九年级数学第一学月测试题
24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)

2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册21.1-22.1。
6.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
福建省南平市2022-2023学年九年级数学上册第一次月考测试题(附答案)

福建省南平市顺昌县郑坊中学2022-2023学年九年级数学上册第一次月考测试题(附答案)一、选择题(共40分)1.下列方程中是一元二次方程的是()A.2x2+3x﹣1=0B.x+y=7C.2x2﹣5y=0D.2.二次函数y=﹣3x2的图象开口方向是()A.向上B.向下C.向左D.向右3.关于x的一元二次方程3x2+2x+1=0的根的情况,下列判断正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断4.已知m是方程x2﹣2x﹣2022=0的一个根,则m2﹣2m的值为()A.﹣4044B.2022C.﹣2022D.40445.抛物线y=3(x﹣2)2+1的对称轴是()A.直线x=﹣2B.直线x=﹣1C.直线x=1D.直线x=26.如果将抛物线y=5x2向上平移1个单位,那么所得新抛物线的表达式是()A.y=5(x+1)2B.y=5(x﹣1)2C.y=5x2+1D.y=5x2﹣17.奥密克戎是新冠病毒的变异毒株,传染性强,有一人感染了此病毒,未被有效隔离,经过两轮传染,共有121名感染者,在每轮传染中,设平均一个人传染了x人,则可列方程为()A.1+x=121B.(1+x)2=121C.1+x2=121D.1+x+x2=121 8.已知x1,x2是一元二次方程x2﹣6x+3=0的两个实数根,则x1x2的值为()A.6B.﹣6C.﹣3D.39.已知二次函数y=x2﹣2x+3,当﹣2≤x≤2,下列说法正确的是()A.有最小值11B.有最小值3C.有最小值2D.有最大值3 10.已知函数y=2x2﹣4ax+5,当x≥2时,y随x的增大而增大,则a的取值范围是()A.a≥2B.a<2C.a≤2D.a>2二、填空题(共24分)11.抛物线y=3(x﹣2)2+4的顶点坐标是.12.一元二次方程(x+1)2=9的两根分别为.13.若函数y=x2+2x+m的图象与x轴没有交点,则m的取值范围是.14.三角形两边的长分别是3和5,第三边的长是方程x2﹣10x+24=0的根,则该三角形的周长为.15.现要在一个长为35m,宽为22m的矩形花园中修建等宽的小道,剩余的地方种植花草,如图,要使种植花草的面积为625m2,设小道的宽为xm,则根据题意,可列方程为.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则①abc>0;②b2﹣4ac>0;③a ﹣b+c>0;④c+3a>0;⑤a+b≥m(am+b),其中结论正确的是(填序号).三、解答题(共86分)17.解方程:(1)x2﹣2x﹣15=0;(2)2x2+3x=1.18.建设美丽城市,改造老旧小区.某市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求该市改造老旧小区投入资金的年平均增长率.19.已知二次函数的图象的顶点坐标为(3,﹣2),且与y轴交于(0,7)(1)求函数的解析式;(2)当x为何值时,y随x增大而增大.20.解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4,当y=1时,即x﹣1=1,解得:x=2;当y=4时,即x﹣1=4,解得:x=5,所以原方程的解:x1=2,x2=5.请利用这种方法求方程(2x+5)2﹣7(2x+5)+12=0的解.21.2022年北京冬季奥运会于2月4日至2月20日在北京市和河北省张家口市联合举行,冬奥会吉祥物为“冰墩墩”.已知某商店“冰墩墩”平均每天可销售20个,每个盈利40元,在每个降价幅度不超过10元的情况下,每下降1元,则每天可多售5件.如果每天要盈利1440元,则每个“冰墩墩”应降价多少元?22.如图,抛物线y=﹣x2+5x﹣4与x轴交于点A和点B,与y轴交于点C.(1)求点A、B、C的坐标;(2)点D是抛物线的对称轴上一动点,当DA+DC最短时,求出D点坐标.23.已知关于x的一元二次方程x2﹣(2m+1)x+m﹣2=0.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为x1,x2,且,求m的值.24.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个不相等的实数根;②方程x2﹣2|x|=2有个不相等的实数根;③关于x的方程x2﹣2|x|=a有4个不相等的实数根时,a的取值范围是.25.