2011年广州市中学数学青年教师解题比赛决赛

合集下载

2011年全国高中数学联赛一试试题参考答案与评分标准

2011年全国高中数学联赛一试试题参考答案与评分标准
(t 2 − x1 )(t 2 − x 2 ) + ( 2t − y 1 )( 2t − y 2 ) = 0 ,
即 t 4 − ( x1 + x 2 )t 2 + x1 ⋅ x 2 + 4t 2 − 2( y 1 + y 2 )t + y 1 ⋅ y 2 = 0 , 即 t 4 − 14t 2 − 16t − 3 = 0 , 即 (t 2 + 4t + 3)(t 2 − 4t − 1) = 0 . 从而点 C 与点 A 显然 t 2 − 4t − 1 ≠ 0 , 否则 t 2 − 2 ⋅ 2t − 1 = 0 , 则点 C 在直线 x − 2 y − 1 = 0 上, 或点 B 重合. 所以 t 2 + 4t + 3 = 0 ,解得 t 1 = −1, t 2 = −3 . 故所求点 C 的坐标为 (1,−2) 或 (9,−6) .
一、填空题:本大题共 8 小题,每小题 8 分,共 64 分.把答案填在横线上.
1 .设集合 A = {a1 , a 2 , a 3 , a 4 } ,若 A 中所有三元子集的三个元素之和组成的集合为 B = {−1, 3, 5, 8} ,则集合 A = . 解 显然,在 A 的所有三元子集中,每个元素均出现了 3 次,所以 3(a1 + a 2 + a 3 + a 4 ) = (−1) + 3 + 5 + 8 = 15 , 故 a1 + a 2 + a 3 + a 4 = 5 ,于是集合 A 的四个元素分别为 5-(-1)=6,5-3=2,5-5 =0,5-8=-3,因此,集合 A = {−3, 0, 2, 6} .
2011 年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)

广州市小学数学学科第二届 青年教师解题比赛初赛试题(答 案)

广州市小学数学学科第二届    青年教师解题比赛初赛试题(答    案)

广州市小学数学学科第二届青年教师解题比赛初赛试题(时间:2008年4月日,时量:90分钟)组别:区:学校:姓名:题号第一大题第二大题总分得分一、填空题【第1~6题每小题5分,第7~12题每小题10分,本大题共计90分】1.计算:=。

2.将化成循环小数,小数点后第2008位上的数字是 。

3.实验小学的学生乘汽车外出旅游,如果每车坐65人,则有5人无车可乘;如果每车多坐5人,则可少用一辆车。

那么,外出旅游的学生有 人。

4.用绳子三折量水深,水面以上部分绳长13米;如果绳子五折量,则水面以上部分长3米,那么水深是 米。

图15.如图1:P为边长12厘米的正方形中的任一点,将P和AD、BC的三等分点,AB、CD二等分点及B、D分别相连。

那么,阴影部分的面积是 平方厘米。

6.口袋里装有42个红球,15个黄球,20个绿球,14个白球,9个黑球。

那么至少要摸出个球才能保证其中有15个球的颜色是相同的。

7.有一个整数除300,262,205所得的余数相同,则这个整数最大是 。

8.如图2,将一副三角板叠放在一起,使直角的顶点重合于点0,那么图3图2∠AOC+∠DOB的度数为度。

9.如图3,长方形中的24个方格都是边长为1厘米的正方形,则图中长方形ABCD的面积是平方厘米。

10.在统计学中平均数、中位数、众数都可以称为一组数据的代表,下面给出一批数据,请挑选适当的代表。

(1)在一个20人的班级中,他们在某学期出勤的天数是:7人未缺课,6人缺课1天,4人缺课2天,2人缺课3天,1人缺课90天。

试确定该班学生该学期的缺课天数。

(选取:)(2)确定你所在班级中同学身高的代表,如果是为了:①体格检查,②服装推销。

(①选取:②选取:)(3)一个生产小组有15个工人,每人每天生产某零件数目分别是6,6,7,7,7,8,8,8,8,8,9,11,12,12,18。

欲使多数人超额生产,每日生产定额(标准日产量)就为多少?(选取:)11.一家机密文件碎纸公司有许多位雇员,这些雇员在输送带前排成一列,分别编号为1,2,3,…,老板接到将一张文件撕碎的任务,他把这份文件撕成5块后交给第1号雇员。

