”).空集是任何非空集合的真子集.对于集合A 、B 、C ,如果A ÜB ,B ÜC ,则A ÜC .*巩固知识 典型例题例2选用适当的符号“Ü”或“Ý”填空:(1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x | |x |=2}; (3){1} _∅.解 (1) {1,3,5}Ü{1,2,3,4,5};(2) {2}Ü{x | |x |=2};(3) {1}Ý∅.例3 设集合{}0,1,2M =,试写出M 的所有子集,并指出其中的真子集.分析 集合M 中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合.解 M 的所有子集为{}{}{}{}{}{}{},0,1,2,0,1,0,2,1,20,1,2∅.除集合{}0,1,2外,所有集合都是集合M 的真子集.*运用知识 强化练习练习1.2.21.设集合{},A c d =,试写出A 的所有子集,并指出其中的真子集.2.设集合{|6}A x x =<,集合{|0}B x x =<,指出集合A 与集合B 之间的关系. *创设情景 兴趣导入设集合A ={x |x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?由于方程x 2-1=0的解是x 1= -1,x 2=1,所以说集合A 中的元素就是1,-1,可以看出集合A 与集合B 中的元素完全相同,集合A 与集合B 相等.集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即A =B .*动脑思考 探索新知一般地,如果两个集合的元素完全相同,那么就说这两个集合相等.将集合A 与集合B 相等记作A B =.如果A B ⊇,同时B A ⊇,那么集合B 的元素都属于集合A ,同时集合A 的元素都属于集合B ,因此集合A 与集合B 的元素完全相同,由集合相等的定义知A B =.*巩固知识 典型例题例4 判断集合{}2A x x ==与集合{}240B x x =-=的关系.分析 要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系.解 由2x =得2x =-或2x =,所以集合A 用列举法表示为{}2,2-;由240x -=得2x =-或2x =,所以集合B 用列举法表示为{}2,2-;可以看出,这两个集合的元素完全相同,因此它们相等,即A B =.*运用知识 强化练习判断集合A 与B 是否相等?(1) A ={0},B = ∅;(2) A ={…,-5,-3,-1,1,3,5,…},B ={x| x =2m+1 ,m ∈Z } ;(3) A ={x| x =2m-1 ,m ∈Z },B ={x| x =2m+1 ,m ∈Z }.*理论升华 整体建构元素与集合关系:属于与不属于(∈、∉);集合与集合关系:子集、真子集、相等(⊆、Ü、=);首先要分清楚对象,然后再根据关系,正确选用符号.*巩固知识 典型例题例5 用适当的符号填空:⑴ {1,3,5} {1,2,3,4,5,6};⑵ 2{|9}x x = {3,-3};⑶ {2} { x | |x |=2 }; ⑷ 2 N ;⑸ a { a }; ⑹ {0} ∅;⑺ {1,1}- 2{|10}x x +=.解 ⑴ {1,3,5}{1,2,3,4,5,6}Ü;⑵ {x |x 2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =Ü;⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0}Ý∅;⑺ 因为2{|10}x x +==∅,所以{1,1}-Ý2{|10}x x +=.*运用知识 强化练习用适当的符号填空:(1) 2.5- Z ; (2)1 {}3|1x x =;(3){ {}2|2x x =; (4){}a {},,a b c ;(5)Z N ; (6)∅ {|40}x x +<;(7)∅ Q ; (8){}1,3,5 {}3,5.*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?*继续探索 活动探究(1)阅读: 教材章节1.2;学习与训练1.2;(2)书写: 习题1.2,学习与训练1.2训练题;(3)实践:寻找集合和集合关系的生活实例.【课题】1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【上课时间】【课时安排】1课时【教学过程】*揭示课题1.3集合的运算*创设情景 兴趣导入在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A ={李佳,王燕,张洁,王勇};B ={王燕,李炎,王勇,孙颖};C ={王燕,王勇}.那么这三个集合之间有什么关系?集合A ={直角三角形};B ={等腰三角形};C ={等腰直角三角形}.那么这三个集合之间有什么关系?通过上面的三个问题的思考,可以看出集合C 中的元素是由既属于集合A 又属于集合B 中的所有元素构成的,也就是由集合A 、B 的相同元素所组成的,这时,将C 称作是A 与B 的交集.*动脑思考 探索新知一般地,对于两个给定的集合A 、B ,由集合A 、 B 的相同元素所组成的集合叫做A 与B 的交集,记作A B ,读作“A 交B ”.即{}A B x x A x B =∈∈且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档