已知,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)直接写出C点的坐标;(2)求抛物线的解析式;(3)若点D是线段AC下方抛物线上的动点,求△ADC面积的最大值.参考答案一、选择题(共40分)1.解:A.该方程是一元二次方程,故本选项符合题意;B.该方程是二元一次方程,故此选项不符合题意;C.该方程是二元二次方程,故此选项不符合题意;D、该方程是分式方程,故此选项不符合题意;故选:A.2.解:y=﹣3x2,∵a=﹣3<0,∴抛物线图象开口向下,故选:B.3.解:Δ=22﹣4×1×3=4﹣12=﹣8,故原方程无实数根,故选:C.4.解:∵m是方程x2﹣2x﹣2022=0的一个根,∴m2﹣2m﹣2022=0,∴m2﹣2m=2022.故选:B.5.解:∵抛物线y=3(x﹣2)2+1,∴该抛物线的对称轴为直线x=2,故选:D.6.解:将抛物线y=5x2向上平移1个单位,那么所得新抛物线的表达式是:y=5x2+1.故选:C.7.解:设每轮传染中平均一个人传染了x人,则1+x+x(x+1)=121,整理得:(1+x)2=121.故选:B.8.解:∵x1,x2是一元二次方程x2﹣6x+3=0的两个实数根,∴x1x2=3,故选:D.9.解:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该函数的对称轴是直线x=1,函数图象开口向上,∴在﹣2≤x≤2的取值范围内,当x=﹣2时取得最大值11,当x=1时,取得最小值2,故选:C.10.解:∵二次函数y=2x2﹣4ax+5,∴该二次函数的对称轴为直线,又∵当x≥2时,y随x的增大而增大,∴a≤2,故选:C.二、填空题(共24分)11.解:∵抛物线y=3(x﹣2)2+4是其顶点式,∴抛物线y=3(x﹣2)2+4的顶点坐标是(2,4).故答案为:(2,4).12.解:(x+1)2=9,∴x+1=±3,∴x1=2,x2=﹣4,故答案为:x1=2,x2=﹣4.13.解:∵二次函数y=x2+2x+m的图象与x轴没有交点,∴方程x2+2x+m=0没有实数根,∴判别式Δ=22﹣4×1×m<0,解得:m>1;故答案为:m>1.14.解:∵x2﹣10x+24=0,(x﹣4)(x﹣6)=0,x1=4,x2=6,当第三边是4,2<4<8,满足三角形的条件,∴三角形的周长为:3+5+4=12,当第三边是6,2<6<8,满足三角形的条件,∴三角形的周长为:3+5+6=14,∴三角形的周长为:12或14.故答案为:12或14.15.解:设小道的宽为x m,则种植花草的部分可合成长(35﹣2x)m,宽(22﹣x)m的矩形,依题意得:(35﹣2x)(22﹣x)=625,故答案为:(35﹣2x)(22﹣x)=625.16.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,②正确.由图象可得x=﹣1时,y=a﹣b+c<0,即3a+c<0,∴③④错误.由图象可得x=1时,y取最大值,∴a+b+c≥am2+bm+c,∴a+b≥m(am+b),⑤正确.故答案为:②⑤.三、解答题(共86分)17.解:(1)∵x2﹣2x﹣15=0,∴(x+3)(x﹣5)=0,则x+2=0或x﹣5=0,解得x1=5,x2=﹣3;(2)2x2+3x=1移项得2x2+3x﹣1=0,a=2,b=3,c=﹣1,Δ=32﹣4×2×(﹣1)=17>0,所以方程有两个不相等的实数根,,.18.解:设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.19.解:(1)设抛物线的解析式为y=a(x﹣3)2﹣2,把(0,7)代入得9a﹣2=7,解得a=1.所以二次函数解析式为y=(x﹣3)2﹣2;(2)因为a=1>0,所以抛物线开口向上,而抛物线的对称轴为直线x=3,所以当x>3时,y随x增大而增大.20.解:设2x+5=y,则原方程可化为y2﹣7y+12=0,所以(y﹣3)(y﹣4)=0解得y1=3,y2=4.当y=3时,即2x+5=3,解得x=﹣1;当y=4时,即2x+5=4,解得x=﹣,所以原方程的解为:x1=﹣1,x2=﹣.21.解:设每个“冰墩墩”降价x元,则每个盈利(40﹣x)元,平均每天可售出(20+5x)个,依题意得:(40﹣x)(20+5x)=1440,整理得:x2﹣36x+128=0,解得:x1=4,x2=32(不符合题意,舍去),答:每个“冰墩墩”应降价4元.22.解:(1)∵抛物线的解析式为y=﹣x2+5x﹣4=﹣(x﹣1)(x﹣4),∴当y=0,则x1=1,x2=4;当x=0时,y=﹣4;∴点A的坐标为(1,0),点B的坐标为(4,0),点C的坐标为(0,﹣4);(2)连接BC,与抛物线的对称轴交于点D,点D即为所求,∵y=﹣x2+5x﹣4=﹣(x﹣)2+,∴抛物线的对称轴为直线,∵B(4,0),C(0,﹣4),∴直线BC的解析式为:y=x﹣4,∴当时,,∴点D的坐标为(,﹣).23.