关于荔湾区中学数学青年教师“解题比赛”获奖情况通报

关于荔湾区中学数学青年教师“解题比赛”获奖情况通报

关于荔湾区中学数学青年教师“解题比赛”获奖情况通报各中学数学科:
2010年12月31日,荔湾区中学数学青年教师‚解题比赛‛在广州市第四中学成功举行。

本次活动的目的是选拔本区青年数学教师参加由广州市教育局教研室数学科和广州市中学数学教学研究会联合主办的‚广州市中学数学青年教师‘解题比赛’‛。

本次比赛,共评出初中一等奖13名,二等奖31名,三等奖58名,高中一等奖8名,二等奖25名,三等奖32名。

现将荔湾区中学数学青年教师‚解题比赛‛获奖情况通报如下。

广州市荔湾区教育发展研究中心
二〇一一年二月十五日
附:获奖名单(排名不分先后)
高中组获奖名单:
一等奖:(8人)
二等奖:(25人)
三等奖:(32人)
初中组获奖名单:一等奖:(13人)。

广州市中学数学优秀科组评选方案

广州市中学数学优秀科组评选方案
2011.7
姚瑶
校2009学年校优秀班主任
2010.7
陈景文
第十五届全国华罗庚金杯少年数学邀请赛优秀教练员
2010.4
林海
华罗庚金杯少年数学邀请赛优秀教练员奖
2009.4
唐琦
华罗庚金杯少年数学邀请赛优秀教练员奖
2011.4
邱传林
荣获第十六届全国华罗庚金杯少年数学邀请赛优秀教练员奖
2011.4
温晖
华罗庚金杯少年数学邀请赛优秀教练员奖
2011.6
陈颍
广州市中学数学青年教师“解题比赛”三等奖
2011.6
包承先
广州市中学数学青年教师“解题比赛”三等奖
2011.6
孙苏平
区“卡西欧”青年教师解题比赛一等奖
2011.1
唐琦
区“卡西欧”青年教师解题比赛一等奖
2011.1
姚瑶
区“卡西欧”青年教师解题比赛一等奖
2011.1
王革华
区“卡西欧”青年教师解题比赛一等奖
何方梅
区初中数学青年教师解题比赛二等奖
2011.1
邹芬
区初中数学青年教师解题比赛二等奖
2011.1
周珑
区初中数学青年教师解题比赛二等奖
2011.1
陈莫琼
区初中数学青年教师解题比赛二等奖
2011.1
陈家灿
区初中数学青年教师解题比赛二等奖
2011.1
刘颖斯
区初中数学青年教师解题比赛二等奖
2011.1
徐玲玲
2011.1
包承先
2011年广州市青年教师解题比赛萝岗区初赛二等奖
2011.1
张亚茹
2011年广州市青年教师解题比赛萝岗区初赛二等奖