解:(1)Δ=[﹣(2m+1)]2﹣4(m﹣2)=4m2+4m+1﹣4m+8=4m2+9,∵m2≥0,∴Δ>0,故不论m取何值,方程总有两个不相等的实数根;(2)∵方程有两个实数根为x1,x2,∴x1+x2=2m+1,x1x2=m﹣2,∴=(2m+1)2﹣2(m﹣2)=4m2+4m+1﹣2m+4=4m2+2m+5=11,4m2+2m﹣6=0,2m2+m﹣3=0,(2m+3)(m﹣1)=0,,m2=1,故m的值或1.24.解:(1)把x=﹣2代入y=x2﹣2|x|得y=0,即m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个不相等的实数根;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个不相等的实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个不相等的实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.25.解:(1)∵点B的坐标为(1,0),OC=3OB,∴OB=1,OC=3,∴点C的坐标为(0,﹣3).(2)将B(1,0)、C(0,﹣3)代入y=ax2+3ax+c,得:,解得:,∴抛物线的解析式为y=x2+x﹣3.(3)过点D作直线DE∥y轴,交AC于点E,交x轴于点F,过点C作CG⊥DE于点G,如图所示.当y=0时,有x2+x﹣3=0,解得:x1=﹣4,x2=1,∴点A的坐标为(﹣4,0),∴AB=5.设直线AC的解析式为y=kx+b(k≠0),将A(﹣4,0)、C(0,﹣3)代入y=kx+b,得:,解得:,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(t,t2+t﹣3),则点E的坐标为(t,﹣t﹣3),∴ED=﹣t﹣3﹣(t2+t﹣3)=﹣t2﹣3t,∴S△ADC=S△AED+S△CED,=AB•OC+ED•AF+ED•CG,=ED•AO,=×4(﹣t2﹣3t),=﹣t2﹣6t=﹣(t+2)2+6.∵﹣<0,∴当t=﹣2时,△ADC的面积取最大值,最大值为6.答:△ADC面积的最大值为6.。
第一学期九年级数学第一次月考试题及答案

GFEDCBA—第一学期九年级数学月考试题命题人:王保爱 校对:朱锦华测试时间:120分钟 满分:150分 得分一.精心选一选(每题3分,共36分)序号 1 2 3 4 5 6 7 8 9 10 11 12 答案1. 若等腰三角形的一个角为50°,则顶角为 ( )A .50°或80°B .100°C .80°D .65° 2. 下列图形中,既是中心对称图形,又是轴对称图形的是 ( ) A.平行四边形 B.等边三角形 C.矩形 D.等腰梯形 3.如图,将矩形ABCD 沿AE 折叠,若∠BAD′=30°,则∠AED′ 等于( )A .30°B .45°C .60°D .75°第5题4. 如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边 于点E ,则EC 等于 ( )A .1cm B. 2cm C. 3cm D. 4cm5.如图,正方形ABCD 的边长为a ,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=22aB .S=42aC .S=432a D .S 与BE 长度有关6. 顺次连结等腰梯形ABCD 各边中点,所得的四边形一定是( ) A .等腰梯形 B .菱形 C .矩形 D .平行四边形ED ′DCBA 第3题EDCBA第4题学校 班级 姓名 考号21LDCBA第16题图A B C D7. 将正方形纸片次对折,并剪出一个菱形小洞后铺平,得到的图形是( )8. 下列各式中,正确的是( )A .215<3B .315<4C .415 5D . 14159. 9.1x +x 必须满足的条件是( )A 、x ≥1B 、x >-1C 、x ≥-1D 、x >1 10.若一组数据1、2、3、x 的极差是6,则x 的值为( )A.7B.8C.9D.7或-311. 下列运算中,错误..的有 ( ) 2551114412=,②442±=,③2)2(2=-,④2095141251161=+=+ A . 1个 B . 2个 C . 3个 D . 4个12. 当m <02m 的结果是 ( )A 、-1B 、1C 、mD 、-m . 二.细心填一填(本大题共6小题,每空3分,共21分) 13.一组数据库,1,3,2,5,x 的平均数为3,那么x= ,这组数据的标准差是______14. 图中标出了某校篮球队中5名队员的身高(单位:cm),则他们的身高的方差是_______.15.若024=--+-+y x y x ,则xy = 16.如图,直线L 过正方形ABCD 的顶点B ,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是17.已知菱形ABCD 的边长为cm 10,∠BAD=120º,则菱形的面积为 ㎝2。
浙江省温州市2022-2023学年九年级上学期第一次月考数学试题(含答案)

温州市2022学年第一学期九年级学业水平第一次检测数 学 试 题2022.9(课改班卷)本卷共4页,满分150分。
请在规定时间内于答题区域内作答,全程不得使用计算器,考试时间120分钟。
选择题部分一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,选择正确才给分)1.有10张背面完全相同的卡片,正面分别写有数字:1至10,把这些卡片背面朝上洗匀后,从中随机抽取三张卡片a ,b ,c ,则这三张卡片a ,b ,c 的数字正好是直角三角形的三边长的概率是( ) A .1120B .160C .145D .1722.已知⊙O 的半径为13,弦AB ∥CD ,AB =24,CD =10,则四边形ACDB 的面积是( ) A .119 B .289 C .77或119 D .119或2893.如图,△ADC 是由等腰直角△EOG 经过位似变换得到的,位似中心在x 轴的正半轴,已知EO =1,D 点坐标为D (2,0),位似比为1:2,则两个三角形的位似中心的坐标是( )A .(23,0)B .(1,0)C .(0,0)D .(13,0)4.我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1 C .4,0 D .5+√172,-15.如图,在△ABC中,∠C=90°,AC=BC=6,点D,E分别在AC和BC上,CD=2,若以DE为直径的⊙O交AB的中点F,可知⊙O的直径是()A.2√3B.2 C.2√5D.56.如图,在△ABC中∠BAC=90°,AB=AC=2,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为()A.√10−√2B.3−√2C.75D.2√3−√27.如图1,是清代数学家李之铉在他的著作《几何易简集》中研究过的一个图形,小圆同学在研究该图形后设计了图2,延长正方形ABCD的边BC至点M,作矩形ABMN,以BM为直径作半圆O交CD于点E,以CE为边做正方形CEFG,G在BC上,记正方形ABCD,正方形CEFG,矩形CMND的面积分别为S1,S2,S3,则S1S2+S3=()A.3+√54B.1+√52C.3+√24D.1+√228.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P(即连接OP有OP⊥AD).若AB=6,BC=3√3,其中正确的结论数量为( )①F 是CD 的中点;②⊙O 的半径是2;③AE =3CE ;④S 阴影=√32.A .1个B .2个C .3个D .4个9.如图,抛物线y =-x ²+2x +1交x 轴于A ,B 两点,交y 轴于点C ,点D 为抛物线的顶点,点C 关于抛物线的对称轴的对称点为点E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为( )A .6B .4√2C .√30D .2√710.如图,正方形ABCD 边长为6,E 、F 是对角线AC 的三等分点,连接BE 并延长交AD 于点G ,连接GF 并延长交BC 于点H ,记△GEF 的面积为m ,△CHF 的面积为n ,m +n =( )A .92 B .6 C .152D .7 非选择题部分二、填空题(本题有6小题,每小题5分,共30分)11.若实数a 是一元二次方程x 2-3x +1=0的一个根,则a 3+224a 1+的值为____________. 12.温故知新:若满足不等式871513n n k <<+的整数k 只有一个,则正整数N 的最大值_____________。
2022-2023学年苏科版九年级数学上册第一次月考(1

2022-2023学年苏科版九年级数学上册第一次月考(1.1—2.8)数学测试题(附答案)一、选择题(24分)1.下列方程是一元二次方程的是()A.x2+2y=1B.x3﹣2x=3C.x2+=5D.x2=02.如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点3.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定4.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=4426.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60°B.65°C.70°D.80°7.