广州市小学数学学科第二届教师解题比赛决赛获奖名单

广州市小学数学学科第二届教师解题比赛决赛获奖名单

广州市小学数学学科第二届教师解题比赛决赛获奖名单一等奖:(共53人)(排名不分先后,下同)【青年组】(32人)欧智毅越秀区朝天小学陈平忠天河区长湴小学陈智斌越秀区朝天小学尤学武天河区华景小学何伟雄越秀区东风西路小学周娟天河区龙口西小学郭睿越秀区东风西路小学陈伟天河区体育西路小学冼颂华越秀区教育发展中心胡敏天河区体育西路小学王武贵越秀区铁一小学黄浩荔湾区芦荻西小学黎美薇越秀区小北路小学曾仪荔湾区五眼桥小学巢亮白云区长红小学曾艳海珠区东风二小崔思敏白云区方圆小学赖敏贤海珠区海珠区第二实验小学刘冬青白云区广园实验小学冯良勇海珠区鹤鸣五巷小学喻宝贵白云区广园小学叶永标番禺区石碁镇沙涌小学李福仁白云区松溪小学陈慧番禺区市桥东兴小学曾迟灏黄埔区恒威实小黄海容南沙区横沥小学常珍花黄埔区怡园小学钟益鑫增城市水电二局小学李美红萝岗区萝峰小学张远生增城市中新镇中心小学王月霞花都区新华街横潭小学李武东从化市街口街中心小学【非青年组】(21人)黄卫群越秀区回民小学何燕天河区华康小学羊斌白云区广园小学杨跃天河区华美实验学校王四中白云区黄边小学洪同海天河区华师附小李长根白云区京溪小学杨海英天河区华阳小学周健图白云区民航广州子弟学校谭军辉天河区岭南中英文学校王朝阳白云区棠溪小学张凤红天河区先烈东小学周良平白云区贤丰小学欧阳亮萝岗区开发区一小蔡晓红荔湾区环西路小学杨志园增城市荔城街挂绿小学钟陈辉海珠区同福东路第二小学段新民增城市新塘镇凤凰城中英文学校郑祚彪番禺区石碁镇新英才中英文学校杨培琴增城市新塘镇汇美天恩小学刘宇帆南沙区万顷沙小学二等奖:(109人)【青年组】(65人)梁小燕越秀区大沙头小学钟国泉天河区昌乐小学梁冠殷越秀区回民小学陈伦鸿天河区华美实验学校林桦越秀区吉祥路小学陈经全天河区华师附小苏美珍越秀区人民北路小学陈继平天河区华阳小学谢怿越秀区五羊小学赖艳天河区华阳小学吴秋琳越秀区雅荷塘小学何小平天河区骏景小学范易荣荔湾区东沙小学崔瑞娟天河区棠东小学付绍琴荔湾区芳村小学吴迪海珠区海珠区第二实验小学卢镜生荔湾区合兴苑小学罗杰胜海珠区红棉小学李红斌荔湾区华侨小学欧卓莹海珠区江南新村第二小学杨绍彭荔湾区康有为纪念学校陆颖能海珠区瑞康路小学钟煜锋荔湾区康有为纪念学校陈瑞芬海珠区同福中路第一小学1香婉仪荔湾区龙津小学谢秀燕海珠区中大附小梁智丹荔湾区三元坊小学蔡敏珊白云区百事佳小学谭锋锋荔湾区西关培正邓伟生白云区大岭小学何素云荔湾区耀华小学李东海白云区金泉小学吴海文荔湾区耀华小学盛莉白云区民航广州子弟学校高云涛花都区赤坭镇白坭小学谢全维番禺区化龙镇化龙中心小学林国权花都区狮岭镇西头小学劳晓丹番禺区南村镇复中实验小学刘桂华花都区新华街莲塘小学郭荣波番禺区石碁镇傍西小学毕倩雯花都区新华街田美小学何绍成番禺区石碁镇东怡小学高艳群花都区新华街圆玄小学陈毅坚番禺区石碁镇海傍小学刘文涛黄埔区荔园小学江鲁华番禺区市桥实验小学黎德伦黄埔区文冲小学张锦荣南沙区庙南小学易彦黄埔区新港小学张桂锋南沙区麒麟小学林少群黄埔区怡园小学杨伟彬南沙区新同丰黄英平黄埔区中大实小齐胜萝岗区长平小学温淑珍增城市荔城街富鹏小学黄翠娣萝岗区福洞小学黎延毅增城市石滩镇金兰寺小学钟雪娴萝岗区香雪小学谷瑶斌增城市新塘镇凤凰城中英文学校欧阳东从化市河滨小学龚海文增城市新塘镇西洲小学欧阳桂锋从化市流溪小学李犹增城市中新天恩小学谢镜波从化市流溪小学郭文锋增城市中新镇育才小学【非青年组】(44人)徐文昌越秀区培正小学郭为民天河区华美实验学校陈国良越秀区署前路小学邝艳芬天河区华阳小学钟小杏越秀区文德路小学汤惠玲天河区天府路小学钟婉群荔湾区宝华培正小学古晓兰黄埔区荔园小学林丽琼荔湾区广船小学夏卫红黄埔区荔园小学黄丽青荔湾区华侨小学郭卫民黄埔区深井小学麦建文荔湾区沙面小学朱俊黄埔区怡园小学周少娴荔湾区詹天佑小学罗展朋萝岗区东区小学陈爱和白云区民航广州子弟学校朱活钊萝岗区东区小学李再华白云区三元里实验小学罗雨雄萝岗区禾丰小学叶中华海珠区海珠区第二实验小学黄锦洪番禺区石楼镇中心小学田锦红海珠区海珠区实验小学曾淑华番禺区石碁镇东怡小学王耀安花都区花东镇大塘小学蓝福强番禺区石碁镇仲元实验学校张建华花都区花东镇七星小学黄堪利番禺区石碁镇仲元实验学校高乐伦花都区花东镇杨荷小学招伟英番禺区市桥东兴小学庾洁妹花都区花东镇杨荷小学李启荣南沙区麒麟小学许丽妮花都区狮岭镇新民小学秦华南沙区一小曾洁雯花都区新华街第四小学林志明南沙区义沙小学龚本利增城市新蕾学校何桂荣南沙区义沙小学徐小军增城市新雅新世界实验学校黄少梅从化市城郊街黄场小学赖远方增城市正果镇龙潭埔小学钟少英从化市河滨小学黄共庆增城市中新镇福和小学黄光强从化市河滨小学注:三等奖共354人(其中青年组260人,非青年组94人),具体获奖名单由各区县教研室小数科公布。