如图,已知正五边形ABCDE内接于⊙O,连接BD,CE相交于点F,则∠BFC的度数是()A.60°B.70°C.72°D.90°8.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸二、填空题(24分)9.一元二次方程x2=x的根.10.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m的值为.11.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是.12.如图,P为⊙O外一点,P A、PB分别切⊙O于A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=5,则△PCD的周长为.13.对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m﹣2)*(m﹣3)=80,则m=.14.已知三角形的三边分别为3cm、4cm、5cm,则这个三角形内切圆的半径是.15.若关于x的一元二次方程(k﹣1)x2+x+2=0有两个实数根,则k的取值范围是.16.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.三、解答题(72分)17.用适当方法解下列方程:(1)x2﹣25=0;(2)x2﹣4x﹣3=0.(配方法)18.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的位置;(2)点M的坐标为;⊙M的半径为;(3)点D(5,﹣2)与⊙M的位置关系是点D在⊙M;(4)若画出该圆弧所在圆,则在整个平面直角坐标系网格中该圆共经过个格点.19.已知关于x的一元二次方程(k+1)x2﹣3x﹣k2﹣2=0有一个根为﹣1,求k的值及方程的另一个根.20.如图,已知:AC、BD是⊙O的两条弦,且AC=BD,求证:AB=CD.21.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.22.如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=50°,OA=3,求劣弧BF的长.(结果保留π)24.某商场销售一批鞋子,平均每天可售出20双,每双盈利50元.为了扩大销售,增加盈利,商场决定采取降价措施,调查发现,每双鞋子每降价1元,商场平均每天可多售出2双.(1)若每双鞋子降价5元,商场平均每天可售出多少双鞋子?(2)若商场每天要盈利1600元,且让顾客尽可能多得实惠,每双鞋子应降价多少元?25.解某些高次方程或具有一定结构特点方程时,我们可以通过整体换元的方法,把方程转化为一元二次方程进行求解,从而达到降次或变复杂为简单的目的.例如:解方程(x2﹣3)2﹣5(3﹣x2)+2=0,如果设x2﹣3=y,∵x2﹣3=y,∴3﹣x2=﹣y,用y表示x后代入(x2﹣3)2﹣5(3﹣x2)+2=0得:y2+5y+2=0.应用:请用换元法解下列各题:(1)已知(x2+y2+1)(x2+y2+3)=8,求x2+y2的值;(2)解方程:;(3)已知a2+ab﹣b2=0(ab≠0),求的值.26.【特例感知】(1)如图①,∠ABC是⊙O的圆周角,BC为直径,BD平分∠ABC交⊙O于点D,CD =5,BD=12,则点D到直线BC的距离为,点D到直线AB的距离为.【类比迁移】(2)如图②,∠ABC是⊙O的圆周角,BC为⊙O的弦,BD平分∠ABC交⊙O于点D,过点D作DE⊥BC,垂足为E,探索线段AB、BE、BC之间的数量关系,并说明理由.【问题解决】(3)如图③,四边形ABCD为⊙O的内接四边形,∠ABC=90°,BD平分∠ABC,BD =,AB=12,则△ABC的内心与外心之间的距离为.参考答案一、选择题(24分)1.解:A、x2+2y=1是二元二次方程,故A错误;B、x3﹣2x=3是一元三次方程,故B错误;C、x2+=5是分式方程,故C错误;D、x2=0是一元二次方程,故D正确;故选:D.2.解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.3.解:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选:C.4.解:Δ=a2﹣4×1×(﹣1)=a2+4.∵a2≥0,∴a2+4>0,即Δ>0,∴方程x2+ax﹣1=0有两个不相等的实数根.故选:B.5.解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.6.解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选:D.7.解:如图所示:∵五边形ABCDE为正五边形,∴BC=CD=DE,∠BCD=∠CDE=108°,∴∠CBD=∠CDB=∠CED=∠DCE==36°,∴∠BFC=∠BDC+∠DCE=72°.故选:C.8.解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.二、填空题(24分)9.解:由原方程得x2﹣x=0,整理得x(x﹣1)=0,则x=0或x﹣1=0,解得x1=0,x2=1.故答案是:x1=0,x2=1.10.解:把x=0代入方程(m﹣2)x2+3x+m2﹣4=0中,得m2﹣4=0,解得m=﹣2或2,当m=2时,原方程二次项系数m﹣2=0,舍去,故答案是:﹣2.11.解:∵AB是△ABC外接圆的直径,∴∠ACB=90°,∴∠B=90°﹣∠A=90°﹣35°=55°.故答案为55°.12.解:∵P A、PB切⊙O于A、B,∴P A=PB=5;同理,可得:EC=CA,DE=DB;∴△PDC的周长=PC+CE+DE+DP=PC+AC+PD+DB=P A+PB=2P A=10.即△PCD的周长是10.13.解:由题意,得(m﹣2+m﹣3)2﹣(m﹣2﹣m+3)2=80,即(2m﹣5)2﹣1=80,(2m﹣5)2=81,2m﹣5=±9,解得m=7或﹣2.故答案为:7或﹣2.14.解:∵32+42=52,∴这个三角形为直角三角形,∴这个三角形内切圆的半径==1.故答案为1.15.解:根据题意得k﹣1≠0且Δ=12﹣4(k﹣1)×2≥0,解得k≤且k≠1.故答案为k≤且k≠1.16.解:∵∠CHB=90°,BC是定值,∴H点是在以BC为直径的半圆上运动(不包括B点和C点),连接HO,则HO=BC=3.∵∠ACB=90°,AC=4,BC=6,∴AO===5,当A、H、O三点共线时,AH最短,此时AH=AO﹣HO=5﹣3=2.故答案为:2.三、解答题(72分)17.解:(1)移项得:x2=25,两边开方得:x=±5,解得:x1=5,x2=﹣5;(2)移项得到x2﹣4x=3,配方得:(x﹣2)2=7,∴x﹣2=或x﹣2=﹣,解得:x1=2+,x2=2﹣.18.解:(1)如图,点M即为所求.(2)M(2,0),MA= .故答案为:(2,0),2.(3)点D(5﹣2)在⊙M内部.故答案为:内部.(4)如图,满足条件的点有8个.故答案为:8.19.解:将x=﹣1代入(k+1)x2﹣3x﹣k2﹣2=0得,k+1+3﹣k2﹣2=0,整理得k2﹣k﹣2=0,∴k=2或﹣1,∵k+1≠0,∴k=2,∴该方程为3x2﹣3x﹣6=0,设另外一根为x=m,由根与系数的关系可知:﹣m=﹣2,∴m=2,∴k的值2,方程的另一个根为2.20.证明:∵AC=BD,∴=,∴﹣=﹣,∴=,∴AB=CD.21.解:(1)根据题意得(2m+3)2﹣4(m2+2)≥0,解得m≥﹣;(2)根据题意x1+x2=2m+3,x1x2=m2+2,因为x1x2=m2+2>0,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=0,所以(2m+3)2﹣3(m2+2)﹣31=0,整理得m2+12m﹣28=0,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.22.解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+∠OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S△AOC=×2×1=S扇形OAC==∴阴影部分面积为﹣23.(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=50°,∴∠BAE=90°﹣50°=40°,∴∠BOF=2∠BAE=80°,∵OA=3,∴的长=.24.解:(1)由题意得:商场平均每天可售出的鞋子数量为:20+2×5=30(双);答:若每双鞋子降价5元,商场平均每天可售出30双鞋子;(2)设每双鞋子应降价x元,根据题意,得(50﹣x)(20+2x)=1600,整理,得x2﹣40x+300=0,解得:x1=10,x2=30,∵让顾客尽可能多得实惠,∴x应取30元.答:鞋子的单价应降30元.25.解:(1)设x2+y2=m,原方程化为:(m+1)(m+3)=8,m2+4m﹣5=0,b2﹣4ac=36>0,∴方程有两个不想等的实数根,解得m1=﹣5,m2=1,∵x2+y2≥0,∴x2+y2=1.(2)设x+=m,原方程化为:m2+m﹣2=0,(m+2)(m﹣1)=0,m+2=0或m﹣1=0,m1=﹣2或m2=1.∴x+=﹣2,x2+2x+1=0,(x+1)2=0,x1=x2=﹣1,经检验是原方程的解,∴x=﹣1.x+=1,x2+x+1=0,b2﹣4ac<0,∴此方程无解.综上所述,x=﹣1.(3)原方程化为:+﹣1=0,+﹣1=0,∴=,∴=,=.26.