2014年广州市高中数学教师解题比赛决赛试题与参考答案

2014年广州市高中数学教师解题比赛决赛试题与参考答案

2014年广州市高中数学教师解题比赛决 赛 试 题(2014年4月13日上午9∶00-11∶00)一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,有且只有一项是符合题目要求的.请将答案代号填在答题卷的相应位置上.1.设集合{},,M a b c =,{}0,1N =,映射f :M N →满足()()()f a f b f c +=,则映射f :M N →的个数为A .1B .2C .3D .42.直角梯形ABCD 中,AB DC ,2AB CD =,45A ∠=,2AD =.以直线AB 为轴将梯形ABCD 旋转一周所得旋转体的体积为A .π328 B .π34 C .π3210D .π243.已知()f x 是奇函数,定义域为{},0x x x ∈≠R ,又()f x 在区间()0,+∞上是增函数,且()10f -=,则满足()f x 0>的x 的取值范围是 A .()1,+∞B .()()1,01,-+∞ C .()0,1 D .()(),11,-∞-+∞4.已知虚数z =()2i x y -+,其中x 、y 均为实数,当1z =时,yx的取值范围是 A.⎡⎢⎣⎦B.30,⎡⎫⎛⎤⎪ ⎢⎥⎪⎣⎭⎝⎦C .⎡⎣D .)(0,3⎡⎤⎣⎦5.设()2f x x ax b =++,且()112f ≤-≤,()214f ≤≤,则点(),a b 在aOb (O 为坐标原点)平面上的区域的面积是 A .12 B .1 C .2 D .926.已知向量()2,1=,()1,7=, ()5,1=,设X 是直线OP 上的一点(O 为坐标原点),那么⋅的最小值是A .-16B .-8C .0D .47.等比数列{}n a 的公比为q ,则“10a >,且1q >”是“∀*n ∈N ,都有1n n a a +>”的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件CDBA8.若不论k 为何值,直线2y kx b k =+-与曲线221x y -=总有公共点,则b 的取值范围是A .(B .⎡⎣C .()2,2-D .[]2,2-9.已知集合A 、B 、C ,{}直线=A ,{}平面=B ,B A C =,若A a ∈,B b ∈,C c ∈,给出四个命题: ①c a bc b a //⇒⎩⎨⎧⊥⊥;②c a bc b a ⊥⇒⎩⎨⎧⊥//;③c a bc b a //////⇒⎩⎨⎧;④c a bc b a ⊥⇒⎩⎨⎧⊥//,则正确命题的个数为A .0B .1C .2D .310.在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为A .22B .23C .24D .25二、填空题:本大题共4小题,每小题5分,共20分. 请将答案填在答题卷的相应位置上. 11.已知x 是三角形的一个内角,满足231cos sin -=+x x ,则x = * . 12.已知正三棱锥S ABC -的高为3,底面边长为4,在正三棱锥内任取一点P ,使得P ABC V -12S ABC V -<的概率是 * .13.对于正整数n 和m ,其中n m <,定义!()(2)(3)()m n n m n m n m n km =----…,其中k 是满足km n >的最大整数,则=!20!1864 * . 14.有两个向量1(1,0)=e ,2(0,1)=e ,今有动点P ,从0(1,2)P -开始沿着与向量12+e e 相同的方向作匀速直线运动,速度为12+e e ;另一动点Q ,从0(2,1)Q --开始沿着与向量1232+e e 相同的方向作匀速直线运动,速度为1232+e e .设P 、Q 在时刻0t =秒时分别在0P 、0Q 处,则当00PQ P Q ⊥时,t = * 秒. 三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程. 15.(本小题满分12分)若函数21()sin sin cos (0)2f x ax ax ax a =-->的图象与直线y m =相切,若函数()f x 图象的两条相邻对称轴间的距离为4π. (1)求m 的值;(2)若点()0,0A x y 是()y f x =图象的对称中心,且00,2x π⎡⎤∈⎢⎥⎣⎦,求点A 的坐标.一个口袋中装有n 个红球(5n ≥且n ∈*N )和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(1)试用n 表示一次摸奖中奖的概率p ;(2)若5n =,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(3)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P ,当n 取多少时,P 最大? 17.(本小题满分14分)如图所示,正四棱锥P ABCD -中,侧棱PA 与底面ABCD 所成角的正切值为26. (1)求侧面PAD 与底面ABCD 所成二面角的大小;(2)若E 是PB 中点,求异面直线PD 与AE 所成角的正切值;(3)在侧面PAD 上寻找一点F ,使EF ⊥侧面PBC . 试确定F 点的位置,并加以证明.18.(本小题满分14分)这是一个计算机程序的操作说明:(1)初始值1x =,1y =,0z =,0n =; (2)1n n =+(将当前1n +的值赋予新的n ); (3)2x x =+(将当前2x +的值赋予新的x ); (4)2y y =(将当前2y 的值赋予新的y ); (5)z z xy =+(将当前z xy +的值赋予新的z );(6)如果7000z >,则执行语句(7),否则回语句(2)继续进行; (7)打印n ,z ; (8)程序终止.由语句(7)打印出的数值为 , . 以下写出计算过程:P DEACB如图,已知过点D (2,0)-的直线l 与椭圆2212x y +=交于不同的两点A 、B ,点M 是弦AB 的中点. (1)若OP OA OB =+,求点P 的轨迹方程;(2)求||||MD MA 的取值范围.20.(本小题满分14分)已知函数()e x f x x =-(e 为自然对数的底数). (1)求()f x 的最小值;(2)设不等式()f ax x >的解集为P ,且{}|02P x x ⊆≤≤,求实数a 的取值范围;(3)设n *∈N ,证明:1e e 1nnk k n =⎛⎫<⎪-⎝⎭∑.2014年广州市高中数学教师解题比赛决赛试题参考答案一、选择题:本大题共10小题,每小题5分,满分50分.二、填空题:本大题共4小题,每小题5分,满分20分.11.56π 12.7813.21514. 2三、解答题,本大题共6小题,满分80分. 15.(本小题满分12分) 解:(1)2()sin sin cos f x ax ax ax =-12-1cos21sin 222ax ax -=-12-24ax π⎛⎫=+ ⎪⎝⎭. 由题意知,m 为()f x 的最大值或最小值, 所以m =或m =. (2)由题设知,函数()f x 的周期为2π, 所以2a =. 所以()sin 44f x x π⎛⎫=+ ⎪⎝⎭. 令sin 404x π⎛⎫+= ⎪⎝⎭,得44x k ππ+=()k ∈Z ,即416k x ππ=-()k ∈Z . 因为04162k πππ≤-≤()k ∈Z , 得1k =或2k =,因此点A 的坐标为3,016π⎛⎫ ⎪⎝⎭或7,016π⎛⎫⎪⎝⎭.16.(本小题满分12分)解:(1)一次摸奖从5n +个球中任选两个,有25n C +种,它们等可能,其中两球不同色有115n C C 种,所以一次摸奖中奖的概率1152510(5)(4)n n C C np C n n +==++.(2)若5n =,一次摸奖中奖的概率59p =, 三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是123380(1)(1)243P C p p =⋅⋅-=. (3)设每次摸奖中奖的概率为p ,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为123233(1)(1)363P P C p p p p p ==⋅⋅-=-+,01p <<, 因为2'91233(1)(31)P p p p p =-+=--,所以在10,3⎛⎫ ⎪⎝⎭上P 为增函数,在1,13⎛⎫ ⎪⎝⎭上P 为减函数,当13p =时P 取得最大值. 