解:(1)如图,过点D作DF⊥BA,交BA的延长线于点F,作DE⊥BC于点E,∵BD平分∠ABC,DF⊥AB,DE⊥BC,∴DF=DE,∵BC是直径,∴∠BDC=90°,∴BC==5,在△BCD中,BC•DE=BD•DC,∴DE=,∴DF=DE=;(2)AB+BC=2BE,理由如下:如图,过点D作DF⊥BA,交BA的延长线于点F,连接AD,DC,∵BD平分∠ABC,DE⊥BC,DF⊥BA,∴DF=DE,∠DFB=∠DEB=90°,∴∠DFB=90°,∠DEB=90°,∴∠ABC+∠EDF=180°,又∵∠ABC+∠ADC=180°,∴∠ADC=∠EDF,∴∠FDA=∠CDE,∵∠DF A=∠DEC=90°,∴△DF A≌△DEC(ASA),∴AF=CE,∵BD=BD,DF=DE,∴Rt△BDF≌Rt△BDE(HL),∴BF=BE,∴AB+BC=BF﹣AF+BE+CE=2BE;(3)如图,过点D作DF⊥BA,交BA的延长线于点F,DE⊥BC,交BC于点E,连接AC,作△ABC的内切圆,圆心为M,N为切点,连接MN,OM,由(1)(2)可知,四边形BEDF是正方形,BD是对角线,∵BD=14,正方形BEDF的边长为:=14,由(2)可知BC=2BE﹣AB=16,∴AC==20,由切线长定理可知AN=,∴ON==2,设内切圆的半径为r,则,解得r=4,即MN=4,在Rt△OMN中,OM=.。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2022-2023学年北师大版九年级数学第一学期第一次月考测试卷含答案

九年级数学上册第一次月考检测试题(满分:150分 时间:120分钟)一.选择题。
(每小题4分,共48分)1.如图,已知AB ∥CD ∥EF ,AD :AF =3:5,BC =6,CE 的长为( ) A.2 B.4 C.3 D.5(第1题图) (第3题图) (第5题图) 2.若△ABC ∽△A'B'C',∠A=55°,∠B=100°,则∠C'的度数是( ) A .100° B .55° C .25° D .不能确定3.如图,已知菱形ABCD 的边长为2,∠DAB=60°,则对角线BD 的长是( ) A.1 B.3 C.2 D.234.关于x 的方程0242=+-x kx 有两个不相等的实数根,则k 的取值范围是( ) A.k ≤2 B.k>2 C.k<2且k ≠0 D.k ≤2且k ≠05.如图,在△ABC 中,D 是边AB 上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为( ) A .2 B .4 C .6 D .86.如图,在△ABC 中,EF ∥BC ,AE EB =23,四边形BCFE 的面积为21,则△ABC 的面积是( )A .913 B .25 C .35 D .63(第6题图) (第7题图) (第10题图)7.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.∠ADB=90°B.BE ⊥DCC.AB=BED.CE ⊥DE8.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会和平,国家决定大幅增加退休人员退休金,企业退休职工李师傅2020年月退休金为4500元,2022年达到5445元,设李师傅的月退休金从2020年到2022年年平均增长率为x ,可列方程为( ) A.54452)1(x -=4500 B.45002)1(x +=5445C.45002)1(x -=5445 D.4500+4500(1+x )+45002)1(x +=54459.在平面直角坐标系中,已知点E (-4,2)F (-2,-2),以原点O 为位似中心,相似比为2:1,把△EFO 放大,则点E 对应点'E 的坐标是( )A.(-2,1)B.(-8,4)C.(-2,1)或(2,-1)D.(-8,4)或(8,-4) 10.如图,在正方体网格上,与△ABC 相似的三角形是( ) A.△AFD B.△AED C.△FED D.不能确定11.如图所示,一电线杆AB 的影子落在地面和墙壁上,同一时刻,小明在地面上竖立一根1米高的标杆(PQ ),量得其影长(QR )为0.5米,此时他又量得电线杆AB 落在地面上的影子BD 长为3米,墙壁上的影子CD 高为2米,小明用这些数据很快算出了电线杆AB 的高为( ) A .5米 B .6米 C .7米 D .8米(第11题图) (第12题图)12.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①21FD AF =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( ) A .①②③④ B .①④ C .②③④ D .①②③ 二.填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第一学月测试题