所以101(5)(4)3n p n n ==++,解得20n =.故当20n =时,三次摸奖(每次摸奖后放回)恰有一次中奖的概率最大. 17.(本小题满分14分)(1)解:连结AC ,BD 交于O ,连结PO .因为P —ABCD 为正四棱锥,所以PO ⊥底面ABCD .作PM ⊥AD 于M ,连结OM , 所以OM ⊥AD .所以∠PMO 为侧面P AD 与底面ABCD 所成二面角的平 面角.因为PO ⊥底面ABCD ,所以∠P AO 为P A 与底面ABCD 所成的角.所以tan PAO ∠=. 设AB a =,所以,.2a AO MO ==所以.PO =所以tan POPMO MO∠==60PMO ∠=︒.所以侧面P AD 与底面ABCD 所成的二面角为60°.(2)解:连结EO ,因为E 为PB 的中点,O 为BD 的中点,所以EO ∥PD .所以∠AEO 为异面直线AE 与PD 所成的角.在Rt ,,PAO AO PO ∆==中,所以PA =,12EO PD ==.由AO ⊥截面PDB ,可知AO ⊥EO . 在Rt △AOE中,tan AO AEO EO ∠==即异面直线AE 与PD 所成角的正切值是1052.(3)证明:延长MO 交BC 于N ,连结PN ,取PN 中点G ,连结EG ,MG .因为P —ABCD 为正四棱锥且M 为AD 的中点,所以N 为BC 中点. 所以BC ⊥NM ,BC ⊥PN .因为NM PN N =,所以BC ⊥平面PMN .因为BC ⊂平面PBC ,所以平面PMN ⊥平面PBC .因为PM =PN ,∠PMN =60°,所以△PMN 为正三角形. 所以MG ⊥PN . 所以MG ⊥平面PBC . (苏元高考吧: ) 取AM 中点为F ,连结FE ,则由EG ∥MF 且GE =MF ,得到MFEG 为平行四边形, 所以FE ∥MG .所以FE ⊥平面PBC .分 18.(本小题满分14分)解:设n i =时,x ,y ,z 的值分别为i x ,i y ,i z .依题意,01x =,12n n x x -=+, 所以{}n x 是等差数列,且21n x n =+. 因为011,2.n n y y y -==所以{}n y 是等比数列,且n n y 2=. 因为n n n n y x z z z +==-10,0, 所以1122n n n z x y x y x y =++⋅⋅⋅+即n z 23325272(21)2nn =⋅+⋅+⋅+⋅⋅⋅++⋅. ① 所以23412325272(21)2(21)2n n n z n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅. ② ①—②得,1322)12(22222223+⋅++⋅-⋅⋅⋅-⋅-⋅-⋅-=n nn n z()12122n n +=-+.依题意,程序终止时:7000n z >,17000n z -≤,即()()121227000,23227000.n nn n +⎧-+>⎪⎨-+≤⎪⎩ 解得8n =,进而7682z =.19.(本小题满分14分)解法1:(1)①若直线l ∥x 轴,则点P 为(0,0).②设直线():2l y k x =+,并设点,,,A B M P 的坐标分别是112200(,),(,),(,),(,)A x y B x y M x y P x y , 由()222,22y k x x y ⎧=+⎨+=⎩消去x ,得 ()2222(21)82410k y k x k +++-=, (*)由直线l 与椭圆有两个不同的交点,可得()()222288(21)410k k k ∆=-+->,所以212k <. (苏元高考吧: ) 由OP OA OB =+及方程(*),得2122821k x x x k =+=-+,()()1212242221ky y y k x k x k =+=+++=+,即2228,214.21k x k k y k ⎧=-⎪⎪+⎨⎪=⎪+⎩消去k ,并整理得,22240x y x ++=(20)x -<<.综上所述,点P 的轨迹方程为22240x y x ++=(20)x -<≤.(2)①当l ∥x 轴时,,A B 分别是椭圆长轴的两个端点,则点M 在原点O 处,所以,||2,||MD MA =||||MD MA = ②由方程(*),得212022,221x x k x k +==-+所以,0|||D MD x x =-=01|||MA x x=-==所以||||MDMA=因为212k<()0,1,所以)||||MDMA∈+∞.综上所述,)||||MDMA∈+∞.解法2:(1)①若直线l∥x轴,则点P为(0,0).②设直线:2l x my=-,并设点,,,A B M P的坐标分别是112200(,),(,),(,),(,)A x yB x y M x y P x y,由222,22x myx y=-⎧⎨+=⎩消去x,得22(2)420m y my+-+=,(*)由直线l与椭圆有两个不同的交点,可得22(4)8(2)0m m∆=--+>,即28(2)0m->,所以22m>.由OP OA OB=+及方程(*),得12242my y ym=+=+,121228(2)(2)2x x x my mym=+=-+-=-+,即228,24.2xmmym⎧=-⎪⎪+⎨⎪=⎪+⎩由于0m≠(否则,直线l与椭圆无公共点),消去m,并整理得,22240x y x++=(20)x-<<.综上所述,点P的轨迹方程为22240x y x++=(20)x-<≤.(2)①当l∥x轴时,,A B分别是椭圆长轴的两个端点,则点M在原点O处,所以,||2,||MDMA=||||MDMA=②由方程(*),得12022,22y y mym+==+所以,0|||D MD y y =-=01|||MA y y =-==,所以||||MD MA ==因为22m >(0,1),所以)||||MD MA ∈+∞.综上所述,)||||MD MA ∈+∞. 20.(本小题满分14分)(1)解:因为()x f x e x =-,所以()1x f x e '=-.令()0f x '=,得0x =.所以当0x >时,()0f x '>,当0x <时,()0f x '<.所以函数()x f x e x =-在区间(),0-∞上单调递减,在区间()0,+∞上单调递增. 所以当0x =时,()f x 有最小值1.(2)解:因为不等式()f x ax >的解集为P ,且{}|02P x x ⊆≤≤,所以对任意[]0,2x ∈,不等式()f x ax >恒成立.由()f x ax >,得()1e xa x +<,(苏元高考吧: )当0x =时,上述不等式显然成了,所以只需考虑(]0,2x ∈的情况.将()1e xa x +<变形为e 1xa x<-. 令()e 1xg x x =-,则()()21e xx -g x x '=.当1x >时,()0g x '>,当1x <时,()0g x '<, 所以()g x 在()0,1上单调递减,在()1,2上单调递增.广州市高中数学教师解题比赛试题参考答案 第11页(共7页) 所以当1x =时,函数()g x 取得最小值e 1-.故实数a 的取值范围为(),e 1-∞-.(3)证明:由(1)知,对任意实数x 均有1x e x -≥,即1xx e +≤. 令k x n=-(*,1,2,,1n k n ∈=-N ),则01k n k e n -<-≤, 所以1(1,2,,1)n n k k n k e e k n n --⎛⎫⎛⎫-≤==- ⎪ ⎪⎝⎭⎝⎭. 即(1,2,,1)n k n k e k n n --⎛⎫≤=- ⎪⎝⎭. 所以(1)(2)211211n n n n n n n n e e e e n n n n -------⎛⎫⎛⎫⎛⎫⎛⎫++++≤+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 因为(1)(2)2111111111n n n e e e e e e e e e ----------+++++=<=---, 所以 1211n n n nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.。