(考试时间:120分钟 总分:120分)
班级 姓名 分数
一、选择题(30分)
1、已知x 、y 是实数43+x +y 2-6y+9=0则x 、y 的值是( ) A 、4 B 、-4 C 、4
9 D 、-4
9 2、已知a=5+2,b =5-2,则722++b a 的值为( ) A 、4 B 、-4 C 、5 D 、6
3、把式子-x x
1-根号外的字母移到根号内,则原式等于( ) A 、 x - B 、x C 、-x - D 、-x
4、已知实数a 满足︱2008—a ︱+2009-a =a ,a -20082的值是( ) A 、2007 B 、2008 C 、2009 D 、2010
5、如果代数式m -+
m n
1有意义,那么直角坐标系中点P (m,n )的位置在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
6、关于x 的方程(k-3)x 2+k x+1=0是一元二次方程,则k 的取值范围是( ) A 、k ≠3 B 、k >3 C 、k ≥0 D 、k ≥0且 k ≠3
7、如果二次三项式4x 2+mx+9
1是一个完全平方式,那么m 的值是( ) A 、34 B 、-34 C 、±34 D 、±4
3 8、在方程ax 2+bx+c=0(a ≠0)中,若a 与c 异号,则方程( ) A 、有两个不相等的实数根 B 、有两个相等的实数根 C 、没有实数根 D 、无法确定
9、关于x 的一元二次方程(m-1)x 2-2mx+m=0有两个实数根,那么m 的取值范围是( )A 、m>0 B 、m ≥0 C 、m>0且m ≠1 D 、m ≥0且 m ≠1
10、若一元二次方程x 2-2x-a=0无实数根,则一次函数y=(a+1)x+(a-1)的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 二、填空题(18分)
1、已知2<x<4,则2)1(-x +︱x -5︱= 。
2、在实数范围内分解因式,x 4-4= .
3、我们赋予“△”一个实际含义,规定a △b=a *b ÷b
a
, 则3△6= 。
4、当a _________时,方程 (a 2-1)x 2 + 3ax + 1=0 是一元二次方程.
5、已知a 、b 、c 为三角形的三边长,且关于x 的一元二次方程(b-c)x 2+2(a-b)x+b-a=0有两个相等实数根,则此三角形一定是 三角形。
6、一个三角形的两边长3和6,第三边的边长是方程(x-2)(x-4)=0的根,则这个三角形的周长是 . 三、解答题(72分) 1、计算: 82
1
233++-18123++ (6分)
2、已知x=625+,求3x 2-2x+4的值 (6分)
3、先化简,再求值。
3
1
213122+++⨯
-+--x x x x x x x , 其中x=12+ (7分)
5、解方程(12分)
2x2-7x+3=0 x2-6x+3=0(配方法) 2x2-6x-3=0
4、在一节数学探究课上,张老师出示了下列命题,(7分)
3
已知非负数和,①a+b=2,则ab≤1 ②a+b=3,则有ab≤
2
③a+b=6,则有ab≤3 读完上述三个命题后。
老师告诉同学们上述命题均为真命题。
⑴试猜想,当a、b都为非负数时,若a+b=7,则有ab≤。
⑵通过观察得出一个规律,并对规律进行证明。
6、当k为何值时,关于x的方程x2-(2k-1)x=-k2+2k+3 (7分)
(1)、有两个不相等的实数根(2)、有两个相等的实数根(3)、没有实数根
7、阅读下列材料, 解答问题: (7分)
阅读材料:
解方程(x2 -1 )2 -5(x2 -1 ) + 4 = 0, 我们可以将x2 -1视为一个整体, 然后设x2 -1 = y , 则(x2 -1 )2 = y2, 原方程化为y2-5y + 4 = 0 .
解得y1 = 1, y2 = 4.
当 y = 1 时, x 2 -1 = 1 , ∴ x 2 = 2, ∴x =
当 y = 4 时, x 2 -1 = 4 , ∴ x 2 = 5, ∴x =
. ∴原方程的解为
1234x x x x ===解答问题 :
(1)填空:在由原方程得到 的过程中, 利用______________达到了降次的目的, 体现了_____________的数学思想. (2)解方程x 4 -5x 2 +6 = 0.
8、已知a 是方程x 2-2008x+1=0的一个根,试求a 2-2007a+1
2008
2+a 的值 (6分)
9、试证明:不论m 为何值时,方程2x 2-(4m-1)x-m 2-m=0,总有两个不相等的实数根. (7分)
10、已知:△ABC 的三边为a 、b 、c ,关于x 的一元二次方程(b+c)x 2+2(a-c)x -4
3 (a-c)=0 有两个相等的实数根。
试说明△ABC 是等腰三角形。
(7分)。