初中数学教师解题比赛试题及答案

初中数学教师解题比赛试题及答案

青年教师基本功大赛试题一、选择题(10×2=20分,单选或多选)1.现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋()(A)人本化(B)生活化(C)科学化(D)社会化2. 导入新课应遵循()(A)导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用(B)要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念(C)导入时间应掌握得当,安排紧凑(D)要尽快呈现新的教学内容3.下列关于课堂教学的改进,理念正确的是()(A)把学生看作教育的主体,学习内容和学习方法由学生作主(B)促进学生的自主学习,激发学生的学习动机(C)教学方法的选用改为完全由教学目标来决定(D)尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律4.为了了解某地区初一年级7000名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是()(A )7000名学生是总体(B)每个学生是个体(C )500名学生是所抽取的一个样本(D)样本容量是5005. 一个几何体的三视图如图2所示,则这个几何体是()主视图左视图俯视图图2 (A)(B)(C)(D)6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B ,那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )7.有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子。

若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为( ) (A)21 (B) 31 (C) 61 (D) 918.一次数学课上,老师让大家在一张长12cm 、宽5cm 的矩形纸片内,折出一个菱形。

甲同学按照取两组对边中点的方法折出菱形EFGH (见方案一),乙同学沿矩形的对角线AC 折出∠CAE =∠DAC ,∠ACF =∠ACB 的方法得到菱形AECF (见方案二),请你通过计算,比较这两种折法中,菱形面积较大的是( )(A )甲 (B )乙 (C )甲乙相等 (D ) 无法判断9.迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。

广州市第二届“十佳”中学数学青年教师、优秀中学数学青 …

广州市第二届“十佳”中学数学青年教师、优秀中学数学青 …

广州市第二届“十佳”中学数学青年教师、优秀中学数学青年教师
获奖通知
各中学:
由广州市教育局教研室中数科和广州市中学数学研究会主办的“广州市第二届高中(初中)十佳青年数学教师”和“广州市中学优秀青年数学教师”的评选活动,得到各区(县级市)教育局教研室和各中学校长室、数学科组、数学教师的大力支持。

按评选要求,经过“解题比赛——论文评审——学校考核”程序决出了初中组、高中组各15名数学教师参加2006年3月2日、3日的课堂教学评比活动。

最后综合评出初中组、高中组十佳青年数学教师各10名,中学优秀青年数学教师高中组34名,初中组32名。

获奖名单附后。

特此通知。

广州市教育局教研室中学数学科
广州市中学数学教学研究会
2006年3月8日
附表1
(附表2排名不分先后)
附表3
(附表4排名不分先后)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年广州市中学数学青年教师解题比赛决赛的
通知
各区(县级市)教研室(教育发展中心),省、市直属各中学:
现将2011年广州市中学数学青年教师解题比赛决赛的有关事项通知如下。

一、参赛对象
广州市范围内35周岁以下的中学数学教师。

二、比赛办法
本项活动在各区(县级市)教研室(教育发展中心)中数科举行初赛的基础上分初中和高中两个组别进行。

各区(县级市)教研室(教育发展中心)中数科在初赛优胜选手中按不超过本区(县级市)(包括属地中的省、市属中学)青年数学教师总人数的20%确定送市参加决赛的名额。

(参赛名单与考室见附件)
三、比赛时间及地点
比赛时间:2011年4月10日上午9:00~11:00 。

比赛地点:广雅中学。

★★参赛选手入场时请出示身份证或工作证。

四、命题范围
⑴初中解题比赛决赛命题范围为广州市初中中考数学考试大纲和国家高中数学课程标准中规定的内容,其中初中内容占70%,高中内容占30%,试题难度为初中内容按中考要求,高中内容按课本例题要求。

⑵高中解题比赛决赛命题范围为2007年高考广东卷文科数学和理科数学考试大纲的说明中规定的全部内容,试题难度参考理科高考的难度。

命题时将控制难题的数量。

五、授奖方式及等级
全市分初中、高中各设立一、二、三等奖。

获奖者均发获奖证书,以资鼓励。

广州市教育局教研室数学科
广州市中学数学教学研究会
二○一一年三月二十日
附件:
2011年广州市中学数学青年教师解题比赛决赛名单与试室安排
试室安排(初中)第一试室
第二试室
第三试室
第四试室
第五试室
第六试室
第七试室
第八试室
第九试室
试室安排(高中)
第一试室
第二试室
第三试室
第四试室
第五试室
第六试室。

相关文档
最新文档